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ABSTRACT: In these five decades, many useful tools have been developed for exploring quantum chemical potential energy
surfaces. The success in theoretical studies of chemical reaction mechanisms has been greatly supported by these tools. However,
systematic prediction of reaction mechanisms starting only from given reactants and catalysts is still very difficult. Toward this goal,
we describe the artificial force induced reaction (AFIR) method for automatically finding reaction paths of type A + BfX (+ Y). By
imposing an artificial force to given reactants and catalysts, the method can find the reactive sites very efficiently. Further pressing by
the artificial force provides approximate transition states and product structures, which can be easily reoptimized to the
corresponding true ones. This procedure can be executed very efficiently just by minimizing a single function called the AFIR
function. All important reaction paths can be found by repeating this cycle starting from many initial orientations. We also discuss
perspectives of automated reaction path search methods toward the above goal.

I. INTRODUCTION

Finding reaction paths as well as underlying transition states
(TSs) has been one of the primary tasks in theoretical studies of
the chemical reaction mechanism. Transition state is a key
concept in the transition-state theory (TST),1 in which the
reaction path is introduced rather abstractly as paths connecting
a reactant and a product through a TS. By early development of
semiempirical and ab initio theories, TS structures began to be
located explicitly as first-order saddle points on potential energy
surfaces (PESs).2�6 The intrinsic reaction coordinate (IRC) was
introduced in 1970 as the center line of idealized reaction paths,
defined as a mass-weighted steepest descent path starting from a
first-order saddle point.7 Calculation of IRC on the basis of an ab
initio theory was accomplished in 1977,8 by the development of
the analytical gradient method,9,10 and paths for the HNC f
HCN and H� + CH4 f CH4 + H� reactions were the first
examples of ab initio IRCs. Many useful tools have since been
developed for finding TSs and IRCs,11,12 and by using such tools,
numerous reaction mechanisms have been elucidated.13�16

It should be noted that our focus in this paper is on local
chemical bond rearrangements involving a few to several tens of
atoms. Global optimization, conformation sampling, crystal
structure sampling, etc.,17�23 are outside the scope of this paper.

Once a TS is obtained, the associated IRC can nowadays be
computed automatically by using one of the advanced steepest
descent path integration methods.8,24�27 The most complicated
step is locating the TS. A variety of geometry optimization
techniques, such as the gradient minimization,4 the Berny
optimization,28,29 the eigenvector following (EF),30 the geome-
try direct inversion in the iterative subspace,31 and the rational
function optimization32 (RFO), have been a great help to locate

the exact saddle point starting from a guessed TS structure.When
estimating a TS geometry and/or a reaction mechanism, quali-
tative chemical theories, such as the frontier molecular orbital
(FMO) theory33,34 and theWoodward�Hoffmann rules,35,36 are
very helpful and have been frequently considered. TS optimiza-
tion often requires a very good initial guess. Hence, results may
depend on the provided guess. It may happen that important
paths are missed in the search, if one fails to provide a proper guess
of the correspondingTS geometry. An absence of an important path
may cause serious disagreement between a theoretical conclusion
and experimental data. Moreover, a theoretical prediction may be
meaningless by the lack of a single important path. Therefore, an
automated search that does not rely on any initial guess is desired
for reliable determination as well as prediction of the reaction
mechanism.

In many cases, one knows both a reactant and a product. Thus,
double-end approaches are very useful to look for the TS(s) and a
minimum energy path connecting the known end points. There
have been considerable efforts for developing such approaches,
e.g., the synchronous transit method,37 the saddle optimization
method,38 the self-penalty walk method,39 the nudged elastic
band (NEB) method,40 the string method,41 the growing string
method,42 and others.11,12 These double-ended methods con-
siderably reduced the difficulty concerned with the initial guess of
TS. However, these methods usually assume at first that the
reaction path connects these two points along the straight line
and tend to provide to a path closest to this straight line. Hence, it
is not guaranteed that the most important (in general the lowest)
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path is obtained when there is more than one path. This problem
can be avoided by providing appropriate intermediate geometries
if available. In other words, double-endmethods usually require a
guess of reaction mechanism, that is, a series of important
geometries, including a reactant, a product, and some key inter-
mediates as well.

There are some methods which can find a reaction path
automatically starting with only the reactant if reaction variables
are given. The single coordinate driving (SCD), which has
frequently been employed since very early studies of reaction
paths,5,6 was employed also in automated path sampling.43 The
metadynamics44 method is very powerful in calculations of free
energy barriers for given reaction variables and has been success-
fully applied to many problems, including chemical reactions.45

The fast marching method can very quickly give a minimum
energy path for a given set of reaction variables.46 Although no
input of product or TS is necessary in these methods, one has to
select a small number of well-chosen, chemically relevant collec-
tive variables. In this sense, these methods also require a guess of
reaction mechanism.

There are several approaches completely free from the issue of
initial guess. Three such methods, the gradient extremal follow-
ing (GEF) method,47�56 the reduced gradient following (RGF,
also calledNewton trajectory)method,57�63 and the anharmonic
downward distortion following (ADDF) method,64�66 were
applied to global mapping of the whole topography of the PES
of H2CO on the basis of quantummechanical calculations. These
methods automatically located all local minima and TSs relevant
to all chemical bond rearranging reactions, i.e., H2CO T H2 +
CO, H2COTHCOH, HCOHTH2 + CO, HCOHT COH2,
and COH2 T H2 + CO, starting from the local minimum of
H2CO.

56,57,65 Thus, these methods have the ability to find all
paths for unimolecular reactions automatically. However, the
former two are computationally too expensive to be applied to
systems larger than H2CO. Only the ADDF method has been
practically used successfully in global reaction route mapping for
systems consisting of∼10 atoms.67 Several options are available
in the ADDF method regarding applications to larger systems
and nonadiabatic reactions.68�70 There are some valley filling
type approaches, such as the isopotential contour following71

method and the chemical flooding72 method. These can find only
a single reaction path starting from a valley of a given reactant
molecule, although this single path often corresponds to the
lowest barrier path.

The goal of this study is development of a tool by which all
important reaction paths can be obtained automatically just by
providing multiple reactant species. Reactions among them,
denoted A + B f X (+ Y) type in this paper, are of essential
importance in organic chemistry, where B can be a catalyst.
Nevertheless, among the above fully automated search methods
without any initial guess, the only practical ones, the ADDF
method as well as the valley filling methods are designed to find
paths of type A f X (+ Y) starting from local minima. Global
optimization, conformation sampling, cluster structure sampling,
etc. usually treat paths of type A f X, e.g., protein folding
occurring between two conformers of a peptide. Hence, methods
successfully applied to such a problem are not readily applicable
to paths of type A + Bf X. Although there are shallow potential
minima of weak complexes between A and B, such potential wells
are often located in very floppy regions of PES, far away fromTSs
for bond reorganization. Since topology of PES involved in initial
association states between A and B is very different from that in

the product minimum of X, a method specially suited for such
systems needs to be developed.

Recently, we have developed a method capable of solving the
present problem.73 The idea is pretty simple; just pressing given
reactant molecules to each other by a constant force. Hence, we
call the method the artificial force induced reaction (AFIR)
method. We have applied this method to an organic multi-
component reaction and to nonadiabatic spin flipping
reactions74,75 and have demonstrated that the method has the
ability to discover unexpected reaction paths automatically and
systematically. In this paper, the AFIR method is described in
detail. The reason why the method works very well in the
automated reaction path search is illustrated with a very simple
application to the reaction CO2 + H f HCO2/HOCO. An
application to the reaction between vinyl alcohol (H2C =
CH�OH) and formaldehyde (H2CO), which has an implication
to the aldol reaction, provided automatically many reaction
pathways including the aldol reaction among others. As case
studies of three and four component reactions, one or two water
molecules were added to these reactants as potential molecular
catalysts, and many paths involving the water molecule(s) as
aproton-transfer agent were located. Finally, perspectives of
automated reaction path search methods are discussed.

II. THEORY

AFIR Method. In the AFIR method,73 two or more reactants
are pressed to each other by a constant force. At first, it is
illustrated for the simplest case in which both A and B are single
atoms. A constant force can be applied between A and B just by
adding a linear function of distance rAB to the potential energy
function E(rAB):

FðrABÞ ¼ EðrABÞ þ RrAB ð1Þ

Figure 1. F(Q) in eq 1: (a) with R = 0, (b) with small R, and (c) with
large R.
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where R is a parameter of the strength of the force. Figure 1a�c
shows the function of eq 1 with R = 0 and with small and large R,
respectively, for a typical diatomic potential energy curve E(rAB).
Along the curve in Figure 1a, there is a reaction barrier separating
the reactant region A + B and the well of the product X. By
imposing a weak force in Figure 1b, a local minimum for a tight
complex is generated before the barrier. With a strong force, the
barrier disappears, and the curve in Figure 1c is fully attractive.
On F(rAB) in Figure 1c, one can find the product X just by
minimizing the function starting from A + B.
In designing a general representation of the force term for a

system with multiple degrees of freedom, one should take into
account some requirements: the function should be uniquely
defined (automatically determined) at all geometries, the func-
tion should be differentiable up to the second order, and the
function should not change anisotropies of each reactant as much
as possible. The third requirement suggests that a best function
would be as a sum of isotropic functions centered at each atom.
Hence, we proposed the following AFIR function:

FðQ Þ ¼ EðQ Þ þ R
∑
i ∈ A

∑
j ∈ B

½ðRi þ RjÞ=rij�prij

∑
i ∈ A

∑
j ∈ B

½ðRi þ RjÞ=rij�p ð2Þ

where E(Q) is the PES that depends on the atomic coordinates
Q = {Qk}, rij is a distance between the ith and jth atoms, and
summations are taken over all pairs of atoms in the reactants A
and B. Chemical bond reorganization usually occurs in a local
reaction center. Thus, the inverse distance weighting76 is em-
ployed so that the force is imposed only to closely interacting
pairs, where p is a parameter (set to the standard value: p = 6) of
the weight. In this weight, each inverse distance is scaled by the
sum of covalent radii (Ri + Rj) of the ith and jth atoms,
respectively, to take the difference in atomic size into account.
The parameter R for the strength of force can be rewritten as

R ¼ γ

2�1=6 � 1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ γ

ε

r !�1=6
2
4

3
5R0

ð3Þ

This equation represents an average force acting on two atoms in
the energy range 0 < E < γ ,when E is formally represented by the
Lennard-Jones potential (although the method is insensitive to
what form of potential is used). The parameter γ is a model
collision energy between two reactant particles; in the following
and also in previous studies, γ is used instead of R for conven-
ience. In practice we adopted R0 and ε to be the values for argon
clusters (R0 = 3.8164 Å and ε = 1.0061 kJ/mol).
A minimization of F(Q) gives an approximate structure for a

product X starting from a reactant pair A + B. The minimization
path of F(Q) is called the AFIR path, along which an approximate
TS geometry can be obtained as a highest point of E(Q). Such an
approximate TS geometry is then used as an initial guess for full
optimization of the true TS geometry without the artificial force.
Although eq 2 is the functional form we presently adopt, further
improvements of the functional form might increase the effi-
ciency and the accuracy in the future.
Algorithm. A flowchart of the automated search is shown in

Figure 2. Four kinds of information are required in the input: a
set of (separately optimized) reactant structures, a set of quan-
tum chemical parameters (computation level, total charge, spin

multiplicity, etc.), a maximummodel collision energy γMAX value
(see below), and a stopping criterion NMAX (also see below).
γMAX essentially controls the highest energy that is searched in
the present method. A choice of small value of γMAX restricts the
search to the low-energy region that can be reached with the
model collision energy γMAX, and the search is less expensive. On
the other hand, a large value of γMAX forces the search to high-
energy regions, and the search is more exhaustive but is more
expensive. In the present study, the AFIR minimization is
performed starting from many random orientations, although
more systematic ways or use of an intuitive orientation for a
known mechanism can also be considered.
At the first step of the Nth cycle, the model collision energy γ

(see eq 3) is set to sNγMAX, where sN is a random number in the
range: {0,1}. Then, a random orientation of the reactant species
is generated. F(Q) is minimized starting from the selected
random orientation. Once all convergence criteria (maximum
absolute gradient gMAX, root-mean-square gradient grms, max-
imum absolute displacement dMAX, root-mean-square displace-
ment drms) are met, γ is compared to γMAX. If γ < γMAX, then γ is
increased by 0.1γMAX, andminimization of F(Q) is repeated with
the updated γ starting from the latest geometry. Once a local
minimum with γ = γMAX is obtained, the structure is examined:
(1) If no new chemical bond is seen between the reactant species,
then the structure is discarded, (2) if the structure is already
found in a previous cycle, then the structure is discarded, or (3)
the structure is registered to a list of products, and N0 is updated
to N. This cycle is repeated while N � N0 e NMAX.
A parallel implementation of this algorithm is very easy; just

distributing eachminimization task (from the γ = sNγMAX step to
the N = N + 1 step in Figure 2) to each CPU core. In this study,
we actually implemented this procedure in parallel.
The AFIR method is implemented in a local developmental

version of the GRRM program.64�66 The minimum search was
performed by using the RFO method.32 When a step size of the
RFO method exceeded a given trust radius dTR (about the
control of dTR is discussed below), the minimization step was
replaced by a step of the trust radius method,77 which gives a

Figure 2. A flowchart of the automated reaction path search by the
AFIR method.
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quasi-Newton step of the size dTR. In this study, the exact Hessian
matrix was computed in every 50 minimization steps and was
updated by the BFGS78�81 method, which is the default setting
of the GRRM program and can be changed by users. The
convergence criteria, i.e., gMAX, grms, dMAX, and drms, were set
to 6.0� 10�5 hartree Å�1, 4.0� 10�5 hartree Å�1, 3.0� 10�4 Å,
and 2.0� 10�4 Å, respectively, in the final optimization with γ =
γMAX. Looser criteria with 10 times these values were used when
γ < γMAX. All optimized structures without the artificial force, i.e.,
true TSs and true products, also met the tighter optimization
criteria, where the RFO optimizer implemented in the GRRM
program was employed in the TS optimization as well as in the
product geometry optimization.
The initial random geometries were generated as follows:
(A) Determine the random orientation of all the fragments:

(1) Make three random vectors with their origins at the
center-of-mass of one fragment.

(2) These vectors are orthonormalized.
(3) The three vectors are considered as new xyz axes and

the original geometry is represented by the new axes.
(4) perform steps 1 to 3 for all the fragments.

(B) Now determine the random positions of the centers-of-
mass of all the fragments:

(1) Among M fragments, one fragment is selected ran-
domly and its center-of-mass position is placed at the
origin.

(2) Then, another fragment is chosen randomly from the
remaining M � 1 fragments; this second fragment is
placed at a random position around the first fragment.
Since this procedure may put two fragments too close
to each other, the center-of-mass position of the
second fragment is moved randomly (with a step size
of 0.05 Å) until the minimum distance from the first
fragment exceeds a threshold (the sum of the covalent
radii plus 0.8 Å).

(3) Repeat this procedure for the third, fourth, .. and the
last fragments.

There are some technical subtleties for a better implementa-
tion of this algorithm. The treatment starting with small γ and
gradually increasing it by 0.1γMAX is one of these. With this trick,
one can set the γMAX parameter to a relatively large value so that
many reaction paths with a variety of barrier heights can be
obtained in one search. For low-barrier paths, a very large γ
allows the AFIR minimization to pass through a high-energy
region far from the corresponding true TS. Hence, the smaller γ
tends to give a better approximate TS. When the same product is
reached, the maximum energy point along the previous path is
compared with the one along the present path, and then, the path
with a lower barrier is retained and the other is discarded. With
this trick, a good approximate TS is obtained along low-barrier
AFIR paths even if γMAX is very large.
Another point to consider in order to obtain a good approx-

imate TS is a proper control of the trust radius dTR around the TS
region. In optimization of an energy minimum, the maximum
and minimum values of dTR are set to 0.5 and 0.001 Å,
respectively. Between these values, dTR is controlled as follows:
When an optimization step increased the function value, dTR is
scaled by 0.1, and when the function value is decreased, dTR is
scaled by 3.0. Although this step control works well for usual
energy minimization, there have been some troubles in the AFIR
minimization. Before a barrier, direction of the artificial force and

that of the true potential force are opposite, giving a normal norm
of the total force. After passing through the barrier, these two
vectors suddenly direct to the same direction, and the norm of
the total force becomes too large. This sometimes causes an
abnormal jump of atoms involved in the bond rearrangement,
making a bump on the potential energy profile along the AFIR
path. Hence, when an optimization step gave a structure contain-
ing new chemical bonds and when the step changed lengths of
the new bonds more than 5%, dTR is reduced to 0.05 Å, and the
optimization step is recalculated, where atoms i and j with a
distance shorter than 1.2(Ri + Rj) were considered to be bonded
in this study. With this trick, AFIR paths can be calculated very
efficiently by the energy minimization method with a relatively
large step size used in usual geometry optimization in other
regions.
The final point is a special treatment of hydrogen (H) atoms in

eq 2. As discussed in Section III, the artificial force accentuates
the short-range orbital interactions so that sites with maximal
orbital interactions appear as local minima on the AFIR function.
Existence of long-range interactions, such as H-bonds, is expli-
citly seen as local minima even on bare E(Q). In other words,
reactive sites for hydrogen-/proton-transfer reactions can be
found by energy minimization without the artificial force. Hence,
we set the covalent radius parameter R in the weight function for
H atoms to zero. It should be emphasized that this does not mean
that hydrogen-/proton-transfer paths are omitted. Entrances of
hydrogen-/proton-transfer paths can be found as local minima
even if the weight is small. Once such a H-bond site is located,
the artificial force is imposed to H atoms even if R = 0, and
a hydrogen-/proton-transfer reaction occurs. Without this
treatment, AFIR minimization with small γ frequently falls
into H-bond sites because of the long-range H-bond interac-
tion. In order to efficiently find reactive sites for bond
formations between heavy atoms with small γ, this treatment
is recommended.
General Remarks. The present method may be categorized

into the bias potential approaches.82�85,44 Such methods have
been used for accelerating molecular dynamics as well as global
optimization. The common idea is to eliminate unwanted local
minima using bias potentials constructed by unique mathema-
tical procedures and data collected by extensive PES sampling.
However, these methods may not be very effective in the present
purpose. Strategies for eliminating flat regions of PESs for weakly
interacting reactants should be very different from those for
eliminating closed valleys. Hence, the bias employed in the
present study is not similar to those for the previous approaches.
What is the best bias potential to eliminate the flat regions of

PESs? A variety of functions, such as the harmonic, the Morse,
and the Gaussian functions, may be possible candidates. The use
of the linear function RrAB in eq 1 was considered by assuming
collisions among reactant molecules. In collisions, the driving
force to overcome a reaction barrier is the inertia force to keep
the translation of reactant molecules toward the TS. Hence, we
chose to impose the (model inertia) force using the linear
function. The force completely changes the landscape of the
PES; the flat asymptote is completely eliminated by the linear
function bias, as seen in Figure 1c.
One significant advantage of the present method is that the

bias potential is defined uniquely at any given geometry without
prior sampling of PES. This advantage arises from a single
assumption in the AFIR method that a part of reactant species
is connected with chemical bonds in the product. In this sense,
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the present method is in part related to previous methods that
assume a product structure or a small set of reaction variables.37�46

However, the assumption in the AFIR method is much more
flexible than those. Consequently, many reaction paths giving
unexpected products through unexpected reaction variables are
discovered in the AFIRmethod. In other words, AFIR is essentially
a single-end method starting from given reactants as this single
assumption does not specify which product will be found. More
importantly, no empirical guess of the mechanism is required in
the AFIR method.
We acknowledge two methods are especially related to AFIR.

One is SCD5,6,43 (and its modern form of RGF).57�63 If the force
is applied between a pair of atoms k and l (when F(rkl) = E(rkl) +
Rrkl is minimized), then the minimization path should be very
similar to the path followed by SCD for rkl. Another is the steered
molecular dynamics,86 which applies a force to specified atoms to
accelerate a particular event in molecular dynamics or to simulate
single-molecule experimental techniques, such as atomic force
microscopy and optical tweezers. The uniqueness of AFIR is that
the direction of the force or the driving coordinate(s) is auto-
matically given by eq 2. Among the numerous possible directions
of the force or the huge combinations of the coordinates, eq 2 can
choose suitable ones automatically, which enables an automated
search. Despite the automatic selection of the driving coordi-
nates, there are few AFIR paths wandering into dead end valleys
without any reaction, which is demonstrated in Section IV.
Although we discussed only technical aspects of the AFIR

method above, there is another important effect of the artificial
force, that is, accentuate the local quantum chemical (frontier
orbital) interactions leading to a TS. This helps finding an
entrance of reaction paths in the automated search. In other
words, the use of an artificial force to push the reactants together
is no more than a starting point. After many trails and errors in
adjusting the form of the force term, we discovered a special
function (AFIR function) on which all reactive sites among
multiple reactants can be identified as local minima. The success
of the AFIR function is understandable by considering the FMO
theory as illustrated in Section III using a very simple reaction
CO2 + H f HCO2/HOCO as an example.

III. AN EXAMPLE OF LANDSCAPE OF THE AFIR
FUNCTION

To illustrate a typical landscape of the AFIR function, we
revisit a reaction of CO2 + HfHCO2/HOCO. This reaction is
the first step of CO2 + H f CO + OH or the final step of the
inverse CO + OHf CO2 + H.87 Figure 3a shows an interaction
potential energy contour map between a CO2 molecule and a H
atom at the B3LYP/cc-pVTZ level, where the positions of the C
and O atoms in CO2 were fixed at those of optimized CO2. A
similar contour map is reported in ref 87 with a different
computation level. There are very shallowminima in the diagonal
directions, probably because of the basis set superposition error.
These minima are not important in chemical reactions.

Although all directions are almost completely repulsive, many
chemists may recognize the reactive sites by looking at the FMOs
of CO2 shown in Figure 3b. The lowest unoccupied molecular
orbitals (LUMOs) are degenerate π orbitals with a node on each
CdO bond. The highest occupied molecular orbitals (HOMOs)
of CO2 are degenerateπ orbitals with a node on the C atom. One
reactive site should be the perpendicular direction (see the red
arrow in Figure 3a) as LUMOs have the largest lobe toward this

direction. Another should be the diagonal direction (see the blue
arrow in Figure 3a) because of the lobe of HOMOs in this
direction. The interaction between these frontier orbitals and the
1s orbital of the H atom lowered the potential energy in these
directions, and consequently, dents are seen in these directions in
Figure 3a. Actually, the reaction has been found to take place
when theH atom collides toward either of these dents (see TSs in
Figure 3c).

If a function has local minima only in the reactive directions,
then one can find them easily by minimizing the function. The
AFIR function does have such a landscape as shown in Figure 3d,
which is a contour plot of the AFIR function with γ = 200 kJ/mol
(the second term of eq 2 is added to the plot of Figure 3a). The
values of the AFIR function linearly decrease from the long
distance to the medium distance because of the artificial force. In
the short distance, the strong repulsion between two particles
supersedes the artificial force, and the resulting potential curve
has a minimum in the medium distance. There we see a clear
angular dependence of the depth of the minimum and find local
minima at the reactive sites. Once such a reactive site is found as a
local minimum of the AFIR function, by increasing the γ value,
one can find an approximate reaction path, along which approx-
imate TS and product points can be obtained.

Figure 3c compares approximate AFIR structures with true
TSs and true products, where AFIR structures obtained by the
algorithm in Figure 2 withNMAX = 10 andγMAX = 200 kJ/mol are
shown in black behind the true stationary structures. The AFIR
structures, especially the approximate TS structures, are quite

Figure 3. (a) The interaction potential contour map between a CO2

molecule and a H atom at the B3LYP/cc-pVTZ level, where the contour
spacing is 5 kJ/mol and reactive sites are indicated by arrows; (b) the
FMOs of a CO2molecule at the same computation level; (c) true TS and
product structures for the CO2 + H reaction at the same level, where
approximate TS and product structures along an AFIR path (see text for
details) are shown behind the true structures with blackbody; and (d)
the contour plot of the AFIR function with γ = 200 kJ/mol for the
interaction between a CO2 molecule and a H atom at the B3LYP/
cc-pVTZ level.
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similar to the true ones. Moreover, all AFIR paths with different
initial orientations gave one of these two unique reaction paths;
there was nomiss shot and no useless vibrations or fluctuations in
the AFIR search. Before the completion of the algorithm, 564
gradients and 21 Hessian were computed in this application.

As seen in Figure 3a, the frontier (and other important) orbital
interactions leading to chemical reactions should have significant
effects on the repulsive potential walls. However, orbital inter-
action works in relatively short ranges compared to H-bond
interaction as well as electrostatic and dispersion interactions.
Hence, dents indicating entrances of reaction paths are not
always seen clearly as local minima. By pressing the reactants
to each other by the artificial force to accentuate such dents in the
short-range (see Figure 3d), locations of maximal orbital inter-
action can be visualized as local minima so that the computer can
detect them without extensive sampling or scans. Although the
FMO theory itself is also very powerful in predictions of reactive
sites, it does not work very well when many orbitals are involved
at once or when changes in shapes and/or characters of FMOs
are significant due to strong interactions with the collision
partner. On the other hand, the AFIR method looks at the shape
of PES avoiding these difficulties in the FMO theory.

IV. TEST CALCULATIONS

Aldol Reaction. As a case study, the reaction between vinyl
alcohol (H2CdCH�OH) and formaldehyde (H2CO) was
studied by the AFIR method. In this and the following applica-
tions, gradients and Hessians were computed at the B3LYP/
6-31G level by the Gaussian09 program.88 This calculation is
expected to give the products of the aldol reaction. In the aldol
reaction, vinyl alcohol is assumed to be an important intermedi-
ate which reacts with another reactant, an aldehyde molecule.89

Hence, the most important point in this application is whether
the AFIRmethod can find the product of aldol reaction or not. At
γMAX = 100 kJ/mol, only one path was obtained, which is shown
in Figure 4. In Figure 4 and others shown below, six structures are
presented for each path: a starting random structure for the
corresponding AFIR minimization, a reactant complex structure
found by an IRC calculation from the corresponding true TS
structure, a true TS structure, a highest energy structure along the
corresponding AFIR path (shown in black behind the true TS
structure for comparison), a true product structure found by an
IRC calculation from the corresponding true TS structure, and a
product structure with the corresponding AFIR path (shown in
black behind the true product structure). The only path shown in
Figure 4 actually corresponds to the final step of aldol reaction.
As seen in the TS structure, the approximate structure along the
AFIR path is quite similar to the true TS structure. The
approximate product structure along the AFIR path is also similar
to the true product structure. Thus, the AFIR method worked
very well. In this application with NMAX = 30, 33 random
structures were considered, and 3490 gradient and 87 Hessian
calculations were performed in total.
To find the higher barrier paths systematically, γMAXwas set to

a very large value of 1000 kJ/mol. All the obtained paths are listed
in Figure 5. The order of the path ID numbers represents the
order in which the structure was found in the AFIR search. The
most important path leading to the aldol product was found first
among the 13 paths. This is probably because the acceptance
region of this path is much wider than the others because of the
low barrier of this path. All the other paths have barriers higher

than 100 kJ/mol. Although deviations between approximate TS
and true TS structures are large in some paths, these are still
acceptable since in all cases geometry optimization by the RFO
method starting from these approximate TS structures con-
verged within 30 optimization steps to the true TS structures.
However, in future applications, there may be cases in which
optimization of a true TS geometry fails due to a very poor AFIR
guess. In such cases, one of the double-end methods11,12,37�42

could be applied to the corresponding pair of product and
reactant. Besides these paths, many biradical hydrogen-transfer
paths were obtained giving H2CdCH�O• + H2

•COH, H2Cd
C•�OH + H2

•COH, H•CdCH�OH + H2
•COH, H2CdCH�

O• + H3CO
•, H2CdC•�OH + H3CO

•, H•CdCH�OH +
H3CO

•, H2CdC•H 3 3 3OH2 + H•CO, H2
•C�CH2�OH +

H•CO, and H3C�•CH�OH + H•CO. This result demonstrates
that the AFIR method, with the combination of the AFIR
function in eq 2 and the algorithm in Figure 2, has the ability to
find many unknown paths automatically and systematically
without prejudice toward assumed mechanisms. In this applica-
tion with NMAX = 50, 505 random structures were considered,
and 59 208 gradient calculations and 1486 Hessian calculations
were performed in total. As expected, the cost is much larger in
this application than the above application with the small γMAX

due to many high-barrier paths. One may choose to use a small
γMAX, if high-barrier paths are not interested.
In the search with γMAX = 1000 kJ/mol, there were five unique

AFIR paths that ended without any reaction. For completeness,
these paths were further followed with γ = 5000 kJ/mol starting
from these nonreacted end points, and all of these five finally
reacted (see Figure S1 in Supporting Information for these
additional five paths). In other words, there was no AFIR path
that ran into a dead end valley in this particular example. The
situation was the same also in the above example for CO2 +H. As
demonstrated for CO2 +H in Figure 3, all reactive sites emerge as
local minima on the AFIR function, which helped to automati-
cally find effective coordinates to be driven by the artificial force
also in the case of H2CdCH�OH+H2CO. One problem in the
present algorithm is that each AFIR path is found again and again
starting frommany random orientations. In the case of the search
with γMAX = 1000 kJ/mol, 27 unique paths were obtained from
505 orientations; each product was reached 18.7 times on
average. It follows that most paths can be discarded in the course
of the minimizations before they reach the products when some

Figure 4. The reaction path between H2CdCH�OH and H2CO
obtained by the AFIR search with γMAX = 100 kJ/mol at the B3LYP/
6-31G level. Six structures with their energies relative to the isolated
reactants are presented: a starting randomly oriented structure as the
starting point for the AFIR minimization, a reactant complex structure
found by an IRC calculation from the corresponding true TS structure, a
true TS structure, a highest energy structure along the corresponding
AFIR path (shown in black behind the true TS structure for
comparison), a true product structure found by an IRC calculation from
the corresponding true TS structure, and a product structure along the
corresponding AFIR path (shown in black behind the true product
structure).
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similarities are found between the present path and one of
previous paths. This trick, once implemented, will reduce the
total computation cost dramatically.
Aldol Reaction Catalyzed by a SingleWater Molecule. As a

case study of three component reactions, one water molecule is
reacted together with H2CdCH�OH and H2CO. In this
application, in addition to the attraction between
H2CdCH�OH and H2CO, two more terms were added to
eq 2, one for attraction between H2CdCH�OH and H2O and
the other between H2CO and H2O.We chose the sameR for the
three force terms, and thus the γ value is divided three in
calculations of R with eq 3. It is possible to apply different R
to each term, however, this is not recommended. As discussed
above, one important role of the AFIR function is to accentuate
intrinsic topography on potential walls of original PESs, as shown
in Figure 3d. Not to destroy the anisotropy of the topography,
the AFIR function should be as simple as possible.
All paths obtained by a search with γMAX = 100 kJ/mol is

presented in Figure 6. There are two aldol paths with different
conformations (W1�P2 and W1�P5). With participation of
one water molecule, an analog of aldol-high-P4 in Figure 5, i.e.,
W1�P1 in Figure 6, was found with this small γMAX. Two new
types of paths opened, giving methylene-diol with (W1�P6 and
W1�P8) and without (W1�P3, W1�P4, and W1�P7) the
enol�keto tautomerization. All the AFIR paths provided good

approximate TS and product geometries also in this three-
component system. In this application with NMAX = 30, 97
random structures were considered, and 13 961 gradient and 340
Hessian calculations were performed in total.
Aldol Reaction Catalyzed by Two Water Molecules. In

three component reactions among A, B, and C, the AFIR
function having three force terms (for A�B, A�C, and B�C
attractions) is unique. On the other hand, when four components
A, B, C, and D are involved at once, there are six force terms for
the A�B, A�C, A�D, B�C, B�D, and C�D attractions. One is
the function with all six terms. However, such reactions giving at
least six new chemical bonds in one step are highly unlikely.
Hence, one needs to consider also AFIR functions with 3�5
force terms, which gives formally 38 possible force combinations.
In addition to one six-term function above, there are six (6C5)
five-term possibilities, 15 (6C4) four-term cases, and 16 (6C3� 4,
where the four cases involve an isolated component and are
treated as three-component reactions) three-term cases. In a fully
systematic search, one should consider all of these 38 possibi-
lities. In the present case study, only one of such cases is studied,
where A, B, C, and D are H2CdCH�OH, H2CO, H2O, and
H2O, respectively, and the AFIR function consists of four terms
for the A�B, A�C, B�D, and C�D attractions. This is expected
to give reaction paths between H2CdCH�OH and H2CO
involving two H2O molecules as proton-transfer agents. If we

Figure 5. The reaction paths between H2CdCH�OH and H2CO obtained by the AFIR search with γMAX = 1000 kJ/mol at the B3LYP/6-31G level.
See the caption of Figure 4 for the meanings of each structure.
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intend to investigate the catalytic role of two solvent molecules in
a bimolecular reaction, then this is the unique choice among the
38 possibilities.
All paths obtained by a search with γMAX = 100 kJ/mol are

presented in Figure 7. All products in Figure 7 are already seen in
Figure 6, although in all paths, the second water molecule is
explicitly involved as a proton-transfer agent. The AFIR paths
again provided good estimates of TS and product geometries for
full optimization. In this application with NMAX = 30, 180
random structures were considered, and 29 508 gradient and
699 Hessian calculations were performed in total.
If Figures 4�7 are compared, then very large catalytic effects of

the first and second water molecules are seen. However, the
effects are significantly overestimated because of the basis set
superposition errors of 6-31G. Figure 8 shows the aldol reaction
paths at the B3LYP/cc-pVTZ level, where TSs were optimized
starting from those for aldol-high/low-P1,W1�P5, andW2�P4.
As shown in Figure 8, when the larger basis sets are employed, the
energy lowering in relative potential energies is much smaller.
Moreover, if standard-state free energies at room temperature are
considered, participation of water molecules increases the barrier
height. Hence, in gas phase, catalytic effects of water molecules
are not important in this reaction.

V. CONCLUSIONS AND PERSPECTIVES

One goal in development of tools for exploring PESs would be
establishing a general approach which can predict the entire sets
of chemical reaction mechanisms automatically starting from a
given set of reactants and catalysts. Such a method, once realized,
will be very useful for exploring unknown chemical worlds by
using computers. Toward this unachieved goal, we introduced
the AFIR method for finding associative (A + B f X) paths
automatically. AFIR by pressing the reactants to each other with
an artificial force can locate the reactive sites of each reactant very
efficiently by accentuating the effects of (short-range) orbital
interactions. Once such a reactive site is located, further pressing
will lead to an approximate TS geometry and eventually to the

product. This procedure can be performed very efficiently just by
minimizing a single function called the AFIR function. Approx-
imate TS and product geometries can then easily be reoptimized
to corresponding true TS and product structures by geometry
optimization without the artificial force.

One of the most successful approaches for recognizing
reactive sites should be the FMO theory and the Woodward�
Hoffmann rules.33�36 Although these theories have been very
powerful for explaining chemical reactivates, they have not been
applied successfully to systematic predictions of reaction paths in
combinations with quantum chemical calculations of PESs.
Shapes of FMOs are known to change significantly by interaction
with collision partners in some examples,90,91 and hence, FMOs
for isolated molecules are not always very useful in predicting
reactive sites. To our knowledge, for this particular purpose,
there has been no systematic theoretical approach beyond these
theories. On the other hand, AFIR has the ability to predict
the reactive sites with quantum chemical calculations of PESs.
Moreover, AFIR can predict TS geometries in courses of the
AFIR minimization.

There is another unique feature of AFIR to be noted. In most
methods for finding reaction paths without a guess of TS
geometry, many cycles of constrained/penalty function optimi-
zation or extensive PES sampling are required before obtaining a
path. However, in AFIR, just minimization of one single function
gives a path. On the AFIR function, there is a local minimum (or
minima) at each reactive site. This has been illustrated in
Figure 3d and is obvious from many reaction paths shown in
Figures 4�7 that were obtained just by minimizing the AFIR
functions. Hence, from a given initial orientation, the system is
drawn into one of these sites. If a H atom is placed at any
direction of Figure 3d, it will automatically fall into one of the
reactive sites. This feature makes search for each single path very
efficient. Consequently, the automated stochastic search for
many paths was possible even with the brute-force algorithm in
Figure 2. Improvements of the stochastic part of the algorithm in
Figure 2 may increase the efficiency in the total automated
searches in the future.

Figure 6. The reaction paths among H2CdCH�OH, H2CO, and H2O obtained by the AFIR search with γMAX = 100 kJ/mol at the B3LYP/6-31G
level. See the caption of Figure 4 for the meanings of each structure.
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We note that the AFIR search should be performed for all
important conformers when reactants have several conformers.
Small conformational changes may occur during AFIR minimi-
zation as seen in P4, P9, and P10 in Figure 5. However, for many
reaction paths the conformation does not change. Therefore all
the conformations need to be considered for the search. Hence,
we suggest to perform conformation sampling for reactants
before the AFIR search. Many previous researches are available
regarding the expansion of the applicability of reaction path
search methods to larger complex systems; see refs 92�96 for
most successful examples for the EF and NEB methods. Their
strategies may be helpful in future applications of AFIR to
complex reactions.

Inmultistepmechanisms, unimolecular stepsmay alsobe involved.
It is still under tests how well AFIR can be applied to unimolecular
reactions. As discussed in the Introduction, some methods are
already available for unimolecular paths. Among them, the ADDF
method has been demonstrated to be very powerful for local
chemical bond rearrangements.64�68 Hence, we believe that the
goal of finding total chemical reaction mechanisms automatically
starting from given reactants and catalysts will be achieved in the
future by a combination of AFIR for A + Bf X (+ Y) steps and
ADDF (or others) for Af X (+ Y) steps.

There are some useful techniques to make applications of
automated reaction path search methods to large flexible systems
and to nonadiabatic (photochemical, ion�molecule, and spin-
flipping) reactions.69,70 Although these techniques were origin-
ally introduced in a combination with the ADDF method, in
principle they can be combined with any automated reaction
path search method including AFIR. One of such techniques is
the microiteration technique used in QM/MM geometry
optimization.97�99 With microiteration and the effective Hessian
approach, reaction paths concerned within a given reaction
center can be explored automatically.69 This technique is ex-
pected to greatly expand the applicability of AFIR to larger
molecular systems. The development combining AFIR and

microiteration within the ONIOM(QM:MM)100 framework
has already been done, and systematic tests are in progress for
an organometallic catalytic reaction with flexible ligands. This
approach is expected to develop into applications of AFIR to
enzymatic reactions. In enzymatic reactions as well as reactions in
solution phase, thermal entropy effects play a significant role. To
account for the entropy efficiently, several powerful free energy
methods are available, such as umbrella sampling,101metadynamics,44

free energy perturbation theory,102 etc. Development of inter-
faces with these free energy methods will be a very important
subject in the future.

Another such technique is the seam model function (SMF)
approach for nonadiabatic reactions. In the SMF approach, many
minima on seam of crossing hypersurfaces (MSXs) are searched
in two steps: automated exploration of many approximate MSX

Figure 7. The reaction paths among H2CdCH�OH, H2CO, H2O, and H2O obtained by the AFIR search with γMAX = 100 kJ/mol at the B3LYP/6-
31G level. See the caption of Figure 4 for the meanings of each structure.

Figure 8. The aldol reaction paths involving zero to two water
molecules at the B3LYP/cc-pVTZ level. Values in parentheses show
relative standard-state free energies at room temperature.
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structures using a penalty function by an automated reaction path
search method, followed by tight MSX optimization using the
approximate structures and an accurate MSX optimizer.70 Here,
“seam of crossing” includes conical intersections between states
with the same spin and space symmetry. With SMF and ADDF,
photodissociationmechanisms of small atmospheric species have
been investigated systematically.70,103�106 We already combined
SMF with AFIR and applied to exploration of nonadiabatic
ignition pathways of unsaturated hydrocarbons.75 In this applica-
tion, we discovered unexpected ignition pathways through low-
energy MSXs for aromatic hydrocarbons. Thus, applications of
the automatic search method to photochemical, ion�molecule,
and spin-flipping reactions are also possible. Interfaces with free
energy methods as well as microiteration will be required also in
this extension for nonadiabatic reactions in the future.

In these five decades, computational chemistry has become a
powerful means for exploration of chemical worlds in collabora-
tion with experiments. In many studies of chemical reactions, it
has been a splendid guide to confirm or to judge ideas of
computational and/or experimental chemists through the use
of sophisticated PES exploration tools. One of the important
subjects in the next generation should be predicting reaction
paths without presumed mechanisms. This has been achieved at
least for reactions of type A +BfX (+ Y) in small systems by the
present AFIR method. Obviously, further development of auto-
mated reaction path search methods will be required in the future
to cover reactions of many kinds in a variety of system size.
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Early Experiences with Computational Quantum Chemistry
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ABSTRACT: A description is given of the progress in computational quantum chemistry in the early 1960s, the time of the early
mainframe computers. In particular, the first calculation of the barrier to internal rotation in ethane and the first molecular
application of perturbed self-consistent-field equations are described with the accompanying developments, trials, and tribulations.

My Ph.D. research began in the summer of 1960 with W. N.
(Colonel) Lipscomb, who had moved to Harvard the

previous year. Most of his graduate students were doing crystal
structures of boron hydrides, but he had told me that he thought
it was now almost possible to do a theoretical calculation of the
barrier to internal rotation in ethane.

He said that Michael Barnett and co-workers, working in J. C.
Slater’s group at MIT, were making good progress in evaluating the
needed multicenter integrals over Slater orbitals. Presumably, an-
other reason why he suggested this problem was that he had seen
how much computers could help in solving X-ray crystal structures
and had anticipated their impact on quantum chemistry as well.

The early theoretical discussions of the ethane internal rota-
tion barrier had been made in the context of the perfect-pairing
approximation in valence bond theory, which involved the largely
unknown effect of the neglect of many integrals.1 By 1960, it had
been established that the molecular orbital approach was much
more computationally efficient.2 Thus, the goal of this and many
other calculations at this time was a self-consistent-field (SCF)
calculation with a minimum basis set of Slater orbitals.

Other students in the Lipscomb group doing theoretical work
were Bill Kern (magnetic resonance parameters), Larry Lohr
(semiempirical theory), and Roald Hoffman, just returning from
a year in Russia and developing extendedH€uckel theory to apply to
carboranes. Bill Kern introduced me to the new Fortran II and to
Michael Barnett. The advantages of using a high-level program-
ming language were becoming accepted, but some research groups
continued to use assembler languages. Bill also showed me around
the main computer center available, an IBM 704 at the regional
New England facility at MIT. It was a vacuum-tube computer
with 32k 36-bit words of memory and many tape drives. Input was
by IBMpunched cards.Wedrove toMIT every day or so to submit
jobs and pick up output. The programs formolecular integrals were
in various stages of development, and there was no SCF program
available for use or adaptation. When the crystallography students
found out that we went to MIT often, they asked us to get their
liquid nitrogen containers filled up there also.

The Barnett�Coulson method (for Slater orbitals) was to
expand all functions in the integrand in spherical harmonics
about one of the nuclei (centers) involved.3 The simplest
example of this expansion is

e�βrb

rb
¼ β ∑

∞

n¼ 0
ð2n þ 1Þ Pnðcos θaÞ inðβr<Þ knðβr>Þ

where r< = minimum(ra,Fb), r> = maximum(ra,Fb), and in and kn
are spherical Bessel functions, giving an expansion of an expo-
nential function at center b in terms of spherical coordinates at
center a. Fb is the distance between centers, and center b is on the
z axis of the coordinates. Other powers of rb can be obtained by
differentiation with respect to β.

All one- and two-center integrals except two-center exchange
resulted in finite expressions. Two-center exchange and all three-
center integrals resulted in singly infinite angular momentum
expansions. Four-center integrals resulted in triply infinite ex-
pansions with triangle conditions on the angular momentum
indices. The expansions almost always converged to the desired
0.000001 accuracy in 50 terms or less, but they all had to be
checked.

We were in correspondence with Martin Karplus and Shi
Shavitt (at ColumbiaUniversity and IBMWatson Lab) whowere
using an entirely different approach (Gaussian transforms) to the
integral evaluation.4 The basic transform is

e�βr ¼ ðβ= ffiffiffiffiffiffi
4π

p Þ
Z ∞

0
s�3=2e�β2=ð4sÞe�sr2 ds

which, when used for all four orbitals gives a readily evaluated
integral over Gaussian functions, which can then be integrated
over the transform variables.

I visited them twice to discuss comparisons on test cases, which
was quite helpful in debugging the programs. Col. Lipscomb sent
me to the 1962 Gordon Conference on Theoretical Chemistry
(forerunner of the present ACTC Conferences), which gave me
the opportunity to meet a number of people in the field,
including people whose papers I had been reading.

Organizing the integrals for the as yet unwritten SCF program
was done by making a list of the symmetry-unique integrals using
the D3h and D3d molecular symmetries of eclipsed and staggered
ethane. The list I generated was 1653-integrals-long in both cases,
with some integrals appearing in both lists.Much later, I discovered
that one of these integrals was zero by symmetry, but by that time
it was easier just to keep the same list and enter the 0.0 value. The
integrals came from several different programs and had to have
the orientation of their p orbitals rotated to themolecular axes, so
the values were entered into a notebook along with their two or
four orbital indices and an “occurrence factor” determined by
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their symmetry and permutation properties.5 This stage of hand-
processing was the most error-prone part of the work and was
rechecked extensively. Each integral and its accompanying infor-
mation was put on its own punch card.

I read enough about supermatrix formulations of SCF
calculations6,7 to write an SCF program specific to ethane using
these ideas. By late 1962, I had complete sets of integrals and was
ready to run the SCFprogram. By this time, the regionalMIT center
had an IBM7090 (transistorized) machine and the Slater group had
purchased their own (used) IBM709machine, whichwas set up in a
large space under one of MIT’s domes. The SCF calculations took
comparatively little time, and I soon had a rotational barrier value of
3.3 kcal/mol, reasonably close to the then-quoted experimental
value of 2.875( 0.125 kcal/mol.8 The ethane barrier could not be
measured by simple straightforward spectroscopic methods because
of its lack of a dipole moment, but more sophisticated techniques
later gave a value of 2.90 ( 0.03 kcal/mol.9

The credibility of such calculations in 1963 was a serious
problem. Calculations at this level (SCF, minimum basis set of
Slater orbitals) had been published previously on smaller mol-
ecules, with the integrals computed using desk calculators, and
some of them were known to contain errors due to their overall
difficulty. For example, the April 1960 issue of Reviews of Modern
Physics contains papers from a theoretical chemistry conference.
A paper by B. J. Ransil contains similar calculations, including
exponent optimization, for a number of diatomic molecules and
were done with no hand processing.10 I think the results were
generally considered to be correct, but of different accuracy for
different molecules. On the other hand, there were two similar
papers on formaldehyde, and their computed dipole moments
had opposite signs.11,12 In the case of ethane, a number of similar
calculations were subsequently performed within a few years, and
all gave similar results, reinforcing the validity of my calculations.
It took an additional number of years and the establishment of
several complete program systems before disagreement of re-
ported experimental and theoretical results was considered a
serious matter requiring further examination of both results. By
that time, contracted Gaussian basis sets had been shown to be
more efficient computationally than Slater basis sets.

The rotational barrier in ethane turned out to have been a
quite fortunate choice of computational project because alkanes
do not have the complications of multiple bonds or lone pairs of
electrons. One aspect of this is that alkanes have a higher ratio of
basis functions to number of electrons than other types of
molecules. In comparison, the skew structure of hydrogen
peroxide is not obtained until larger basis sets are used.13 H. F.
Schaefer has summarized this result in private and perhaps in
public by saying that minimum basis sets give surprisingly good
results for structural properties of alkanes.14

An additional project during this time involved a younger
graduate student, Dick Stevens. Oktay Sinanoglu had given a
seminar on his ideas about correlation energy and had spoken to
Col. Lipscomb about the possible effects of electron correlation
on magnetic properties. This was to be Dick’s project. On closer
examination, we saw the need to get Hartree�Fock values of
such properties first. We worked out the equations for perturbed
Hartree�Fock theory using a basis set expansion and notation
similar to Roothaan’s2 for the effects of uniform external mag-
netic and electric fields. These equations are coupled between the
occupied MOs. Other workers had spent considerable effort to
find ways to make approximations to uncouple the equations.
Our view of the problem at the time was that solving the coupled

equations was not as difficult as doing the integrals, so why not go
ahead and solve them with no further approximation? Dick set
out to do the programming. He had been given an object deck for a
diatomic integral program, but not the source deck. Dick’s response
was to obtain a core dump of the program and then proceed to
translate the numerical op codes into an assembler version for his
work, which seemed to me to be a rather daunting task. In due
time, he had a program to study the electric and magnetic
properties of diatomic molecules and first applied it to LiH.15

His results helped to establish some of the magnetic properties of
this molecule.
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ABSTRACT: Describing biological macromolecular energetics from computer simulations can pose major challenges, and often
necessitates enhanced conformational sampling. We describe the calculation of conformational free-energy profiles along carefully
chosen collective coordinates: “consensus” normal modes, developed recently as robust alternatives to conventional normal modes.
In an application to the HIV-1 protease, we obtain efficient sampling of significant flap opening movements governing inhibitor
binding from relatively short simulations, in close correspondence with experimental results.

Predicting protein dynamics remains a challenge in computa-
tional biology. The configurational space in which a solvated

macromolecule evolves is so large that we cannot reasonably ex-
pect to ever explore it fully. Standard molecular dynamics (MD)
simulations have their limits: for proteins of normal size, all-atom
simulations are typically limited to time scales largely inferior to
that of many biologically interesting movements and conforma-
tional changes. Although such limits to computation are being
pushed back every year (e.g., ref 1), exploration of long-time-
scale dynamics by MD alone is still not feasible. The difficulty is
especially acute for the identification of new molecules binding
flexible biological targets and understanding related allosteric
effects.2,3 Improved understanding of the dynamics of biological
macromolecules can thus facilitate the proposal of new inhibitors
ormodulators of biological macromolecules in the search for new
therapies.4,5

Properly taking into account features of the energy landscape
“in the large” allows one to arrive at accurate conclusions con-
cerning the dynamic behavior of macromolecules while using
shorter simulations. For example, coarse-grained potentials represent
groups of atoms by a single, larger particle, leading to increased
efficiency of the simulation.6,7 Other approaches are based
on the use of biasing techniques to enhance MD sampling along
interesting directions in the conformational space, using for example
umbrella sampling or metadynamics.8�12 In both cases, the goal
is essentially to look past noisier, smaller-scale degrees of free-
dom in order to exploit larger-scale features of the structure and/
or the energy surface. Representative collective-coordinate de-
scriptionsmust be found that are appropriate to the system under
study. Principal components obtained from molecular simula-
tions of the macromolecule have been successfully adapted for
this purpose.13�15 Normal modes analysis of the macromolecular

structure also provides information concerning its most favorable
modes of deformation, which correspond to gently sloped direc-
tions on the energy landscape.16�18 Normal-mode-based coordi-
nates have been correlated with directions of conformational
change in known systems19�21 and offer productive directions
for exploring the mechanisms of conformational change.22,23

Consensus normal modes take this one step further through a
statistical approach to identifying robust directions from multiple
normal mode descriptions, in which the shape of the free energy
surface is averaged over several minima via the covariancematrix.24

As well as being more robust to intrinsic variability in the analyzed
structure, the resulting consensus modes are more collective than
the individual normal modes and provide a more natural means of
accommodating solvent effects.24

A particularly challenging case is that of the HIV-1 protease
(PR), the major target of anti-AIDS drugs. PR is a homodimer
consisting of two chains of 99 amino acid residues in which access
to a central substrate binding site is mediated by symmetrically
disposed β hairpins called the “flaps”.25 Movement of the flaps
has been shown in experimental studies to be critical for inhibitor
binding.25 Indeed, 450 crystal or NMR structures of this mole-
cule under various conditions show conformational variability
mainly in this region (Figure S1, Supporting Information). Inter-
flap distance distributions established by electron paramagnetic re-
sonance (EPR) measurements using spin labeling confirm the
importance of flap conformational dynamics in solution.26 Char-
acterizing these dynamics is thus critical in the search for new
inhibitors of the protease and for understanding mutations that
allow HIV to evade existing therapies.27
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Nevertheless, the amplitude of the conformational dynamics
seen in unbiasedMD simulations only accounts for a small part of
the conformational variability observed experimentally, due to
the long time scales characterizing the motion, which have been
estimated to be on the order of several hundred nanoseconds or
microseconds.28,29 Further, enhanced sampling methods do not
always increase exploration of flap opening movements. In a
recent study of the binding of a peptide substrate to PR, seven
different collective coordinates were biased simultaneously using
explicit solvent simulations over 1.6 μs.30 Only semiopen struc-
tures were observed; full flap opening that would be necessary
to allow the entrance of the natural polyprotein substrate was not
observed.

We show here that umbrella sampling along strongly collective
consensus modes of the HIV-1 protease permits calculation of a
potential of mean force (PMF) along these reaction coordinates
using relatively short MD simulations. The collective coordinates
allow statistical sampling of representative conformations of the
protein with alternative flap conformations including highly open
states and largely account for the conformational dynamics ob-
served in the spin label measurements.

The consensus modes (CM) for the apoHIV-1 protease were
calculated as described previously from normal modes analyses
of 20 protease structures, which were extracted at regular intervals
from a 1 ns explicit-solvent MD simulation and quenched.24 An
advantage of the consensus modes formalism is its adaptability to
practical constraints; here, for example, the consensus modes were
calculated for the R carbons alone in order to obtain applicability
to mutational studies, yet they reflect a set of PR conformations
sampled from the original all-atom, explicit solventMD simulation
as well as the individual hydration layers used in the initial normal
mode determinations.24 The third and fifth lowest consensus

modes most involved in flap movement are shown in Figure 1. In
the orientation shown, mode 3 is associated with a horizontal
separation of the flaps while mode 5 describes vertical movement
of the flaps, which expands the active site. A movie of the indi-
vidual modemovements is provided (see Supporting Information,
movies 1 and 2).

Sampling along the consensus mode directions was performed
using generalized-Born implicit solvent31 MD simulations, using
theVMODcommand integrated intoCHARMMversion c35.32This
command adds a term to the energy function which is propor-
tional to the squared deviation of the instantaneous normal co-
ordinate of the protein from a prescribed target value. In this pro-
cedure, a given instantaneous structure R is first superimposed
onto a structure Ro that served as the reference for the consensus
modes calculations. The normal coordinate is then defined as
the projection of the mass-weighted coordinate difference vector
between R and the Ro onto the mode vector considered. VMOD
can be used to bias several collective coordinates simultaneously.
The approach has been used along with energy minimization to
explore the effects of variability in the shape of the binding pocket
in inhibitor docking to proteins33,34 and to the study of the energy
variations of large conformational changes.23,35 In the current study,
we used 41 independent MD simulations, each restrained by
VMOD to a different consensus normalmode coordinate (from�2
to +2 Å, every 0.1 Å). The starting structure was first dis-
placed to the target coordinate by energy minimization using the
VMOD restraint; MD heating, equilibration, and production
followed, all performed with the restraint in place in order to ob-
tain the desired sampling. PMFs along the consensus mode co-
ordinate were calculated using the weighted histogram (WHAM)
procedure as implemented by Grossfield.36 Additional details are
given in the Supporting Information and associated Figure S2.
We emphasize that exploring a normal mode coordinate using a
VMOD restraint is not the same as simply displacing the struc-
ture along the normal coordinate. Employment of VMODrestricts
only the normal mode coordinate itself; the remaining degrees of
freedom are free to adapt to the imposed coordinate restraint.

The PMFs calculated for consensus modes 3 and 5 are shown
in Figure 2. The free energy profile along mode 3 (top panel)
shows a wide basin for displacements ranging from �1.5 Å to
+1.5 Å with energy less than 2kT, while mode 5 (bottom panel)
shows a narrower basin between�0.5 and +0.5 Å. In both plots,
the sign has been chosen so that the negative coordinate cor-
responds to closure of the flaps and the positive to opening. Out-
side the basin region, the free energy increases rapidly. We also
show in red the distributions of normal mode coordinates cal-
culated for the 450 known PDB structures, as described in the
Supporting Information. Most of these structures contain ligands
and are thus of the closed form, and correspondingly the bulk
of the distribution for each mode is seen to lie to the left of the
origin. However, several unbound forms of the protease have been
solved as well, and these correspond to the small peaks around
0.5 Å in the distribution of mode 3. For both open and closed
forms, the experimentally determined structures are seen to re-
present low-energy regions of the PMFs, as should be expected.
In comparing the PMFs of modes 3 and 5, we see that the profile
along mode 5, in which the flaps move vertically in Figure 1, is
higher in energy but simpler in form than that of mode 3, asso-
ciated with horizontal flap separation. As can be seen in Figure 2,
mode 3 shows small barriers on the order of 2kT which tend to
delineate the starting structure from either more-open or more-
closed forms.

Figure 1. Snapshots of HIV-1 protease taken from MD simulations
with umbrella sampling along the consensus mode directions describing
flap opening. Each frame contains 20 superposed snapshots sampled at
5 ps intervals from an independentMD trajectory restrained to a particular
normalmode value: from�2 to +2Å for themode 3 and from�1 to +1Å
for mode 5.
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The necessity for umbrella restraints in exploring the flap
opening can be seen by examining the normal mode coordinates
calculated for the structures obtained from a 50 ns unrestrained
MD simulations, shown in the distribution in green (Figure 2).
Clearly, the unrestrained MD sampled closed forms of the
binding site rather well, producing structures having projections
along both modes 3 and 5 that are consistent with the calculated
PMFs. But the sampling of open forms along consensus mode 3
was poor. This may be related to the barrier seen at 0.5 Å in
Figure 2 (top) for this mode, although this barrier must be of a
different nature from that at �0.75 Å of the same height, which
did not prevent sampling in the direction of closing. The asym-
metry of the sampling seen in the unrestrained MD simulations
in this study is consistent with the under-representation of highly
open structures seen in over 460 replicated 50 ns explicit solvent
MD simulations reported by Sadiq and De Fabritiis,37 in which it
was suggested that the time scale for the conformational dynamics
accompanying full flap opening is very long and judging fromNMR
studies may be on the order of microseconds and beyond.28,37

Another way of looking at flap opening is to calculate the dis-
tance between the flaps. In EPR26 and MD38 studies of the pro-
tease, spin labels attached to residue 55 in each flap allowed deter-
mination of the interflap distance distribution in the presence and
absence of the protease inhibitor ritonavir. Figure 3 compares the
experimental distribution for the apo-protease (in red) to the
distribution of distances calculated for structures obtained from a
50 ns explicit solvent unrestrained MD simulation (green). It is
clear that the unrestrained simulations do not sample structures
having the larger interflap distances seen in the EPR results.

Figure 3 also shows the distance distribution obtained for struc-
tures sampled in the MD simulations employing umbrella sampling
along consensusmode 3 (in black), in which each distance has been
weighted by theBoltzmann factor corresponding to thePMFshown
in Figure 2 in order to allow comparison. The agreement with the
experimental curve suggests that both closed and open flap con-
formations are properly sampled along this reduced coordinate.

Sutto et al., in comparing unbiased and biased exploration of
the energy surface for a pentapeptide, concluded that the sampl-
ing performance strongly depends on the choice of the collective
coordinates.15 Indeed, other collective coordinates used for the
HIV-1 protease did not particularly enhance sampling of large
flap opening movements, although they were sufficient to study
peptide binding.30 From this point of view, the consensus modes
provide valuable collective coordinates for exploring the HIV-1
PR potential energy surface in the direction of flap opening, as
will be necessary for characterizing conformational factors play-
ing a role in the binding of the natural substrate.

Several conclusions can be drawn from this study, both for
consensus normal mode sampling in general and for the dy-
namics of the HIV-1 protease. First, the use of umbrella sampling
along a well-chosen collective coordinate—here, consensus mode
directions—enables one to explore HIV-1 protease flap opening
that would require long conventional MD simulations in order to
properly account for its conformational and energetic aspects.
The free energy increase associated with highly open structures is
less than 2kT despite their rarity in conventional simulations,
underlining the kinetic difficulties that can confront sampling
using conventional MD. Also, the distribution of experimental
PR structures, the majority containing ligands, on the free energy
landscape clearly shows that a population shift mechanism
applies,39�42 as the binding of the ligand would appear to
stabilize closed forms of the apoprotein that are already energe-
tically allowed, in agreement with pulsed EPR experiments.43 It
may also be noted that the free energy landscape along the
opening/closing mode (Figure 2) is rather flat, with a highly
anharmonic nature, while that corresponding to a higher energy
mode (5th mode in Figure 2) is closer to a quadratic shape. The
PMF approach using the consensus normal mode direction as the
collective coordinate allows one to estimate upper bounds for the
amplitude of large conformational changes and corresponding
energy, and to describe structural aspects thatmay be very different
from those derived from a simple normal-mode analysis itself.

Figure 3. Correspondence between interflap distances (using Lys55
NZ atoms) obtained fromMDwith umbrella sampling (black) and from
EPR of the spin-labeled protease (red). Data for structures extracted
from an unrestrained explicit-solvent 50 ns MD are also shown (green).

Figure 2. Free energy profiles for PR flap opening motions along CM
directions. Two different modes (3rd and 5th CMs) were explored. The
black line corresponds to the mean ((SD) of the free energies obtained
over three independent simulations. The distribution in red shows the
normal mode coordinates calculated for the 450 experimental PR struc-
tures deposited in the Protein Data Bank. The distribution shown in green
corresponds to the normal mode coordinates of structures sampled from
an unrestrained 50 ns explicit-solvent MD simulation.
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Further, using consensus modes24 allowed us to frame the
problem of exploring the conformational space of the HIV-1
protease in terms of the R carbon atoms alone, while the mode
determinations themselves still benefit from the high quality of
the individual normal mode determinations in which an all-atom
representation of the protein was used in addition to a solvation
layer.44 We note that the protocol used here is entirely adaptable
for use on distributed computing platforms, as the simulations
corresponding to the individual displacements along the mode
coordinate are completely independent. This will enable us to
further explore the protease motions to understand the effects of
certain mutants such as the drug-resistant MDR769, in which
experimental evidence suggests the flap distribution to be shifted
toward much larger distances.45

Improved free energy evaluations fromMD simulations, which
as we have shown here can be obtained using enhanced sampling
along consensus normal mode directions, offers the possibility of
differentiating the behavior of different mutants of HIV-1 in view
of obtaining clues about their resistance mechanisms.
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ABSTRACT: We show that the long-range Ewald operator can be resolved as erf(ωr12)/r12 = ∑kfk*(r1)fk(r2), where fk is
proportional to the product of a spherical Bessel function and a spherical harmonic. We demonstrate the use of this new resolution
by calculating the long-range Coulomb energy of the nanodiamond crystallite C84H64 and the long-range exchange energy of the
graphene C96H24. The resolution appears particularly effective for long-range exchange calculations.

1. INTRODUCTION

We have recently published a series of papers1�5 concerned
with resolving the Coulomb operator

r�1
12 � jr1 � r2j�1 ¼ ∑

∞

k¼ 1
jϕkæÆϕkj ð1Þ

into one-particle functions, where |fkæ and Æfk| are functions of
r1 and r2, respectively. Such resolutions factorize a Coulomb
integral into a sum of products of auxiliary integrals

Æajr�1
12 jbæ ¼ ∑

∞

k¼ 1
ÆajϕkæÆϕkjbæ ð2Þ

and thereby offer the computational benefits of Cholesky
decomposition6�9 and density fitting,10�12 but without the need
to solve Cholesky or fitting equations.

In our most recent work,4,5 we have shown that the one-particle
functions can take the form

ϕkðrÞ � ϕnlmðrÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� δn, 0

p
jlðnrÞYlmðrÞ ð3Þ

where jl is a spherical Bessel function and Ylm is a complex spherical
harmonic.13 Although this resolution is valid only for r1 + r2 < 2π,
we have shown that this weakness can be overcome by a suitable
prescaling of the system under study.

There is considerable contemporary interest14�36 in partition-
ing the Coulomb operator as

r�1
12 � Sðr12Þ + Lðr12Þ ð4Þ

where S is a singular short-range operator and L is a smooth long-
range operator, and then treating the short-range and long-range
subproblems separately. Ewald introduced this to chemistry to
compute Madelung constants,37 but it can be traced, in the
mathematics literature, to Riemann.38

The partition strategy is now employed in many quantum
chemical methods. It is particularly prominent in hybrid methodol-
ogies, wherein wavefunction-based and density-based approaches
are carefully combined to exploit their respective strengths. This
has led, for example, to the popular HSE,21�24 CAM-B3LYP,25

LC-ωPBE,30 LCgau-BOP,34 and ωB97XD35 methods.
The short-range operator S can be treated efficiently by the use

of boxing schemes22,39�43 that exploit spatial locality. However,

the long-range operator L is more computationally difficult, and
it is natural to ask whether a resolution analogous to eq 1 can be
constructed for it.

It turns out that there aremany ways to resolve such operators,
and we will consider several. Our approaches are general, but in
this Letter, we focus on the long-range Ewald operator

Lðr12Þ ¼ erfðωr12Þ
r12

ð5Þ

The partition parameter ω can take any positive value (the limit
ω f ∞ recovers the Coulomb operator) but, in practice, often
lies between 0.1 and 1. We use atomic units throughout.

2. RESOLUTIONS OF THE EWALD OPERATOR

We have investigated five approaches for resolving the Ewald
operator: orthonormal expansion, Taylor expansion, Gaussian
expansion, Bessel expansion, and Hermite quadrature. The first
four are outlined in the Appendix, but we describe the fifth and
most promising here.

If we apply 2N-point Gauss�Hermite quadrature13,44 to the
integral representation

Lðr12Þ ¼ 2ω
π

Z ∞

�∞
j0ð2βωr12Þ expð � β2Þ dβ ð6Þ

we obtain the spherical Bessel expansion:

Lðr12Þ ¼ 4ω
π ∑

N

n¼ 1
bnj0ð2βnωr12Þ + εNðωr12Þ

" #
ð7Þ

where βn and bn are the (positive) Hermite roots and weights.
How accurate are these Bessel expansions? The quadrature

error εN(ωr12) forN = 2, 4, 6, 8, and 10 is shown in Figure 1. It is
initially tiny, indicating that the expansions are accurate for small
ωr12, but eventually breaks away from the axis when the
expansion becomes unsatisfactory. (We note, however, that the
error is bounded for all ωr12.) It is encouraging to observe that
the breakaway point moves rapidly to the right as N is increased,
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suggesting that even modest values of N yield Bessel expansions
that are useful over large domains of ωr12.

In principle, all N terms in eq 7 must be included. However,
because |j0(x)|e 1 and the Hermite weights bn decay extremely
rapidly, it is possible to truncate eq 7 at n = N0,N with a
negligible loss of accuracy. The minimum N and N0 that
guarantee that the quadrature error is below ε over the domain
0e ωr12 e R are shown in Table 1. This Table reveals that, in a
molecule where max(r12) ≈ 30 (for example, taxol C47H51-
NO14), an accuracy of 10�10 requires only N0 = 51 terms for
ω = 1 or only N0 = 22 terms for ω = 1/3.

To resolve the j0 functions in eq 7, we start with the spherical
Bessel addition theorem13

j0ðλr12Þ ¼ ∑
∞

l¼ 0
ð2l + 1Þ jlðλr1Þ jlðλr2Þ Plðcos θ12Þ ð8Þ

and apply the Legendre addition theorem13 to find

j0ðλr12Þ ¼ 4π ∑
∞

l¼ 0
∑
l

m¼�l
jlðλr1Þ jlðλr2Þ Y �

lmðr1Þ Ylmðr2Þ ð9Þ

Substituting eq 9 into eq 7 then yields our key result—the Ewald
resolution:

LðN, LÞðr12Þ ¼ ∑
N

n¼ 1
∑
L

l¼ 0
∑
l

m¼�l
jϕnlmæÆϕnlmj ð10aÞ

ϕnlmðrÞ ¼ 4
ffiffiffiffiffiffiffiffi
bnω

p
jlð2βnωrÞ YlmðrÞ ð10bÞ

3. COMPUTATIONAL CONSIDERATIONS

It is essential to be able to determine a priori the minimum
values of N and N0 that will guarantee that eq 7 is accurate to
within ε over the domain of important ωr12 values in one’s
system. By examining the values ofN in Table 1, we have devised
the simple quadratic estimate

N � R2=4 + ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�log10 ε
p � 1ÞR + 3 ð11Þ

and it is then easy to show from the asymptotic behavior of the
Hermite roots and weights that

N 0 � 2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N ln ε

p ð12Þ

To use the Ewald resolution, eq 10, to find long-range
energies, we need the auxiliary integrals

Æabjϕnlmæ ¼
Z

aðrÞ bðrÞ ϕnlmðrÞ dr ð13Þ

where we will assume that a and b are Gaussian basis functions
centered at A and B, respectively. Because the Gaussian product
rule allows a(r) b(r) to be expanded as a finite linear
combination45 of Gaussians with a centroid P on the line
between A and B, the problem reduces to finding two-center
integrals of the form

ÆGn0 l0m0 jϕnlmæ ¼
Z

rn
0
expð � ζr2Þ Yl0m0 ðrÞ ϕnlmðr + PÞ dr ð14Þ

These can be solved in closed form, and we will discuss
elsewhere46 an efficient algorithm for Gaussians of arbitrary
angular momentum. However, in a basis that contains only s
and p functions, the only necessary formulas are

ÆG000jϕnlmæ ¼ cnC
lm00
l jlYlm ð15aÞ

ÆG200jϕnlmæ ¼ cnC
lm00
l ½3=ð2ζÞ � x2n�jlYlm ð15bÞ

ÆG11m0 jϕnlmæ ¼ cnxn½Clm1m0
l � 1 jl�1Yl�1,m�m0 � Clm1m0

l + 1 jl+1Yl+1,m�m0 �
ð15cÞ

ÆG22m0 jϕnlmæ ¼ cnx
2
n½Clm2m0

l � 2 jl�2Yl�2,m�m0 � Clm2m0
l jlYl,m�m0

+ Clm2m0
l + 2 jl+2Yl+2,m�m0 � ð15dÞ

where xn � βnω/ζ, jl � jl(2βnωP), and Ylm � Ylm(P)

cn ¼ 4
ffiffiffiffiffiffiffiffi
bnω

p
ðπ=ζÞ3=2 expð � ζx2nÞ ð16Þ

Clml0m0
l ¼ ð�1Þm0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l + 1Þð2l0 + 1Þ
4πð2l + 1Þ

s
Æll000jll0l 0æÆll0mð �m0Þjll0l ðm�m0Þæ

ð17Þ
and thefinal two factors in eq 17 areClebsch�Gordan coefficients.13

We note thatCl
lm00 = Y00 = 1/(4π)

1/2, and thus, eq 15a is analogous
to eq 18 of our previous work.4

Figure 1. Quadrature error εN(ωr12) in eq 7 forN = 2 (left-most), 4, 6,
8, and 10 (right-most).

Table 1. N and N0 such that εN(ωr12) < ε for 0 e ωr12 e R

R = 10 R = 20 R = 30 R = 40 R = 50

�log10 ε N N0 N N0 N N0 N N0 N N0

2 31 8 108 13 235 19 410 25 634 30

3 35 10 117 17 248 25 428 32 658 39

4 38 12 122 21 257 29 441 38 674 47

5 40 14 127 24 264 34 450 43 687 53

6 42 16 132 27 270 37 459 48 697 59

7 44 17 135 29 276 41 467 53 707 65

8 46 19 139 32 281 44 473 57 715 70

9 48 20 142 34 286 48 480 61 723 75

10 50 22 145 36 291 51 486 65 731 80

11 51 23 148 38 295 54 491 69 738 84

12 53 24 151 41 299 57 497 73 744 89
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We have implemented the Ewald resolution in a stand-alone
C program which precomputes the required Hermite roots
and weights,44 along with the Clebsch�Gordan coefficients.13

The jl and Ylm are calculated recursively, as in our previous work.
4

We use the relative error

ε ¼
�����E

ðN, LÞ � E
E

����� ð18Þ

tomeasure the accuracyof the approximate energies affordedby eq10.

4. NUMERICAL RESULTS

The long-range Coulomb energy of a density F(r) is

EJ ¼ 1
2
ÆFjLðr12ÞjFæ ð19Þ

and applying the Ewald resolution eq 10 to this yields the
approximation

EðN, LÞ
J ¼ 1

2 ∑
N

n¼ 1
∑
L

l¼ 0
∑
l

m¼�l
ÆFjϕnlmæ2 ð20Þ

We have applied eq 20 to the electron density in the nanodia-
mond C84H64, which is described in our previous paper.4 The
(N,L) pairs that yield various relative errors ε for various attenua-
tion parameters ω are shown in the middle columns of Table 2.

The long-range exchange energy is

EK ¼ � 1
2∑
occ

ij
ÆψiψjjLðr12Þjψiψjæ ð21Þ

and applying the Ewald resolution (eq 10) to this yields the
approximation

EðN, LÞ
K ¼ � 1

2 ∑
N

n¼ 1
∑
L

l¼ 0
∑
l

m¼�l
∑
occ

ij
Æψiψjjϕnlmæ2 ð22Þ

Diamond has a large bandgap, and its exchange interactions
decay rapidly with distance. We therefore chose to apply eq 22 to
the more interesting π system of the C96H24 graphene,

47 placing
a unit exponent pπGaussian on each C atom and using its H€uckel
orbitals.48 The (N,L) pairs that yield various relative errors ε for
various ω are shown in the final columns of Table 2.

Because the Ewald operator eq 5 is smooth, the (N,L) pairs
required for the long-range Coulomb energies are much smaller
than for the total Coulomb energies.4 Moreover, we find that
long-range exchange energies require surprisingly smallN values,
reflecting that, even in the highly delocalized graphene system,
the exchange interaction decays fairly quickly with distance.47,49,50

5. CONCLUDING REMARKS

There are a number of ways to resolve the long-range Coulomb
(Ewald) operator into products of one-particle functions. Our
favorite resolution eq 10 employs a spherical Bessel expansion of
the Ewald operator and thereby generalizes our earlier quasi-
resolution of the Coulomb operator. Numerical results indicate
that this Ewald resolution converges rapidly andmay be useful in a
range of quantum chemical contexts. It looks particularly promis-
ing for the efficient calculation of long-range exchange energies.
We are implementing the resolution in the Q-Chem package,51

and we will discuss the efficient evaluation of the auxiliary integrals
eq 14 and present timing comparisons elsewhere.46

We note finally that the Bessel expansion method is easy to
extend to the erfgau operator16,34,52

L1ðr12Þ ¼ erfðωr12Þ
r12

� 2ωffiffiffi
π

p exp �ω2r212
3

 !
ð23Þ

Applying Gauss�Hermite quadrature as for the Ewald operator
yields

2ωffiffiffi
π

p exp �ω2r212
3

 !
¼ 4ω

π

Z ∞

�∞
β2j0

2ffiffiffi
3

p βωr12

� �
expð � β2Þ dβ

� 8ω
π ∑

N

n¼ 1
bnβ

2
nj0

2ffiffiffi
3

p βnωr12

� �
ð24Þ

where βn and bn have the same meanings as in eq 7.

’APPENDIX

Orthonormal Expansion.One way to resolve L(r12) is to find
functions fk that are complete and Ewald-orthonormal, i.e.

ÆfkjLðr12Þjfk0æ ¼ δk, k0 ð25Þ
If these fk are known, one can show1 that

ϕkðr1Þ ¼
Z

Lðr12Þ fkðr2Þ dr2 ð26Þ

If fk is chosen to be a product of Ylm and a radial function, one
eventually obtains

ϕkðrÞ ¼ ffiffiffiffiffiffiffiffi
2=π

p
YlmðrÞ

Z ∞

0
pnðxÞ jlðrxÞ L̂1=2ðxÞx dx

¼ 2
ffiffiffi
2

p
YlmðrÞ

Z ∞

0
pnðxÞ jlðrxÞ exp � x2

8ω2

 !
dx

ð27Þ

where L̂ is the Fourier transform of L and the pn are any functions
that form a complete and orthonormal set on [0,∞). Unfortu-
nately, this approach is thwarted by the difficulty of selecting pn
that yield tractable integrals.

Taylor Expansion.The Taylor expansion of the Ewald operator

Lðr12Þ ¼ 2ωffiffiffi
π

p ∑
∞

n¼ 0

ð �ω2r212Þn
n!ð2n + 1Þ ð28Þ

converges for all r12. Because (r12
2 )n expands naturally18 into a finite

sum for any n, it is easy to construct a resolution from eq 28.
However, when truncated after n = N, the series eq 28 behaves
as (�r12

2 )N and is therefore worthless at large r12.

Table 2. (N,L) Pairs Required in Long-Range Coulomb and
Exchange Calculations

long-range Coulomb energy of

the nanodiamond C84H64

long-range exchange energy of

the graphene C96H24

ω = 0.1 ω = 0.5 ω = 1.0 ω = 0.1 ω = 0.5 ω = 1.0

ε = 10�3 (3, 0) (30, 13) (114, 24) (1, 4) (2, 27) (5, 45)

ε = 10�6 (5, 4) (49, 23) (181, 50) (2, 9) (4, 44) (8, 85)

ε = 10�9 (7, 8) (65, 36) (241, 68) (3, 13) (6, 58) (12, 99)
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Gaussian Expansion. If we apply 2N-point Gauss�Legendre
quadrature13 to the Ewald integral representation

Lðr12Þ ¼ ωffiffiffi
π

p
Z 1

�1
expð �ω2γ2r212Þ dγ ð29Þ

we obtain the Gaussian expansion16

Lðr12Þ � 2ωffiffiffi
π

p ∑
N

n¼ 1
gn expð �ω2γ2nr

2
12Þ ð30Þ

where the γn and gn are the (positive) Legendre roots and weights.
The function exp(�λr12

2 ) can be partially resolved, using the
exponential and Legendre addition theorems13 to find

expð � λr212Þ
expð � λr21 � λr22Þ

¼ ∑
∞

l¼ 0
ð2l + 1Þ ilðλr1r2Þ Plðcos θ12Þ

¼ 4π ∑
∞

l¼ 0
∑
l

m¼ � l
ilðλr1r2Þ Y �

lmðr1Þ Ylmðr2Þ

ð31Þ
where il is a modified spherical Bessel function.13 However, this
does not mirror the form of eq 1 because we cannot resolve
il(λr1r2).

Bessel Expansion. The Fourier�Bessel expansion13,53

Lðr12Þ ¼ 2
π ∑

∞

n¼ 1
j0ðnr12Þ

Z π

0
LðxÞ j0ðnxÞ n2x2 dx

¼ 2
π ∑

∞

n¼ 1
ð� 1Þn + 1erfðωπÞ + exp � n2

4ω2

 !
R erf ωπ +

n
2ω

ι

� �� �" #
j0ðnr12Þ

¼ LðπÞ + 2
π ∑

∞

n¼ 1
exp � n2

4ω2

 !
R erf ωπ +

n
2ω

ι

� �� �
j0ðnr12Þ

ð32Þ
converges rapidly, but unfortunately, it is valid only on the finite
domain 0 e r12 e π. As a consequence, it yields what we have
previously termed a “quasi-resolution”,4 and to use it in practice,
one would need to scale the system to fit within this domain.
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ABSTRACT: Thermodynamic integration, perturbation theory, and λ-dynamics methods were applied to path integral molecular
dynamics calculations to investigate free energy differences due to “alchemical” transformations. Several estimators were formulated
to compute free energy differences in solvable model systems undergoing changes in mass and/or potential. Linear and nonlinear
alchemical interpolations were used for the thermodynamic integration. We find improved convergence for the virial estimators, as
well as for the thermodynamic integration over nonlinear interpolation paths. Numerical results for the perturbative treatment of
changes in mass and electric field strength in model systems are presented. We used thermodynamic integration in ab initio path
integral molecular dynamics to compute the quantum free energy difference of the isotope transformation in the Zundel cation. The
performance of different free energy methods is discussed.

I. INTRODUCTION

The quantum nature of nuclei plays an important role in the
prediction of many properties of systems containing light
elements such as hydrogen. A successful approach to investigat-
ing such effects relies on first principles (ab initio) based path-
integral molecular dynamics (AI-PIMD).1,2 In AI-PIMD, the
nuclei are quantized following Feynman’s path integral (PI)
formalism,3,4 while the many-body potential of the system is
computed “on-the-fly” from electronic structure calculations.5,6

Proton transfer events are now routinely investigated using
AI-PIMD in various hydrogen-bonded systems in gas,7�10 con-
densed phases,11,12 or even on surfaces.13,14

Nuclear quantum effects in biological systems have attracted
considerable attention in recent years. Various methods have
been developed and successfully deployed to investigate nuclear
quantum effects in biological systems.15,16 For example, using
AI-PIMD, we recently identified nuclear quantum effects to be
crucial for kinetically stabilizing the canonical Watson�Crick
base pair configuration by rendering their rare enol tautomer
form metastable.17

In this study, we explore “alchemical” changes within the
path integral formalism. By alchemical changes, we refer to
changes of parameters that define a given Hamiltonian, such as
atomic numbers, atomic masses, number of particles, or the
interaction potential. Studying changes in composition (atomic
numbers) holds great promise for future applications in the
arena of rational computational materials design, i.e., approaches
that attempt to outperform a mere screening of combinatorial sets
of materials candidates.18�23 The computation of free energy

differences24 between compounds based on thermodynamic
integration,25 or free-energy perturbations,26 has only recently
been applied using electronic structure methods.27�29 For exam-
ple, a related framework was used to successfully determine the
chemical composition of the Earth’s core.30 To the best of our
knowledge, similar alchemical changes have not been hitherto
investigated within PIMD.

Alchemical transformations involving changes in atomic
numbers could one day lead to the engineering of tunneling
barriers in proton-conducting materials. For changes involving
only the mass, such an approach permits the direct evaluation of
kinetic isotope effects. Only very recently, and while we carried
out our study, an adaptation of AI-PIMD for the computation of
isotope effects in intramolecular hydrogen transfer via thermo-
dynamic integration was published.31 More recently, Ramirez
andHerrero applied thermodynamic integration in path integrals
to investigate the isotope effects on the melting temperature of
ice Ih.32 Finally, we also note a recent application of the Jarzynski
equality within PIMD.33

In this study, we discuss analytically solvable model systems
subjected to changes in mass and potential. Free energy differ-
ences were computed numerically using thermodynamic inte-
gration and λ-dynamics methods.34We furthermore consider the
perturbative treatment of changes in mass and static electric
fields. While ultimately AI-PIMD will be used to investigate such
alchemical changes in more realistic systems, our focus here is on

Received: January 24, 2011
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formulating and assessing the methods for simplemodel systems.
To the best of our knowledge, a path integral scheme to generally
estimate free energy changes due to alchemical transformations
has yet to be presented.

This paper is organized as follows: In the Theory section,
we first recall Feynman’s path integral expression for the
Helmholtz free energy. Then, we describe thermodynamic
integration, perturbation theory, and λ-dynamics methods
applied to PIMD. In the subsequent Results section, the
investigated model systems and numerical results are dis-
cussed. The paper ends with the Conclusions section and
the Appendix.

II. THEORY

A. Path Integral Expression for the Helmholtz Free En-
ergy. Feynman’s PI formulation3,4 of quantum statistical me-
chanics describes each nucleus by a ring polymer of P (known as
the Trotter number) interacting quasi-particles, colloquially
referred to as “beads”. In the usual formulation, these beads are
connected by harmonic springs and experience the effect of an
attenuated classical potential.35 Path configurations can then be
sampled either stochastically via Monte Carlo methods36 or
deterministically usingmolecular dynamics.37 Thus, path integral
molecular dynamics (PIMD) is a straightforward way to include
nuclear quantum effects in ordinary molecular dynamics (MD)
simulations.
The discrete path integral expression for the canonical quan-

tum partition function of a single particle in 3D is34

ZðλÞ � CðλÞ
Z

dr1:::drP e
�βΦðfrg;λÞ,

with

CðλÞ ¼ mðλÞP
2πβp2

 !3P=2

ð1Þ

where P is the Trotter number, i.e., the number of replicas or
beads35 representing the quantum particle, and Φ is the path
integral effective potential,

Φðfrg; λÞ ¼ ∑
P

s¼ 1

mðλÞ
2

ω2
Pðrs � rsþ1Þ2 þ ∑

P

s¼ 1

Vðrs; λÞ
P

ð2Þ

whereωP
2 = P/(βp)2, {r} denotes the bead coordinates, and V is

the classical potential. The paths obey the cyclic condition rPþ1 =
r1 imposed by the quantum-mechanical trace operation Z =
Tr[exp (�βĤ)]. Equation 1 shows explicitly the parametric
dependence on λ driving the transformation in mass m(λ) and
potential (see next section).
The canonical average of any observable O at a fixed λ value,

ÆOæλ, is given by the following integral over the path configura-
tions:

ÆOæλ � CðλÞ
ZðλÞ

Z
dr1:::drP Oðr1, 3 3 3 , rP; λÞ e�βΦðfrg;λÞ ð3Þ

In practical path integral calculations, one performs a
suitable coordinate transformation of eq 2 to either normal
modes or staging coordinates.37 To carry out PIMD, a
Hamiltonian is constructed by adding a set of momenta to
this transformed effective path integral potential. The dyna-
mical masses of these pseudoparticles are then chosen so as to

bring all free-particle modes to the same time scale. Finally,
thermostats are attached to each bead to improve ergodic
canonical sampling.37

B. Thermodynamic Integration and Path Integrals. The
quantum free energy change of a system due to an alchemical
transformation is, by definition,

ΔF ¼ Ff � Fi ¼ � 1
β
ln

Zf

Zi

� �
ð4Þ

where Zi(Fi) and Zf(Ff) denote the initial and final canonical
quantum partition functions (Helmholtz free energies), respec-
tively. Equation 4 can be evaluated numerically using the
thermodynamic integration (TI) method:25,38,39

ΔF ¼
Z 1

0
dλ

dFðλÞ
dλ

� �
λ

ð5Þ

where λ is a coupling parameter that drives the transformation
from an initial state i to a final state f. We remark that while it is
well-known that eq 5 can be identified with

R
dλÆ∂λVæ in classical

statistical mechanics (V being the potential energy),34 this is not
the case for PI (see below).
Consider now a single quantum particle undergoing a

change of identity, i.e., a simultaneous change of mass and
potential energy function. Since the Helmholtz free energy F is
a state function, ΔF is independent of how the two states are
interpolated using the λ variable, provided that the two end
points are met at λ = 0 and 1. For simplicity, consider a linear
interpolation path and a single λ parameter driving both
transformations

VðλÞ ¼ λVf þ ð1� λÞVi

mðλÞ ¼ λmf þ ð1� λÞmi
ð6Þ

with 0 e λ e 1. Obviously, the intermediate λ states do not
correspond to any real system but are only a (perfectly
rigorous) way of obtaining the corresponding free energy
difference. Although in eq 6 a single parameter λ is used, it
may be more efficient to use two independent control param-
eters, λm and λν, for the mass and potential transformation,
respectively.
As noted above, any interpolation scheme is permissible

provided that the end point condition Z(λ = 1) = Zf and
Z(λ = 0) = Zi is satisfied. Although a linear interpolation is the
simplest choice, it is not necessarily themost efficient. An optimal
choice is the scheme that samples many function values in the
region of the λ domain where the function to be integrated varies
rapidly. In the Results and Discussion section, we explore in
detail the relative performance of linear and nonlinear interpola-
tions. Specifically, a simple quartic interpolation in λ will be
discussed

VðλÞ ¼ λ4Vf þ ð1� λ4ÞVi

mðλÞ ¼ λ4mf þ ð1� λ4Þmi
ð7Þ

As expected, different interpolation functions lead to different
convergence properties for thermodynamic integration using
PIMD (TI-PIMD).
C. TI-PIMD: Changes in Mass. The TI-PIMD evaluation of

the quantum free energy difference associated with a change of
mass enables us to predict isotope effects. For changes being
restricted to the mass, i.e., V being independent of λ, the first
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derivative of eq 1 with respect to λ yields the average of the free
energy derivative:

dF
dλ

� �prim

¼ � 1
β

DλZðλÞ
ZðλÞ � � DλmðλÞ

mðλÞ
� �

� 3P
2β

�m
2
ω2

P ∑
P

s¼ 1
Æðrs � rsþ1Þ2æλ

" #
ð8Þ

Here, the term 3P/(2β) comes from the normalization
prefactor C(λ) in eq 1 . Equation 8 corresponds to the
primitive estimator of the first-order derivative of the free
energy with respect to mass. This expression is expected to
have the same statistical problems as the primitive estimator
for the quantum kinetic energy.40 Better convergence, how-
ever, can be achieved using the virial relation for bound
systems in path integrals:34,40

3P
2β

�mω2
P

2 ∑
P

s¼ 1
ðrs � rsþ1Þ2

� �
¼ 1

2P ∑
P

s¼ 1
rs 3

DV
Drs

� �
ð9Þ

Insertion in eq 8 yields the virial estimator for a bound particle

dF
dλ

� �vir

� � DλmðλÞ
mðλÞ

� �
1
2P ∑

P

s¼ 1
rs 3

DVðr1:::rPÞ
Drs

� �
λ

ð10Þ

For a homogeneous system of N particles (all undergoing a
simultaneous change in mass), the virial expression becomes

dF
dλ

� �vir

� � DλmðλÞ
mðλÞ

� �

� 3N
2β

þ 1
2P ∑

N

I¼ 1
∑
P

s¼ 1
ðrI, s � rIÞ 3

DV
DrI, s

� �
λ

ð11Þ

where rI = ∑s=1
P rI,s/P is the centroid of the ring polymer

describing particle I.
If only the atoms belonging to a certain element (usually,

hydrogen) are undergoing the isotope transformation, then

dF
dλ

� �vir

� � ∑
Nc

I¼ 1

Dλm
mI

� �

� 3
2β

þ 1
2P ∑

P

s¼ 1
ðrI, s � rIÞ 3rrI VðrsÞ

� �
λ

" #
ð12Þ

where Nc is the number of atoms in the subset. Similarly, the
primitive estimators is

dF
dλ

� �prim

� � ∑
Nc

I¼ 1

Dλm
mI

� �

� 3P
2β

� mI

2
ω2

P ∑
P

s¼ 1
ðrI, s � rI, sþ1Þ2

� �
λ

" #
ð13Þ

It is well-known that virial estimators exhibit less fluctuations
than their primitive counterparts.34,40 In the Results and Discus-
sion section, we confirm the favorable statistical properties of the
virial estimator.
D. TI-PIMD: Changes in Potential. In the same vein as isotope

transformations, changes in the free energy due to varying
the underlying classical potential can be also evaluated using

TI-PIMD. The path integral estimator for the free energy derivative
with respect to changes in the potential V is given by

dF
dλ

¼ � 1
β

DλZ
Z

� �
� ∑

P

s¼ 1

DλVðrs; λÞ
P

� �
λ

ð14Þ

In contrast to changes in the mass, there is generally only one
version of the estimator for changes in the potential.
As an illustrative example, the free energy dependence on the

force constantk(λ) of the harmonic potential (V(x;λ) =k(λ)x2/2)
can be evaluated according to

dFðλÞ
dλ

� DkðλÞ
Dλ ∑

P

s¼ 1

x2s
2P

� �
λ

ð15Þ

The numerical result of this expression can be compared to the
analytical free energy derivativewith respect to force constant for the
harmonic potential,

dF
dλ

¼ p

4
DλkðλÞffiffiffiffiffiffiffiffiffiffiffiffiffi
mkðλÞp coth

βp

2

ffiffiffiffiffiffiffiffiffi
kðλÞ
m

r !
ð16Þ

Numerical results will be presented and discussed below.
E. TI-PIMD: Changes in Mass and Potential. We now

consider a simultaneous transformation in mass and potential
state function using TI-PIMD. The first derivative of the
quantum free energy (see eq 1) with respect to parameter λ is
simply the combination of eq 8 and eq 14

dF
dλ

¼ � 1
β

DλZ
Z

� �
� � 1

β
ÆF æλ ð17Þ

where the function to be averaged is

F ¼ 3P
2mðλÞ

DmðλÞ
Dλ

� β ∑
P

s¼ 1

DλVðfrsg; λÞ
P

� β
DλmðλÞ

2
ω2

P ∑
P

s¼ 1
ðrs � rsþ1Þ2

" #

In eq 17, the primitive estimator (eq 8) was used for the
contribution of the isotope transformation to the free energy
change. Using eq 10, we can also obtain a “virial” expression for
eq 17.
The analytical expression for the harmonic oscillator under-

going a simultaneous change in mass m(λ) and force constant
k(λ) is

dF
dλ

¼ p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðλÞ=mðλÞp mðλÞ DλkðλÞ � kðλÞ DλmðλÞ

mðλÞ2
" #

� coth
βp

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðλÞ=mðλÞ

p� �
ð18Þ

Numerical results and comparison will be presented and
discussed below.
F. Perturbative Treatment of Changes in Mass. Path

integral calculations are often very expensive computationally.
Therefore, it would be desirable to have a method capable of
estimating the isotope effect with less or even without any of the
intermediate calculations required by TI-PIMD.
If the isotope transformation is not too large, perturbation

theory41 (PT) can be used to estimate the free energy change
from a single PIMD simulation. The combination of free energy
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perturbation and PIMD is termed here as PT-PIMD. The free
energy difference due to a (small) change in mass of all atoms of
a certain element (leaving the others unchanged) is

ΔF � � 1
β
ln

mf

mi

� �3NcP=2

Z
dNPr e�βðΦf � ΦiÞ e�βΦiZ

dNPr e�βΦi

2
664

3
775

¼ � 1
β

3NcP
2

ln
mf

mi

� �
þ lnÆe�βðmf � miÞAæi

� �
,

with A ¼ ω2
P

2 ∑
Nc

I¼ 1
∑
P

s¼ 1
ðrI, s � rI, sþ1Þ2 ð19Þ

where Nc is the number of atoms undergoing the isotope
transformation, Φ denotes the effective path integral potential
similar to eq 2, and the angular brackets denote the canonical
sampling over path configurations of a system where the
mutating elements have fixed mass mi.
From eq 19, it is clear that if the difference in mass is very large,

there will be very little overlap between states, and the sampling
will be very inefficient. However, even in this case, one can split
the interval of interest into nw windows and perform PT-PIMD
on each individual window. Then, the free energy difference is
given by the sum over all PT-PIMD windows,

ΔF ¼ ∑
nw � 1

i¼ 0
ΔFðiΔλ f ðiþ 1ÞΔλÞ ð20Þ

As long as the free energy change in each window is around
∼2kBT, we can efficiently sample eq 19 using PT-PIMD meth-
ods. For further statistics, the nw � 2 interior intervals can be
sampled forward and backward within double-wide sampling.38

G. λ-Dynamics Approach for Quantum Free Energy Differ-
ences: λ-PIMD.The free energy difference between two chemical
states can be also computed using the so-called λ-dynamics (LD)
approach.38,42�44 LD follows the same spirit as thermodynamic
integration, but instead of running separate simulations for each
fixed λ value, this parameter is allowed to vary continuously in a
single (albeit long) MD simulation. Here, we propose to combine
LD with PIMD. To this end, the λ parameter is endowed with
dynamical character according to the following extended PIMD
Hamiltonian:

H ¼ ∑
P

s¼ 1

p2s
2ms

þm
2
ω2

Pðrs � rsþ1Þ2
" #

þ p2λ
2mλ

þ ∑
P

s¼ 1
½λVf ðrsÞ þ ð1� λÞViðrsÞ�=P ð21Þ

which allows the continuous interpolation between initial (Vi) and
final (Vf) potential energy functions. In LD, the associated mass of
the λ particle (mλ) has to be large enough to allow for proper
equilibration of the other degrees of freedom.We term the scheme
given by eq 21 as λ-PIMD.
The λ path chosen in eq 21 corresponds to a linear path. The

coupling parameter obeys the constraint λ∈ [0, 1]. Usually, this
condition is enforced inMD via Lagrangemultipliers. However,
an elegant alternative (adopted here) is to use the trigonometric
parametrization presented in ref 38. Using the change of

variable λ = cos2θ, with θ ∈ [0,π/2], in eq 21 yields

H ¼ ∑
P

s¼ 1

p2s
2ms

þm
2
ω2

Pðrs � rsþ1Þ2
" #

þ p2θ
2mθ

þ ∑
P

s¼ 1
½Vf ðrsÞ cos2 θþ ViðrsÞ sin2 θ�=P ð22Þ

The velocity of the λ particle, vθ = pθ/mθ, is reversed whenever
its position θ hits the boundaries.
The free energy change for this transformation is then obtained

from numerical integration of the λ-derivative

ΔF ¼ Ff � Fi ¼
Z 1

0
ÆΔV æλ dλ

¼
Z π=2

0
ÆΔV æθ sinð2θÞ dθ ð23Þ

where ΔV(θ) = (1/P)∑s=1
P [Vf(rs;θ) � Vi(rs;θ)]. In eq 23,

configurations from the λ-dynamics trajectory are histogrammed
according to their λ(θ) value.45

We note in passing that in other λ-dynamics methods such as
the one proposed in ref 46, λ switching functions are designed so
as to induce a free energy barrier between the end points with the
goal of enhancing the sampling of these states. Then, the λ
particle is kept at a higher temperature than the system to
promote barrier crossing along the λ trajectory.46 We note that
under the physical conditions of our calculations, we did not
encounter significant free energy barriers, and the λ particle was
thermalized at the same temperature as the physical system.
The λ-PIMD scheme presented here is general, and it could be

used for instance to estimate quantum free energy changes for
proton transfer, ligand binding affinities, or acid dissociation
constants (pKa). As an illustrative example, in the next section,
we present an application of λ-PIMD to study changes in the
force constant in the harmonic oscillator. By declaring the mass
variable, it could also be used to investigate the isotope effect.
Finally, λ-dynamics could be easily extended by using P

independent λ particles. That is, an independent λ particle is
associated with each bead of the ring polymer according to the
Hamiltonian

H ¼ ∑
P

s¼ 1

p2s
2ms

þ p2λ, s
2mλ, s

þm
2
ω2

Pðrs � rsþ1Þ2
" #

þ ∑
P

s¼ 1
½λs Vf ðrsÞ þ ð1� λsÞ ViðrsÞ�=P ð24Þ

III. RESULTS AND DISCUSSION

Natural units (p = kB =m = 1) are used for the model systems
investigated, except for the Zundel cation, hydrogen molecule,
and Morse potential, where we used atomic units (au).
A. TI-PIMD: Changes in Mass. 1. Quantum Harmonic Oscil-

lator.Using TI-PIMD, the isotope effect was investigated for the
harmonic potential V(x) = m(λ)ω2x2/2. For this system, the
difference in quantum free energy is known analytically

ΔF ¼ Fðmf Þ � FðmiÞ ¼ 1
β
ln

sinhðβpωf=2Þ
sinhðβpωi=2Þ
� �

ð25Þ



2362 dx.doi.org/10.1021/ct2000556 |J. Chem. Theory Comput. 2011, 7, 2358–2369

Journal of Chemical Theory and Computation ARTICLE

where the oscillator frequencies are ωλ
2 = k/m(λ) and k is the

(fixed) force constant. The derivative of the free energy with
respect to λ is also known analytically,

dF
dλ

¼ � p

4
DλmðλÞ
mðλÞ

� �
ωλ cothðβpωλ=2Þ ð26Þ

Note that the value of eq 26 depends on the interpolation
function adopted for m(λ).
Figure 1 (bottom) shows the primitive, virial, and exact first-

order derivative of the free energy as a function of mass using a
linear path. Using the same number of PIMD steps (400 000),
the convergence of the primitive estimator (blue) is worse than
the virial estimator (red), which is nearly identical to the exact
value given by eq 26. The corresponding change of free energy as
obtained from thermodynamic integration (eq 5) yields �0.154
and �0.148 for the primitive and virial estimators, respectively.
The exact value from eq 25, ΔF = �0.147, compares favorably
with these numerical results using eqs 8 and 10. The average
error bar for the primitive estimator is 0.0091, which is 5 times
larger than the error bar for the virial estimator (0.0018), both for
the linear path. This result confirms that the virial expression
usually has less statistical error and is preferable for efficient
computation of quantum free energy differences.
Figure 1 (top) shows numerical results for the virial and

primitive estimators of the free energy derivative for the same
system but with the quartic interpolation in mass,m(λ) = λ4mfþ
(1� λ4)mi. Using the same number of normal mode PIMD steps
(400 000) as Figure 1 (bottom), the nonlinear interpolation
(top) clearly improves the sampling for both estimators. In
particular, the statistical error of the primitive estimator
(0.0054) is greatly reduced, whereas the virial remains the same:
0.0018. Both estimators yield results nearly indistinguishable
(and therefore converged) from the exact values, eq 26 . In this
case, the change of free energy integrates to �0.151 for the
primitive and to �0.150 for the virial estimator, the exact value
being �0.147.
2. Double Quantum Harmonic Oscillator. We investigated a

three-body system that resembles the highly relevant proton

transfer scenario in many naturally occurring systems, such as in
ref 17. This model system consists of three collinear masses
S1�S2 3 3 3 S3, where S1 and S3 sites represent identically electroneg-
ative “heavy” atoms (e.g., oxygens) with equal masses (m1 = m3).
The extension to the asymmetric, heterogeneous (m1 6¼m3) case
is straightforward. The intermediate atom S2 is supposed to
represent the light atom that will undergo a change inmass (from
hydrogen to deuterium). The particles are assumed to interact
harmonically. The Hamiltonian operator of this system is

Ĥ ¼ � p2

2 ∑
3

i¼ 1

1
mi

D2

D2xi
þ k

2
½ðx2 � x1 � xeqÞ2 þ ðx3 � x2 � xeqÞ2�

ð27Þ
where k is the force constant and xeq is the equilibrium distance.
This many-body system can be solved exactly using Jacobi
coordinates

xs ¼ 1ffiffiffi
2

p ðx3 � x1 � 2xeqÞ

xa ¼ 1ffiffiffi
2

p ðx1 þ x3 � 2x2Þ
X ¼ ½m1ðx1 þ x3Þ þm2x2�=ð2m1 þm2Þ

where xa and xs represent the asymmetric and symmetric
stretching modes, respectively, and X is the center of mass
position. In terms of these Jacobi coordinates, the Hamiltonian
becomes separable

Ĥ ¼ �p2

2
D2X
mX

" #
þ �p2

2
D2s
ms

þms

2
ω2

s x
2
s

" #

þ �p2

2
D2a
ma

þma

2
ω2

ax
2
a

" #
ð28Þ

where the effective masses ma = m1m2/(2m1 þ m2) and ms = m1

and corresponding frequencies wn = (k/mn)
1/2, n = a, s, have

been introduced. In eq 28, the first term represents the center of
mass motion, the second term is the symmetric vibrational mode,
and the third term is the asymmetric stretch. Note that for this
simple system, xa is the only mode that involves motion of the
light atom S2, thereby exclusively contributing to the isotope
effect. The symmetric mode xs (only the end point masses move
in opposite directions) does not contribute to the isotope effect.
The first derivative of the free energy with respect to the mass

of S2 can be solved analytically,

dF
dλ

¼ � pωa

4
Dλma

ma

� �
coth

βpωa

2

� �
� 1
2β

Dλm2

M

� �
ð29Þ

whereM = 2m1þm2 is the total mass of the system and ∂λma and
∂λm2 are the interpolation-function-dependent partial derivatives
of the effective asymmetric and transforming masses, respec-
tively. The first and second terms in eq 29 are the contributions
from the asymmetric stretching mode and from the free motion
of the center of mass, respectively.
For this model system, the numerical and analytic results are

presented in Figure 2 for the quartic interpolation of the mass in
λ, m2(λ) = λ4mD þ (1 � λ4)mH. The partial derivatives for this
quartic interpolation path are ∂λma(λ) = 2m1

2m2(λ)/(2m1 þ
m2(λ))

2 and ∂λm2(λ) = 4λ3. The initial hydrogen mass mH = 1
was changed to the mass of deuterium mD = 2. The equilibrium

Figure 1. TI-PIMD: First derivative of the quantum free energy with
respect to mass for the harmonic potential V = m(λ) ω2x2/2. The mass
m(λ) is a linear (bottom) or quartic (top) interpolation between mi =
1 f mf = 2. Black: exact result (eq 26). Red: virial estimator (eq 10).
Blue: primitive estimator (eq 8). Natural units (p = kB = 1) are used. The
temperature was set to βpω = 10, and PIMD (with P = 64) was
conducted for 400 000 steps.
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distance xeq in eq 27 was set to 1. The inverse temperature β = 10
and Trotter number P = 64 were used. The numerical estimators
were computed using 100 000 normal mode PIMD steps per
window (dt = 0.01) for a total of 21 trajectories.
Figure 2 shows again the superior convergence behavior of the

virial estimator. The corresponding integrated quantum free
energy changes are �0.204 for the primitive estimator (eq 8)
and �0.205 for the virial estimator (eq 10). These values are in
excellent agreement with the exact result (�0.204). The average
error bar for the primitive estimator is 0.012, which is 5 times
larger than the error for the virial estimator (0.002). We note that
the overall shape of this derivative is similar to the corresponding
single harmonic oscillator in Figure 1, suggesting that the first
term in eq 29 is dominating.
In more general situations (heterogeneous system A�B 3 3 3C

and/or anharmonic potentials), all vibrational modes are coupled
and are therefore expected to contribute to the isotope effect.
Such scenarios could be modeled using an antiparallel double
Morse or Lennard-Jones potential.
3. Isotope Effect on the Zundel Cation from First Principles.

The Zundel cation (H5O2
þ), which consists of a proton shared

by two water molecules (see inset of Figure 3), is a model for
strongly hydrogen-bonded systems and is of paramount impor-
tance in condensed phases and in enzymatic reactions. Using a
combination of centroid molecular dynamics (CMD) and em-
pirical valence bond (EVB) theory, Schmitt and Voth found that
the deuterated Zundel complex in liquid water exhibits a free
energy barrier increase of about 0.2 kcal/mol compared to
the all-hydrogen complex, leading to a decrease of 1.4 times in
the hopping rate of proton transfer.47 Here, we investigated the
stability of H5O2

þ versus its deuterated counterpart (D5O2
þ)

with ab initio path-integral molecular dynamics. The virial
estimator of eq 13 was implemented in the density functional
theory code CPMD (version 3.13.2)48 for the PIMD thermo-
dynamic integration. The details of the ab initio PIMD simulation
are as follows. The exchange and correlation were approximated
with the BLYP49�51 functional. Numerical norm-conserving
Trouillier�Martins pseudopotentials52 were used to represent
core electronic orbitals. These pseudopotentials were aug-
mented with a dispersion energy correction as described in

refs 53 and 54. A kinetic energy cutoff of 100 Ry was employed
for the plane wave basis set expansion of the electronic valence
orbitals. The Zundel cation was placed in a cubic box of volume
123 Å3. Isolated molecule boundary conditions were imposed
using the algorithm of Martyna and Tuckerman.55 The Car�
Parrinello (CP) algorithm5 was used with a fictitious electronic
mass of 340 au and a time step of 2 au (≈ 0.0484) fs. These
parameters were carefully chosen to ensure the stability of the
simulations. With these parameters, the adiabaticity of the CP
scheme was preserved, and the fictitious electronic kinetic energy
was stable and always less than 0.003 au. Normal mode variables
and 32 beads were used for the discrete path integral. Massive
Nos�e�Hoover chain thermostats56 of length 3 and a characteristic
frequency of 4400 cm�1 were employed to ensure adequate
canonical sampling at 300 K.57 A total of five independent PIMD
trajectories, each of 3.7 ps, were simulated corresponding to (λ= 0,
0.25, 0.5, 0.75, 1.0) values in the thermodynamic integration.
A linear path was used for the mass interpolation between
hydrogens and deuteriums. We checked the correctness of our
CPMD implementation by first simulating the hydrogen molecule
at 300 K using a setup similar to that described above. An estimate
of the free energy change of the isotopic transformation H2fD2

is available by other quantum chemistrymethods (≈�2 kcal/mol)
and was reproduced numerically (see details in the Appendix).
Figure 3 shows the virial TI-PIMD results for the change in

mass of the hydrogen atoms to deuterium in the Zundel cation at
300 K. The system is expected to be more stable upon deutera-
tion mostly due to the suppression in the zero point energy. The
predicted change in quantum free energy, ΔF =� 0.01755 au
(�11.02 kcal/mol), was obtained from the numerical integration
of the TI-PIMD curve in Figure 3 using Simpson’s rule. This
value agrees well with the thermochemistry result (�10.16 kcal/
mol) computed using the quantum chemistry code Firefly58

at the BLYP/6-311þþG** level under the harmonic and rigid
rotor approximation. We remark that converging error bars below
1 kcal/mol (our average standard deviation was 1.36 kcal/mol)
would require very long PIMD simulations and extremely well
equilibrated path integral configurations. Finally, we mention that

Figure 3. Results for the virial estimator for the ab initio TI-PIMD
simulation (P = 32) of the Zundel cation at 300 K. The predicted change
in free energy for the all-H to all-D transformation isΔF =� 0.01755 au
(�11.02 kcal/mol). The inset shows a typical snapshot (created with the
visualization program VMD59,60) of the Zundel cation from our PIMD
simulations.

Figure 2. TI-PIMD: First order derivative of the quantum free energywith
respect tomass of the central atom in the double oscillatormodel (eq 27). A
quartic nonlinear interpolation pathm(λ) = λ4mDþ (1� λ4)mH between
the initial mass of hydrogen (mH = 1) and finalmass of deuterium (mD = 2)
was used. Natural units are used. Black: exact result (eq 29). Red: virial
estimator (eq 10). Blue: primitive estimator (eq 8).
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computing changes in quantum kinetic energy due to isotope
transformation may be useful to compare with deep inelastic
neutron scattering experiments.
B. TI-PIMD: Changes in Potential. Free energy differences

due to variations in the force constant k of the harmonic potential
V(x) = kx2/2 were computed using TI-PIMD. Figure 4 compares
numerical values from eq 16 with analytical results according to
eq 15 for transformationki = 1fkf = 4 in the force constant. Two
interpolation paths have been investigated, first an interpolation of
the force constant that is linear in λ (bottom), then an interpola-
tion that is quartic in λ,k(λ) =kfλ

4þ (1� λ4)ki (top). In analogy
to the results for changingmasses, the results displayed in Figure 4
suggest that also for changing potentials a quartic interpolation
path leads to superior convergence behavior. The typical error bars
for the primitive estimator are 0.0039 (quartic) and 0.0044
(linear), while for the virial they are 0.0022 (linear) and 0.0022
(quartic). However, as in the previous example and not without
irony, due to statistical errors, the numerical integrated result
of the less converged linear interpolation (0.5028) compares

fortuituously better to the exact value (0.5) than the result of the
more converged quartic interpolation (0.5214).
C. TI-PIMD: Simultaneous Changes in Mass and Potential.

Using TI-PIMD, we have investigated simultaneous changes in
mass and potential not only for the quantum harmonic oscillator,
but also for transforming H2 into HCl.
1. Quantum Harmonic Oscillator. Figure 5 shows the TI-

PIMD results for virial and primitive estimators of the quantum
free energy of the harmonic oscillator shown together with exact
results. Linear (bottom) and quartic (top) interpolation func-
tions in λ (eq 7) were considered. As for the previous cases, the
latter exhibits better convergence with the exception of the last
twowindows. After TI, the change in free energy according to the
linear interpolation yields 0.211 for the primitive and 0.215 for
the virial. The nonlinear interpolation slightly outperforms the
linear interpolation when compared to the exact value given by
eq 18 (ΔF = 0.207): The primitive estimator predicts 0.206,
whereas the virial leads to 0.203. The typical error bar for the
primitive estimator is 0.0088, which is nearly 4 times larger than the
error bar for the virial estimator (0.0022), both for the linear path.
Similarly, for the quartic path, the average error bar for the primitive
estimator is 0.066, while the error for the virial estimator is 0.0097.
We note that both derivatives bear more resemblance with

the example discussed in the previous section where only the
potential was changed, and not the mass. Furthermore, the
effect of changing the mass in addition to changing the potential
clearly introduces further curvature to the free energy derivative
profile of the quartic interpolation. This raises the question of
whether the increase in curvature leads to finer resolution require-
ments for the thermodynamic integration, thereby removing the
advantage gained frombetter convergence of the sampled estimator.
2. Transmutation of a Diatomic Molecule. In this section, the

alchemical transformation of molecular hydrogen into hydrogen
chloride at 300 K is investigated using TI-PIMD. We approx-
imate the internuclear potential of the diatomic molecules by a
Morse potential:

VðxÞ ¼ D½1� e�aðx � xeqÞ�2

where xeq is the internuclear equilibrium distance, D is the
dissociation energy measured from the potential minimum,
and a is related to the curvature of the potential at the
equilibrium position. Table 1 displays all of the Morse param-
eters employed for these calculations. The reduced mass and
all of the parameters (a, D, xeq) were linearly interpolated in λ
between initial (H2) and final (HCl) states. The free energy
difference was obtained using normal mode TI-PIMD (P = 64)
and 4 million steps (dt = 0.1 au). Since at 300 K H2 and HCl
are mostly ground-state-dominated, we can approximate the

Figure 5. TI-PIMD: First order free energy derivative with respect to
simultaneous changes in force constant and mass in the harmonic
oscillator: mi = 1, ki = 1f mf = 2, kf = 4. Bottom: linear interpolation,
eq 6. Top: nonlinear path, quartic order in λ. A total of 400 000 PIMD
(64 beads) steps were simulated at inverse temperature β = 10.

Table 1. Morse Potential V(x) = D[1 � e�a(x�xeq)]2 Param-
eters Describing the Diatomic Moleculesa

Morse parameters H2 HCl

req 1.4014 2.4086

D 0.1745 0.1676

a 1.0213 0.9684

μ 918.0584 1785.6425

ω 0.0199 0.013268
aAlso shown is the reduced mass μ and the harmonic frequency ω =
a((2D/μ))1/2. All values are in atomic units. The thermal energy at
300 K is kBT = 0.00095 au.

Figure 4. TI-PIMD: Free energy derivative with respect to the force
constant (ki = 1 f kf = 4) in the harmonic oscillator. The inverse
temperature was β = 10. Natural units are used. PIMD (with P = 64) was
conducted for 400 000 steps. Bottom: linear path k(λ) = λkfþ (1� λ)ki.
Top: nonlinear path k(λ) = kfλ

4 þ (1 � λ4)ki.
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Morse potential harmonically to get an estimate of the change
in free energy,

ΔF ¼ FðHClÞ � FðH2Þ � kBT ln
sinhðβpωHCl=2Þ
sinhðβpωH2=2Þ
� �

¼ � 0:003324 au ð30Þ

TI-PIMD results (eq 17) for the primitive and virial estimators
of the free energy derivative with respect to transforming the
Morse potential of H2 into HCl are presented in Figure 6,
together with the exact result for the harmonically approximated
Morse potential. In contrast to all the previous examples, and
despite the large number of PIMD steps taken, the remaining
statistical error (on the order of 0.00091 au) is still significant.
This behavior is exarcerbated as approaching the end point (λ = 1)
when the new physical parameters instantly appear where other
interactions were previously present. Such numerical instabilities
are commonly ameliorated in classical simulations by softening
the underlying potential and making it λ-dependent. Nonetheless,
the resulting integrated free energy differences,� 0.003326 au and
�0.003320 au, for the primitive and virial estimators, respec-
tively, both compare very favorably to the analytical estimate in
eq 30 (� 0.003324 au).
The shape of Figure 6 is reminiscent of Figure 1 (bottom),

suggesting that the linear transformation of H2 into HCl is
dominated by the change in mass, rather than by the change in
potential.
D.Mass Transformation in the Harmonic Oscillator via PT-

PIMD. In this section, we use PT-PIMD to recompute the free
energy difference of the harmonic oscillator, which was already
investigated with TI-PIMD in section III.A.1. Figure 7 illustrates
the convergence of the running average of the free energy
difference with the number of PT-PIMD steps. Two cases are
considered: a “large” change inmass,mi = 1fmf = 2 (top), and a
“small” one,mi = 1fmf = 1.5 (bottom). Unlike TI-PIMD, these
results were obtained using a single, albeit substantially longer,
PT-PIMD simulation. As one would expect, the smaller change
in mass (bottom) converges more rapidly to the analytical

reference result than the larger (top) for which the number of
steps (400 000) is clearly insufficient. The error bar for the latter
(0.0424) is more than 5 times larger than the error for the “small”
transformation (0.0075), indicating that the calculation suffers
from slow convergence. Clearly, for the large transformation, the
end point states are too disparate (there is little overlap) and PT
methods do not converge. A remedy for such a situation would
be to perform a series of PT calculations on mutually overlapping
intermediate states between the end points.
The sawtooth pattern in Figure 7 is a common feauture

when averaging exponentials.61 The spikes indicate that the
averages are dominated by rare events. As mentioned before, a
possible remedy to dampen these sudden fluctuations in ΔF
consists of further reducing the interval, i.e., to use a multistage
PT-PIMD approach. Despite the abrupt initial transient, the
running average for the small mass transformation converges
nicely toward the exact value as the simulation goes on, Figure 7
(bottom).
E. PT-PIMD: Effect of a Uniform Static Electric Field.

Perturbation theory can also be used to compute electric polariz-
abilities, which are very important in understanding not only weakly
bonded intermolecular and long-range interactions62 but also the
ferro/paraelectric transition in some hydrogen-bonded materials.
In this context, Sebastiani and Srinivasan recently investigated the
phase transition in potassium dihydrogen phosphate (KDP),
which is known to exhibit strong nuclear quantum effects.63 In
this subsection, we suggest an estimator that could be used to
further characterize these phase transitions. The change in free
energy of a single particle of charge q due to a uniform static
electric field of strength E = |E| is

ΔF ¼ FðEÞ � Fð0Þ ¼ � 1
β
lnÆexp½�βðqE 3 rÞ�æE¼ 0 ð31Þ

where r = ∑s=1
P rs/P is the centroid of the ring polymer. For bulk

systems, eq 31 must be modified to account for periodicity.
Figure 8 shows the numerical results for the running average of

the free energy difference in the harmonic oscillator with and
without an homogeneous static electric field of varying strength.
When the magnitude of the electric field is not too large
(bottom), the converged estimate of the corresponding change

Figure 6. TI-PIMD: First-order free energy derivative with respect to
simultaneous changes in Morse parameters and mass corresponding to
the alchemical transformation of H2 fHCl at T = 300 K. Black: Exact
analytical estimate using a harmonic approximation to the Morse
potential. Blue: Primitive estimator. Red: Virial estimator. Atomic units
are used.

Figure 7. PT-PIMD: Running average of the free energy difference for
an isotope transformation in the harmonic potential computed using
perturbation theory, eq 19. Top:mi = 1fmf = 2. Bottom:mi = 1fmf =
1.5. Natural units are used. Red dashes: PT-PIMD using eq 19. Black
solid: Exact result. The inverse temperature is β = 10, and the Trotter
number is P = 64.
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in free energy (�0.4947) is in very good agreement with the
exact value (�0.5), as given byΔF =� ((q2E2)/(2mω2)), where
q = 1 is the charge and m = ω = 1. However, when the applied
electric field is twice as large (top), the estimator eq 31 converges
to the wrong value (�1.5411), which deviates significantly from
the exact value of �1.1250. We note that in both cases the error
bar is similar (0.042 for large and 0.031 for small transformation),
so it is not a reliable indicator of the accuracy of the final result.
This example, as with the mass transformation in the previous
section, highlights the limitations of the PT-PIMD approach.
F. Changes in Potential of the Quantum Harmonic Oscil-

lator Revisited: λ-PIMD. In this final section, we revisit changes
of the force constant in the quantum harmonic oscillator in
analogy to section III.B. Instead of TI-PIMD, however, we used
λ-PIMD. Specifically, we numerically tested eq 22 for the same
linear change in force constant as in section III.B, i.e., V(x) =
k(λ)x2/2, with k(λ) = λkf þ (1 � λ)ki and ki = 1 and kf = 4.

The corresponding free energy change for this transformation
is obtained from numerical integration of the λ-derivative over λ,

ΔF ¼ Ff � Fi ¼
Z 1

0
dλÆΔV æλ ¼

Z π=2

0
dθÆΔV æθ sinð2θÞ

ð32Þ
whereΔV = (1/P)(kf� ki)∑s=1

P xs
2/2 for the harmonic oscillator.

Numerical results for the first-order derivative of the free energy
with respect to λ at T = 0.5 are shown in Figure 9. The integrated
predicted free energy difference amounts to 0.555 (average error
bar 0.009) after 1 million PIMD steps (P = 64 beads). This value
is in good agreement with the exact value for the harmonic
oscillator (0.5635).

IV. CONCLUSIONS

New path integral estimators have been formulated for the
calculation of free energy changes due to transformations in the
mass and/or potential and changes in the external electric field.
Perturbation theory and λ-dynamics are found to be useful
alternatives to thermodynamic integration for the prediction of
the free energy differences of alchemical transformations from a
single simulation. All free energy methods were implemented
within path integral molecular dynamics (TI-PIMD, PT-PIMD,
λ-PIMD) and applied to various solvable model systems, includ-
ing the single and double harmonic oscillator and the Morse
potential. The methods introduced are rather general and valid
for any force-field-based PIMD calculation of an alchemical
change. The estimators were also applied to investigate the
isotope transformation in the Zundel cation using ab initio path
integral molecular dynamics.

Future work will deal with the extension of these ideas to ab
initio PIMD for the simulation of more realistic systems. For
example, it will be interesting to investigate a complete change of
identity of a molecule from first principles. While this is feasible
in force-field-based PIMD calculations, it is more challenging in
ab initio PIMD due to the use of pseudopotentials, or atomic
basis functions. As an example, we would first investigate the iso-
electronic transformation of the Zundel cation to the protonated
water�ammonia complex cation. Finally, it will also be interest-
ing to devise a way to predict changes in the quantum free energy
barrier and not just on traced quantitites such as the overall free
energy.

APPENDIX A. ISOTOPE EFFECT ON INTERNAL ENERGY

The formalism presented so far can be easily extended to
compute changes of any thermodynamic quantity due to al-
chemical changes. In this section, we derive an estimator for the
change of internal energy corresponding to the isotope effect.

The path integral expression for the internal energy according
to the primitive form is

ÆEæ ¼ lim
P f ¥

C
Z

Z
dr1:::drP εprimðλÞ e�βΦðfrg;λÞ ðA1Þ

where C(λ) = ((m(λ)P)/(2πβp2))3P/2 is a normalization con-
stant,

Φðfrg; λÞ ¼ ∑
P

s¼ 1

mðλÞ
2

ω2
Pðrs � rsþ1Þ2 þ VðrsÞ

P

� �

Figure 9. λ-PIMD: First order free energy derivative versus λ for
harmonic potential k(λ)x2/2 at T = 0.5. Black solid: Exact, eq 16. Blue
solid: Numerical using λ-PIMD, i.e. ÆΔVæλ. One million PIMD steps
were accumulated with P = 64 and dt = 0.01 at the inverse temperature
β = 10 (natural units are used).

Figure 8. PT-PIMD: Running averages of the free energy difference of
the harmonic potential mωx2/2 due changes in the static external
electric field. Top: Ei = 0 f Ef = 2. Bottom: Ei = 0 f Ef = 1 (natural
units are used). Red dashes: PT-PIMD using eq 31. Black solid: Exact.
The inverse temperature is β = 10, and the Trotter number is P = 64.
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is the effective path integral potential and

εprimðλÞ ¼ 3P
2β

þ ∑
P

s¼ 1

VðrsÞ
P

�mðλÞ
2

ω2
Pðrs � rsþ1Þ2

� �

is the so-called primitive energy estimator.
Taking the derivative of eq A1 with respect to the parameter λ

gives

dEðλÞ
dλ

¼ ÆDλεprimæþ β½ÆεprimæÆDλΦæ� ÆðDλΦÞεprimæ� ðA2Þ

where we note that ∂λεprim = �∂λΦ. Rearranging into an
expression more amenable for numerical computation gives

dEðλÞ
dλ

¼ Dλm
m

� �
fÆS æþ β½ÆS εprimæ� ÆεprimæÆS æ�g ðA3Þ

where S = �(m/2)ωP
2∑s=1

P (rs � rsþ1)
2.

As a test, we can compare E(mf) � E(mi) =
R
0
1 dλ(dEprim/

dλ)λ to the exact expression for a model system. The analytical
expression for the internal energy of the harmonic oscillator is
U(β) = (pω/2) coth(βpω/2). Thus, the analytic change of
internal energy is

ΔEðβÞ ¼ p

2
½ωf cothðβpωf=2Þ �ωi cothðβpωi=2Þ� ðA4Þ

where the oscillator frequencies are ωi(f) = (k/mi(f))
1/2. The

exact analytical expression for the first derivative of the total
energy with respect to λ is for the harmonic oscillator is

dEðλÞ
dλ

¼ pωDλm
2m

ðβpω=2Þ
sinh2ðβpω=2Þ �

cothðβpω=2Þ
2

" #
ðA5Þ

Finally, the derivative of the entropy with respect to λ is simply
∂λS = (∂λ(U� F))/T. Thus, the isotope effect on the entropy can
also be estimated.

APPENDIX B. SECOND-ORDER DERIVATIVES

In 1994, Smith and van Gunsteren published a paper on
predictions of classical free energy differences using only the
information of free energy derivatives computed at the initial
state.64 On the basis of that work, we have investigated
extrapolations of the free energy from the initial state within
PIMD.

From Figure 1, it is clear that the change in free energy is not
linear. Using only the first-order derivative information at the
initial state (λ = 0) leads to inaccurate predictions of the overall
free energy difference. Thus, it is necessary to include second-
and higher-order derivatives. Expanding the free energy differ-
ence in a Taylor series to second order,

ΔFif � ðλf � λiÞ dF
dλ

� �
λi

þ 1
2!
ðλf � λiÞ2 d2F

dλ2

 !
λi

ðB1Þ

we could in principle estimate the difference in free energies
using only the information from the initial state. To accomplish
this, higher derivatives of the free energy with respect to
parameter λ are needed. The primitive estimator for the second

derivative of the free energy with respect to mass reads

d2F

dλ2
¼ ðDλmþ D2λmÞ

ω2
P

2
S � 3P

2β
Dλm
m

þ D2λm
m

þ ðDλmÞ2
m2

 !* +

þ 1
β

PDλm
2m

� β
Dλm
2

ω2
P S

� �
ðB2Þ

where the sum S denotes ∑s=1
P (rs � rsþ1)

2 with rPþ1 = r1. Note
that the last term in this expression vanishes if we assume a linear
interpolation path for the mass (∂λ

2m = 0). This expression is
problematic because it involves a significant cancellation of
terms. The numerical results can be checked with the analytical
expression for the second-order derivative of the quantum
harmonic oscillator with respect to changes in mass

d2F

dλ2

 !
¼ � 1

2

� �
Dλm
m

� �2pω

2

� βpω=2

2 sinh2ðβωp=2Þ �
3

2 tanhðβpω=2Þ

" #

� pω

4

� �
D2λm
m

 !
cothðβpω=2Þ ðB3Þ

Our numerical tests (not shown) suggest, however, that con-
vergence of higher order derivatives is difficult to achieve.

Fortunately, an empirical way to circumvent this nonlinearity
issue was recently presented in the context of potential energy
differences by one of us.65 In that work, higher-order terms in the
Taylor expansion were absorbed into a correction factor accom-
panying the first derivative

ΔFif ¼ ðλf � λiÞ dF
dλ

� �
λi

þ 1
2!
ðλf � λiÞ2 d2F

dλ2

 !
λi

þ :::

� ðλf � λiÞC ðλiÞ dF
dλ

� �
λi

ðB4Þ
where C is a renormalization factor that accounts for the
nonlinear terms. The hope is to calculate C numerically for a
reference system (sayC ref) and then use this coefficient (without
modification) to estimate the isotope free energy change in other
systems. This approach is admittedly somewhat ad hoc because it
assumes transferability ofC to other systems. In other words, the
effect of higher-order terms is similar in the reference system
and in the system of interest. Nonetheless, there might be
some justification to this method if the leading term in the
Taylor expansion is the first derivative (and the higher terms
are small and cancel among each other). Work is underway to
find numerically stable virial expressions for the second-order
derivatives.

APPENDIX C. CONVERGENCE WITH THE NUMBER OF
STEPS

We have carried out a convergence test on the free energy
change versus the number of steps for the isotope transformation
in the harmonic oscillator. Figure 10 shows that the convergence
is achieved well within the first 400 000 steps for this toy model.
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The figure also confirms that the quartic path leads to a faster
convergence than the linear path.

APPENDIX D. ISOTOPE TRANSFORMATION ON THE
HYDROGEN MOLECULE: AB INITIO APPROACH

To test our numerical implementation in CPMD, we simu-
lated the H2 f D2 isotope transformation. The hydrogen
molecule was placed in a cubic box of volume 93 Å3. The
kinetic energy cutoff for the plane wave expansion of electronic
orbitals was 75 Ry. Eight beads were used for the path integral
discretization. The rest of the parameters were identical to the
ones employed for the Zundel ion. The results of this test are
shown in Figure 11. The predicted change in free energy is
ΔF = �0.00358 au (�2.25 kcal/mol) for the primitive and
ΔF = �0.00345 au (�2.17 kcal/mol) for the virial estimator.
These values are in good agreement with the values from other
quantum chemistry methods (≈ �2 kcal/mol). The average
standard deviation was 1.72 kcal/mol for the primitive and
0.56 kcal/mol for the virial estimator. The perturbation theory
approach of eq 19 yields a value of�0.00375 au (�2.36 kcal/mol),
which agrees very well with TI-PIMD results.
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ABSTRACT: The folding kinetics of proteins is frequently single-exponential, as basins of folded and unfolded conformations are
well separated by a high barrier. However, for relatively short peptides, a two-state character of folding is rather the exception than
the rule. In this work, we use a Zwanzig-type model of protein conformational dynamics to study the dependence of folding kinetics
on the protein chain length, M. The analysis is focused on the gap in the eigenvalue spectrum of the rate matrix that describes
the protein's conformational dynamics. When there is a large gap between the two smallest in magnitude nonzero eigenvalues, the
corresponding relaxation times have qualitatively different physical interpretations. The longest of these two times characterizes the
interbasin equilibration (i.e., folding), whereas the second time characterizes the intrabasin relaxation. We derive approximate
analytical solutions for the two eigenvalues that show how they depend onM. From these solutions, we infer that there is a large gap
between the two, and thus, the kinetics is essentially single-exponential whenM is large enough such that 2M+1 is much larger thanM2.

’ INTRODUCTION

The kinetics of many long proteins is single-exponential.
This implies that folding of such proteins is a two-state process
that involves transitions between the folded and unfolded states
of the protein, which are separated by a high barrier. However,
this is not necessarily the case for short peptides. The goal of the
present work is to study how the character of the folding
kinetics (i.e., whether the kinetics is single-exponential or not)
depends on the protein chain length. We analyzed this question
within the framework of a simple model of the protein
conformational dynamics that is similar to the model suggested
by Zwanzig, Szabo, and Bagchi to study Levinthal’s paradox.1�4

Being simple, the model allows for an analytical solution, which
is used to establish the relation between the character of the
folding kinetics and the protein chain length. Our results are of
particular interest to those researchers who study the folding of
short peptides, either experimentally or computationally, with
atomic-level detail or using simplified models,5�24 as their
results are frequently interpreted within the framework of
simple two-state models. Many theoretical and experimental
studies use small homoproteins such as dialanine (Ala2) or
pentaalanine (Ala5, the smallest peptide that forms one full
helical loop) as test systems.25�37

Our interest in this problem was initiated by a molecular
dynamics (MD) study of the folding kinetics of pentaalanine in
explicit solvent,35,36 in which it was shown that the folding
kinetics is better approximated by a four-state rather than by a
two-state model. Figure 1 illustrates some of the most populated
unfolded conformational states of Ala5, together with the all-
helical folded state. As shown herein, a possible cause for the
deviation from a single-exponential relaxation might be the
relatively small number of unfolded conformational states avail-
able to small peptides. Note that a complex, non-two-state,
length-dependent folding kinetics has been reported in experi-
mental studies.6�8,12,38�41

To analyze the character of the folding kinetics, we derived
approximate expressions for the first two nonzero eigenvalues of

the rate matrix that describes the conformational dynamics of our
model protein. These eigenvalues are important because a large
gap between them is a fingerprint of the two-state character of the
kinetics. With analytical expressions for the eigenvalues in hand,
we analyzed how the gap depends on the chain length of the
protein. We checked the accuracy of our analytical results by
comparison with the exact eigenvalues of the rate matrix found
numerically. The comparison showed that the two agree well if
the peptide is not too short. For our model, we found that the
kinetics is essentially single-exponential when the chain lengthM
of the protein satisfies 2M+1 . M2. To be more precise, our
model protein must contain nine or more residues to be a good
two-state folder.

’MODEL AND METHODS

Consider two-state protein folding described by the kinetic
scheme

U

kF
h

kU

F ð1Þ

where U and F denote the unfolded (denatured) and folded
(native) states of the protein, respectively, and kF and kU are the
corresponding folding and unfolding rate constants. To under-
stand the mechanism of protein folding, one has to establish a
relation between eq 1 and the underlying protein dynamics.

In our model, the protein is a homopolymer that contains M
identical residues, each of which can be in either a folded (f) or an
unfolded (u) state. To characterize the state of the residue, we
introduce an “indicator”, s, and assign s = 0 and 1 to the residue in
states f and u, respectively. A protein conformation is completely
characterized by a set {s} = (s1, s2, ..., sM), where si indicates the
state of residue i, i = 1, 2, ...,M. The number of residues in state u

Received: April 22, 2011
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in a protein conformation {s}, m({s}), is given by

mðfsgÞ ¼ ∑
M

i¼ 1
si ð2Þ

Thus, 0e meM. The conformation with no unfolded residues
(i.e., si = 0 for all i, and hence,m = 0) represents the folded state of
the protein. In all other conformations, m > 0, and the protein
contains m residues in the u state and M � m residues in the f
state. The number of conformations with a fixed value m
of unfolded residues is given by the binomial coefficient

M
m

 !
¼ M!

m!ðM�mÞ!

and the total number of the conformations of our protein is

∑
M

m¼ 0

M
m

 !
¼ 2M

Let Pm(t) be the probability of finding the protein in one
of the conformations with m unfolded residues at time t,
∑m=0
M Pm(t) = 1. We assume that the evolution of Pm(t) is due to

independent transitions between f and u states of individual residues.
We take these transitions to be described by the kinetic scheme

u

k
h

k
f ð3Þ

where k is the rate constant, which is assumed to be the same for
transitions in both directions. To introduce a collective behavior,
responsible for the folding of our protein, we assume that the
unfolding of the first and second residues occurs with the modified
rate constants ε0k and ε1k, respectively, with ε0, ε1, 1. The precise
choices of ε0 and ε1 are specified later. Figure 2A illustrates the
connectivity network of the conformational dynamics of our peptide
of lengthM = 5.

The evolution of the distribution function Pm(t) is described
by the master equation

_P0ðtÞ ¼ � ε0MP0ðtÞ þ P1ðtÞ
_P1ðtÞ ¼ ε0MP0ðtÞ � ½1 þ ε1ðM� 1Þ�P1ðtÞ þ 2P2ðtÞ
_P2ðtÞ ¼ ε1ðM� 1ÞP1ðtÞ �MP2ðtÞ þ 3P3ðtÞ
l
_PmðtÞ ¼ ðM�m þ 1ÞPm�1ðtÞ �MPmðtÞ
þ ð1� δmMÞðm þ 1ÞPmþ1ðtÞ, for 3 e m e M ð4Þ

where the time t is expressed in units of 1/k and δmn is the
Kronecker delta. This set of equations describes the relaxation of
Pm(t) to the equilibrium distribution Pm

eq given by

Peqm ¼ ½ε0 þ ð1� ε0Þδm0�½ε1 þ ð1� ε1Þδm1�
½1� ð1� ε1Þδm0�½1 þ ε0ð1� ε1ÞM þ ε0ε1ð2M � 1Þ�

M
m

 !

ð5Þ
One can check that Pm

eq satisfies eq 4 and the normalization
condition, ∑m=0

M Pm
eq = 1.

To determine the parameters ε0 and ε1, we impose two require-
ments: (i) The probability of finding the protein in the native state
(m = 0) is 0.5 (i.e., the calculations are done at the protein melting
point), and (ii) the protein in conformations with one unfolded
residue (m=1)makes forward (i.e., 1f2) andbackward (i.e., 1f0)Figure 1. Folded and unfolded conformations of pentaalanine.

Figure 2. Schematic representation of conformational dynamics of our model peptide for lengthM = 5. (A) Connectivity network showing that only
transitions between nearest neighbors are permitted. Conformations of the peptide are described using a binary notation for each residue, with 0 and 1
denoting folded and unfolded states of the residue. (B) Effective conformational dynamics along the discrete one-dimensional reaction coordinate, m.
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transitionswith equal probability. In otherwords, conformationswith
m = 1 can be considered as transition states between the folded and
unfolded conformations of the protein. These requirements lead to
the following values of the parameters

ε0 ¼ M � 1
2M þ M2 � 2M� 1

, ε1 ¼ 1
M � 1

ð6Þ

As a consequence, (i) the equilibrium distribution in eq 5 simplifies
and takes the form

Peqm ¼ ½ε0 þ ð1� ε0Þδm0�½ε1 þ ð1� ε1Þδm1�
2½1� ð1� ε1Þδm0�

M
m

 !
ð7Þ

and (ii) the product ε1(M � 1) in eq 4 becomes unity.

Figure 3 illustrates some properties of the proteins of different
chain lengths M. Figure 3A shows the equilibrium distribution
Pm
eq. In our model, the equilibrium probability of the folded state

is always 0.5. Interestingly, the second peak (for the unfolded
ensemble) appears only whenM > 5. Using eq 7, one can check
that Pm

eq has a minimum atm = 2 for allM > 5. As the sizeM of the
peptide chain increases, the folded and unfolded basins of the
peptide’s chain become better separated, and the transition state
conformations corresponding tom = 1 become less populated. In
addition, the distribution of unfolded conformations becomes
more and more Gaussian.

The value of m characterizes the “distance” of the conforma-
tion from the native state. We chose the number of unfolded
residues, m, as a discrete one-dimensional reaction coordinate.
The effective conformational dynamics along this coordinate is
illustrated in Figure 2B. Note that m is similar to the fraction of
native contacts, Q, which has been used as a reaction coordinate
in numerous studies of protein folding.42�45

We use the equilibrium distribution, Pm
eq, to introduce the

potential of mean force, U(m), along the reaction coordinate

UðmÞ ¼ � kBT ln
Peqm
Peq2

ð8Þ

where kB is the Boltzmann constant, T is the absolute tempera-
ture, and we choose U(2) as the reference such that U(2) = 0 for
all peptides. Figure 3B shows U(m) for proteins of different
lengthsM. Note that (i) the potential of mean force has a barrier
only when M > 5, and this barrier is always at m = 2; (ii) the
transition state conformations with m = 1 have a lower energy
that is independent of the chain length; and (iii) the barrier
height increases quickly with M.

In ourmodel, all unfolded (U) conformations withmg 2 have
the same energy. This is a consequence of the identity of
the forward and backward rate constants in eq 3. The energy
of the conformations with m = 1, which form the transition state
ensemble (TSE), is kBT ln (1/ε1) = kBT ln(M�1) lower than the
energy of the unfolded conformations. Finally, the energy of the
folded (F) conformation is kBT ln [1/(ε0ε1)] = kBT ln(2M +
M2� 2M � 1) lower than that of the unfolded conformations.
The dimensionless entropy of each of the three groups of
conformations is defined as the natural logarithm of the number
of conformations in the group

SF ¼ 0, STSE ¼ ln M, SU ¼ lnð2M �M� 1Þ ð9Þ

We use these relations to draw the folding funnels42,43 for our
model proteins of different chain lengthsM, shown in Figure 3C,
where we chose the energy of the unfolded conformations as
zero. Note that the TSE conformations with m = 1 are in the
funnel. As the chain length increases, the slope of the TSE-U part
of the funnel decreases, whereas the slope of the TSE-F part
increases.

’RESULTS AND DISCUSSION

To analyze the character of the relaxation kinetics, one needs
to know the eigenvalues of the evolution operator. In vector�
matrix notation, the master equation in eq 4 takes the form

_PðtÞ ¼ KPðtÞ ð10Þ

Figure 3. (A) EquilibriumdistributionPm
eq and (B) potential ofmean force

U(m) as functions of the reaction coordinate m. (C) Folding funnel.
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Here, the evolution operator K is the (M + 1) � (M + 1) three-
diagonal rate matrix

K ¼

�R0 β1 0 3 3 3 0 0 0
R0 �γ1 β2 3 3 3 0 0 0
0 R1 �γ2 3 3 3 0 0 0
l l l 3 3 3

l l l

0 0 0 3 3 3 �γM�2 βM�1 0
0 0 0 3 3 3 RM�2 �γM�1 βM
0 0 0 3 3 3 0 RM�1 �βM

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð11Þ

with matrix elements given by

R0 ¼ ε0M, R1 ¼ 1, Rm ¼ M �m, for m ¼ 2, 3, :::,M� 1

βm ¼ m, for m ¼ 1, 2:::,M

γ1 ¼ 2, γm ¼ Rm þ βm ¼ M, for m ¼ 2, :::,M� 1

ð12Þ
Eigenvalues, �λi, of the rate matrix and the corresponding

eigenvectors, ui, are solutions of the eigenvalue problem

Kji ¼ � λiji, i ¼ 1, 2, :::,M þ 1 ð13Þ
The eigenvalue with the smallest magnitude is equal to zero, λ1 = 0,
because the master equation, eq 10, describes the relaxation of
the initial distribution to equilibrium. We assume that the
eigenvalues are ordered in increasing values of their magnitudes,
λ1 = 0 < λ2 e λ3 e 3 3 3 e λM+1.

When the system consists of two basins separated by a high
barrier, intrabasin relaxation occurs much faster than interbasin
exchange. As a consequence, the exchange is a memory-less
Markov process, and hence, equilibration of basin’s populations
is single-exponential. The eigenvalues of the evolution operator
of such a system have a simple physical interpretation. The
smallest nonzero eigenvalue,�λ2, describes interbasin equilibra-
tion of the populations, whereas the other nonzero eigenvalues
describe intrabasin relaxation to local equilibria in the two basins.
The fact that the former process is much slower than the latter
leads to the inequality λ2, λ3, which implies that there is a large
gap in the eigenvalue spectrum of the evolution operator.

For our simple model, one can find approximate solutions for
λ2 and λ3 (see Appendix A)

λ2≈ε0M ¼ MðM � 1Þ
2M þ M2 � 2M� 1

, λ3≈2 ð14Þ

This allows us to establish the condition of applicability of the
two-state description of folding

λ3 . λ2 w 2M þ 1 . M2 ð15Þ
which is the main result of the present study.We show below that
the relaxation is single-exponential to a good approximation for
M g 9.

In our model, kF = kU = λ2/2, and according to eq 14, at large
M, we have ln τF �M, where τF = 1/kF is the folding time. Note
that linear scaling of the logarithm of the folding time with the
protein size has been reported in the literature.46,47 A weaker
scaling with the chain length, ln τF � Mγ, where γ < 1, has also
been discussed.47�52

Finally, we compare the values of λ2 and λ3 given in eq 14 to
the eigenvalues found numerically by diagonalization of the rate
matrix (eq 11). The ratios of the eigenvalues for proteins of
different lengths are presented in Table 1. One can see that eq 14

provides good estimations for λ2 and λ3 whenM is large enough.
As expected, the agreement gets better asM increases. In Table 2,
the ratios λ3/λ2 obtained numerically are compared with 2M+1/
M2, which is the large-M estimation of the ratio that follows from
eq 14. Comparison shows that the simple expression 2M+1/M2

appears to be a good approximation for the ratio of the
eigenvalues.

One can interpret λ2
�1 and λ3

�1 as slow and fast relaxation
times of the system, τslow = 1/λ2, τfast = 1/λ3. Figure 4 shows the
ratio (τslow� τfast)/τfast, which characterizes the gap between the
relaxation times, as a function of the chain length. One can see
that the gap quickly increases withM and exceeds 10 forMg 9.
Written in terms of λ2 and λ3, the ratio takes the form (τslow �
τfast)/τfast = λ3/λ2 � 1. When M is large, λ3/λ2 ≈ 2M+1/M2,
so that (τslow � τfast)/τfast ≈ 2M+1/M2. Figure 4 shows that
2M+1/M2 is close to the exact values of the ratio obtained numeri-
cally even at not-so-large values of M.

In summary, a simple model of the conformational dynamics
has been used to analyze how the character of the folding kinetics
depends on the chain length of the protein. We found that, to a
good approximation, a protein can be considered as a two-state
folder when the number of its residues is nine or larger. In view of
this estimation, it is not surprising that the folding kinetics of
pentaalanine deviates from single-exponential behavior.35,36

’APPENDIX A

WhenM is large, the potential of mean force U(m) has a well-
pronounced double-well structure with a high barrier that
separates folded and unfolded conformations (Figure 3B). We
assume that equilibration in the basin of unfolded conformations,
m = 2, 3, ..., M, is a fast process, λ4, λ5, ..., λM+1 . 1, so that this
basin is always in local equilibrium and

PmðtÞ ¼ Peqm
Peq2

P2ðtÞ ¼ 2ðM � 2Þ!
m!ðM�mÞ! P2ðtÞ, m ¼ 2, 3, :::,M

ð16Þ
The probability of finding the protein in the unfolded basin at
time t, PU(t), is

PUðtÞ ¼ ∑
M

m¼ 2
PmðtÞ ¼ 2ð2M �M � 1Þ

MðM � 1Þ P2ðtÞ ð17Þ

Using this expression and the fact that PU(t) = 1� P0(t)� P1(t),
we can write P2(t) in terms of P0(t) and P1(t)

P2ðtÞ ¼ MðM � 1Þ
2ð2M �M� 1Þ PUðtÞ

¼ MðM � 1Þ
2ð2M �M� 1Þ ½1� P0ðtÞ � P1ðtÞ� ð18Þ

Table 1. Ratios of the Approximate Results in eq 14, λ2,3
app, to

Their Counterparts Obtained by Numerical Diagonalization
of the Rate Matrix in eq 11, λ2,3

diag

M

5 10 20 30 40 50

λ2
app/λ2

diag 0.86 1.13 1.07 1.04 1.03 1.01

λ3
app/λ3

diag 1.02 1.24 1.09 1.04 1.03 1.02
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Substituting this expression into the second equation of the set in
eq 4, we find that the first two equations of this set form closed
evolution equations for the probabilities P0(t) and P1(t)

_P0ðtÞ ¼ � ε0MP0ðtÞ þ P1ðtÞ
_P1ðtÞ ¼ ε0MP0ðtÞ � 2P1ðtÞ þ MðM � 1Þ

2M �M � 1
½1� P0ðtÞ � P1ðtÞ�

ð19Þ
where we have used the relation ε1(M � 1) = 1 (eq 6).

Equations 19 describe relaxation of P0(t) and P1(t) to their
equilibrium values (eq 7)

Peq0 ¼ 1=2, Peq1 ¼ ε0MPeq0 ¼ MðM� 1Þ
2ð2M þ M2 � 2M� 1Þ ð20Þ

Denoting the deviation of Pi(t) from Pi
eq by ΔPi(t), ΔPi(t) =

Pi(t)� Pi
eq(t), i = 0, 1, and using eq 19, we find that the deviations

satisfy

Δ _P0ðtÞ ¼ � ε0MΔP0ðtÞ þ ΔP1ðtÞ
Δ _P1ðtÞ ¼ ε0M � MðM � 1Þ

2M �M� 1

� �
ΔP0ðtÞ

� 2 þ MðM� 1Þ
2M �M � 1

� �
ΔP1ðtÞ ð21Þ

The second equation can be simplified at large M, because the
first term on the right-hand side can be neglected as the factor in

front of ΔP0(t) is proportional to ε0
2 , 1, whereas the factor in

front ofΔP1(t) is close to 2. As a result, the second equation takes
the form

Δ _P1ðtÞ ¼ � 2ΔP1ðtÞ ð22Þ

From eqs 21 and 22, one can see that the relaxation to
equilibrium is biexponential and that λ2 and λ3 are given by
the expressions in eq 14.
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ABSTRACT:We compile a 109-membered benchmark set of adiabatic excitation energies (AEEs) from high-resolution gas-phase
experiments. Our data set includes a variety of organic chromophores with up to 46 atoms, radicals, and inorganic transition metal
compounds.Many of the 91molecules in our set are relevant to atmospheric chemistry, photovoltaics, photochemistry, and biology.
The set samples valence, Rydberg, and ionic states of various spin multiplicities. As opposed to vertical excitation energies, AEEs are
rigorously defined by energy differences of vibronic states, directly observable, and insensitive to errors in equilibrium structures.
We supply optimized ground state and excited state structures, which allows fast and convenient evaluation of AEEs with two single-
point energy calculations per system. We apply our benchmark set to assess the performance of time-dependent density functional
theory using common semilocal functionals and the configuration interaction singles method. Hybrid functionals such as B3LYP
and PBE0 yield the best results, with mean absolute errors around 0.3 eV.We also investigate basis set convergence and correlations
between different methods and between the magnitude of the excited state relaxation energy and the AEE error. A smaller, 15-
membered subset of AEEs is introduced and used to assess the correlated wave functionmethods CC2 and ADC(2). Thesemethods
improve upon hybrid TDDFT for systems with single-reference ground states but perform less well for radicals and small-gap
transition metal compounds. None of the investigated methods reaches “chemical accuracy” of 0.05 eV in AEEs.

1. INTRODUCTION

In view of the enormous interest in electronically excited states
in analytical, photochemical, and material science applications, the
amount of reliable data available to assess and calibrate theoretical
excited state treatments is surprisingly small. The most common
benchmarks are vertical excitation energies (VEEs) obtained
either from higher level theory or from experimental absorption
maxima (AM).1�22 An extensive VEE benchmark set including a
review of previous VEE benchmarks has recently been published
by Jacquemin and co-workers.17

While VEEs are readily obtained in quantum chemistry, they
are not observable experimentally. The comparison of computed
VEEs to experimental AM is based on three main assumptions:
(i) The transition probability is maximized if ground and excited
state structures are identical (Franck�Condon approximation).
(ii) The transition probability is maximized at the ground state
minimum.This is true only if the electronic transition probability is
nonzero and does not increase upon geometry distortion, i.e., due
to symmetry breaking vibrations. (iii) The absorptionmaximum is
not affected by vibronic or rotational effects. As Herzberg already
pointed out,23 these conditions are not satisfied even in appar-
ently simple cases such as the transition from the ground state to
the 11B2 state in CS2 and the transition from the ground state to
the 11A00 state inHCN. The error introduced by comparing VEEs
and AM can reach the order of typical method errors, as Dierksen
and Grimme illustrated using simulated vibronic spectra: For the
S0 f S1 excitations of anthracene, pyrene, and pentacene, the
difference between VEEs and AM ranges from 0.25 to 0.33 eV.24

The past decade has seen a number of approaches to improving
the accuracy of VEE benchmarks. Thiel and co-workers introduced
a large benchmark set based on VEEs with experimental AM

replaced by best estimates.11,12,21 The latter are obtained from
correlated ab initio calculations with large basis sets where
available. Otherwise, triple-ζ complete active space second-order
perturbation theory (CASPT2) results are used for singlet and
triple-ζ approximate third-order coupled cluster (CC3)25 results
for triplet excited states. While this method requires only one
single-point calculation per system, it is limited to small systems
and lacks experimental validation. Jacquemin and co-workers
addressed the inherent error of the VEE-AM benchmark by
comparing VEEs to Thiel’s best estimates and experimental adia-
batic excitation energies (AEEs).17 However, the conclusions are
limited since excited state relaxation is neglected in the computed
and unknown in the experimental AEEs.

A comprehensive comparison of spectroscopic and computa-
tional data is possible by investigating simulated vibronic spectra.
Today, such calculations are feasible for fairly large molecules,
and the number of vibronic simulations has grown in recent
years.24,26�29 Simulated vibronic spectra reveal the position of
AM, VEEs, and AEEs. These simulations may be systematically
improved by including anharmonic corrections, Dushinsky rota-
tion effects, Herzberg�Teller corrections, and hot bands.30

However, such calculations are computationally expensive and
demand a high level of expertise. The validity of most approaches
is limited to harmonic potential energy surfaces and the existence
of an excited state minimum. Currently, a statistically significant
assessment of excited state methods using a large number of
systems and states is hardly feasible at this level.
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Benchmarks using AEEs represent a compromise between
simple VEE-based benchmarks and elaborate vibronic simulations.
The AEE is defined as the energy difference between the lowest
vibrational level of the excited and ground electronic states. As
opposed to VEEs, AEEs are directly observable experimentally,
e.g., from 0-0 transitions in high-resolution absorption and fluor-
escence spectra, and can be measured with high accuracy. On the
theoretical side, AEEs require optimized geometries of both the
ground and the excited electronic states. Thus, the size and chemical
diversity of existing AEE benchmark sets is limited.16,31�35

However, with progress in analytical excited state gradient
theory,31,32 excited state structure optimization is no longer an
obstacle, even for systems containing 100 or more atoms. Another
significant advantage of AEEs over VEEs is their quadratic
dependence on errors in the ground and excited state structures,
making them less sensitive to the quality of the structures used.
Finally, it is possible to refine computed AEEs to very high
accuracy by adding zero-point vibrational energy (ZPVE), re-
lativistic, and diagonal Born�Oppenheimer corrections.36

In this paper, we compile a set of 109 accurate experimental
AEEs for benchmark purposes. We include a variety of different
systems and states. The benchmark selection procedure is ex-
plained in section 2. To the best of our knowledge, this is the
largest and most diverse AEE benchmark available so far. Using
statistical analysis, we investigate basis set errors (section 4.1) and
the performance of time-dependent density functional theory
(TDDFT)37 using common hybrid and nonhybrid exchange-
correlation (XC) functionals (section 4.2). Configuration inter-
action singles (CIS)38,39 is also considered. We discuss the
implications of systematic corrections (section 4.3), correlations
between methods (section 4.4), and the influence of large excited
state relaxation energies on hybrid TDDFT (section 4.6). Difficult
cases for common functionals are discussed in section 5. Section 6
summarizes structural changes observed in the excited state
geometry optimizations. A smaller, 15-membered subset of AEEs
is introduced in section 7 and used to benchmark the wave-
function-based approximate second-order coupled cluster (CC2)40

and the second-order algebraic diagrammatic construction approx-
imation (ADC(2))41 methods. We present our conclusions in
section 8.

2. BENCHMARK SELECTION PROCEDURE

It is impossible to construct a benchmark set that is repre-
sentative of the entire chemical compound space. Thus, any selection
of benchmark data is necessarily biased. It is important to spell out
this bias clearly because it intrinsically limits the significance of any
benchmark set. Without a well-motivated selection procedure, it
must be suspected that a benchmark set has been chosen to favor or
disfavor a particular method. This is not our intention.

We chose to bias the present benchmark set toward systems
that are expected to be important for a large number of applica-
tions. In part, this was accomplished by using experimental
reference data only. Experiments are generally more expensive
and time-consuming than calculations and are likely more
relevant than calculations for systems and states that may not be
directly observable. Also, highly accurate calculations of excitation
energies are presently feasible for small molecules with 10 or less
atoms only. An important selection criterion was the quality
of the experimental data: Only vibrationally resolved gas-phase
data were included; questionable or controversial results were
avoided. Our data set samples important aliphatic, aromatic, and

antiaromatic chromophores; it includes radicals and inorganic
main group and selected transition metal compounds (see
Table 1). Examples of special interest for applications include
coumarin 153, a merocyanine dye, a chromophore model of the
photoactive yellow protein, push�pull stilbenes, fluorene, and
azaindole. The size of themolecules in our set ranges from 2 to 46
atoms (terylene). Most states are singlets, doublets, or triplets,
but a few states of higher spin multiplicity are included as well.
The majority of states are of valence type, some have consider-
able Rydberg character, such as the 31A state of aminomethane.
Gas-phase results for long-range charge-transfer excitations were
not available to us.

3. COMPUTATIONAL DETAILS

All ground and excited state structures were optimized using
Becke’s three-parameter hybrid functional with Lee�Yang�Parr
correlation (B3LYP).42 Earlier benchmarks have shown that the
excited state minimum structures are similar in accuracy to
minimum structures obtained using ground-state density func-
tional theory (DFT) if the Kohn�Sham reference is stable.31 The
sensitivity of the results to the level of theory used to compute
equilibrium structures is further investigated in section 7.3.
Excited-state optimizations were started from the ground-state
minimum structures. The geometry optimizations employed tri-
ple-ζ valence basis sets with one set of polarization functions (def2-
TZVP).43 Ground-state energies and density matrices were
converged to 10�7 au. Fine quadrature grids of size m444 were
used in the DFT and TDDFT calculations. The optimized
structures were confirmed to be local energy minima by calculat-
ing vibrational frequencies. For excited states, second derivatives
of the energy were determined by numerical differentiation of
analytical gradients using central differences. Energy and density
convergence criteria of 10�9 au were used for the numerical
second derivatives.

For the excitation energy calculations, basis sets of split
valence quality with polarization functions except on hydrogen
atoms def2-SV(P)43 and of triple-ζ quality (def2-TZVP) were
employed. Diffuse-augmented def2-SVPD and def2-TZVPD
bases from the newly developed hierarchy of property-optimized
basis sets were also investigated.45 For Sn, small core pseudopo-
tentials (ECP-28)46were used. AEEswere computed from the total
energy difference of ground and excited states at the optimized
B3LYP/TZVP structures. The resulting energy differences were
corrected by the ZPVEs obtained from vibrational frequency

Table 1. Composition of the Benchmark Set

characteristic count

molecules 91

excited states 109

organic molecules 64

inorganic molecules 27

transition metal compounds 6

aliphatic molecules 20

aromatic molecules 43

antiaromatic molecules 1

organic radicals 4

singlet excited states 86

triplet excited states 12

spin-unrestricted excited states 11
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Table 2. AEEs of All Excited States Contained in the Bench-
mark Set in eVa

molecule state experiment B3LYP reference

1,6-epoxy-10-annulene 11B1 2.98 3.32 58

2-chloropyrimidine 21A0 3.98 3.73 59

2-cyclopenten-1-one 21A 3.37 3.28 60

7-azaindole 21A 4.29 4.09 61

β-dinaphthyleneoxide 21A 3.63 3.25 62

acetaldehyde 21A 3.69 3.81 63

acetone 21A 3.77 3.87 63

acrolein 11A00 3.21 3.02 64

acrolein 13A00 3.01 2.44 65

aminobenzonitrile 11B1 4.15 4.25 66

aminoethane 21A0 5.21 5.30 67

aminomethane 21A0 5.18 5.23 67

aminomethane 31A 6.22 6.36 67

aniline 21A 4.22 4.34 68

anisol 21A 4.51 4.73 69

anthracene 11B2u 3.43 2.90 70

AsF 13Π 3.19 3.10 71

azulene 11B1 1.77 1.98 72

BeH 12Π 2.48 2.58 71

benzaldehyde 21A0 4.36 4.37 73

benzaldehyde 11A00 3.34 3.27 74

benzaldehyde 13A00 3.12 2.71 74

benzene 11B1u 4.72 5.14 75

benzonitrile 11B1 4.53 4.82 76

benzophenone ketyl radical 22A 2.29 2.31 77

BeO 11Π 1.17 1.21 71

BF 11Π 6.34 6.14 71

BH 11Π 2.87 2.70 71

biphenyl 11B1 4.37 4.24 78

biphenylene 11B3u 3.50 3.63 79

C2H2 21A 5.23 4.72 80

CCl2 11B2 2.14 1.89 81

CH2O 21A 3.49 3.62 82

CH2O 13A 3.12 2.73 82

CH2S 11A2 2.03 2.07 82

CH2S 13A 1.80 1.44 82

cinnoline 11A00 2.82 2.43 83

CO 11Π 8.07 7.99 71

CO 13Π 6.04 5.58 71

CrF 26Π 1.01 1.24 84

CrH 26Σ+ 1.62 1.78 85

CS2 33A 3.25 3.25 80

Cu2 11Σu
+ 2.53 2.75 86

Cu2 11Πu 2.71 2.63 86

CuH 21Σ + 2.91 3.06 71

cyanoacetylene 21A0 4.77 4.74 23

cyclohexadienyl radical 22A 2.26 2.49 87

DBH88 21A 3.66 3.45 89

DCS90 21A 3.36 2.95 91

dimethylaminobenzonitrile 11B 4.02 4.04 66

DMPD92 21A 3.64 3.68 93

fluorene 21A0 4.19 4.19 94

glyoxal 11Au 2.72 2.43 80

Table 2. Continued
molecule state experiment B3LYP reference

HCN 11A00 6.48 5.97 80

HCOOH 21A 4.64 4.78 95

HCP 21A0 4.31 4.31 97

hexatriene 11Bu 4.93 4.32 71

hydroquinone 11Bu 4.15 4.28 100

indole 21A0 4.37 4.31 101

Li2 11Σu
+ 1.74 1.99 71

merocyanine dye99 21A 2.58 2.53 100

methyl-4-hydroxycinnamate 21A 4.08 3.96 101

Mg2 11Σu
+ 3.23 3.44 71

N2 11Δu 8.94 8.32 71

N2 11Πg 8.59 8.57 71

N2 13Πg 7.39 6.94 71

naphthalene 11B2u 3.97 3.96 102

NH 13Π 3.70 3.92 71

NH3 11A00
2 5.73 5.73 103

NH3 31A 7.34 7.59 103

NO3 12E0 1.87 2.13 104

octatetraene 11Bu 4.41 3.72 105

o-cyanobenzyl radical 22A 2.50 2.65 106

oxalylfluoride 11Au 4.02 3.72 107

P2 11Πg 4.27 4.12 71

p-benzoquinone 21A 2.48 2.28 108

p-benzoquinone 11B1g 4.07 3.34 109

p-benzoquinone 11B2g 2.49 2.26 108

p-diethynylbenzene 11B2u 4.25 4.17 110

p-phenylenediamine 21A 3.70 3.69 93

PH2 22B2 2.27 2.37 80

phenol 21A 4.51 4.78 111

porphyrin 11B1u 2.02 2.20 80

propynal 21A 3.24 3.25 112

pyrene 21A 3.34 3.40 113

pyridine 21A 4.31 4.14 114

pyridone lactam 21A 3.70 3.70 115

pyridone lactim 21A 4.48 4.60 115

pyrimidine 21A 3.85 3.67 116

pyrimidine 41A 5.00 5.16 114

quinoline 21A 3.99 3.51 116

quinoline 13A0 2.79 2.26 116

quinoxaline 21A1 3.97 4.25 116

quinoxaline 21A 3.36 3.02 83

quinoxaline 13A 2.68 2.19 117

ScO 12Π 2.04 2.14 118

SiF2 11B2 5.34 5.35 80

SiO 11Π 5.31 5.20 80

SnF2 11B2 5.05 4.65 119

styrene 21A 4.31 4.40 120

syn-coumarin 153 21A 3.21 2.96 121

terylene 21A0 2.39 1.90 122

tetrazine 21A 2.25 1.99 123

thioacetone 21A 2.33 2.35 124

thioacetone 13A 2.14 1.85 124

toluene 11A00 4.65 5.01 125

t-stilbene 21A 4.00 3.51 126
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calculations at the B3LYP/TZVP level. Excited state relaxation
energies were computed from the difference of calculated VEEs
and AEEs. The fluorescence energies are vertical de-excitation
energies computed at the optimized B3LYP/TZVP excited state
structure. A complete list of fluorescence and relaxation energies
is given as Supporting Information.

The following density functionals were investigated: The
Perdew�Wang parametrization of the local spin-density approx-
imation (LSDA);47 the generalized gradient approximation
(GGA) functionals of Becke and Perdew (BP86)48,49 and of
Perdew, Burke, and Ernzerhof (PBE);50 the meta-GGA func-
tional of Tao, Perdew, Staroverov, and Scuseria (TPSS);51 and
the B3LYP42 and PBE052 hybrid GGAs. Wave function methods
included CIS,53 the approximate coupled cluster singles and
doubles method CC2,40 and the second-order algebraic diagram-
matic construction approximation (ADC(2)).41 In the CC2 and
ADC(2) calculations, the resolution-of-the-identity approxima-
tion is employed along with def2-TZVP basis and auxiliary basis
sets.54�56 To obtain excited state energies, the ADC(2) excitation
energies are added to ground state MP2 energies. All calculations
were carried out using the TURBOMOLE program suite.57

A correct assignment is vital for comparison of experimental
excited state data with theoretical results. We adopted the
following procedure to ensure that the computed AEEs corre-
spond to the experimentally observed states:
1. Vertical excitation energies were computed at the opti-

mized ground state minimum, including all excitations
with energies close to the experimental AEE.

2. A set of excited states was preselected on the basis of
oscillator strength if absorption properties are available from
the experiment.

3. The selected excited states were optimized, and the experi-
mental states were assigned using oscillator strengths and
further experimental evidence, such as rotational intensities
and rotational constants.

4. In diatomic molecules, symmetry information from rovi-
bronic spectra was required to be consistent with the excited
state term symbol.

Cases where a clear-cut assignment was not possible were
discarded from the benchmark set.

Covariances Σ were computed according to

ΣðX , YÞ ¼ 1
N � 1 ∑

N

i¼ 1
ðEcalci ðXÞ � Eexpi ðXÞÞðEcalci ðYÞ � Eexpi ðYÞÞ ð1Þ

where Ei
calc and Ei

exp are the computed and experimental AEEs
andN is the number of excited states in our benchmark set.X and
Y denote data sets. Sample standard deviations σ were obtained
from Σ according to

σðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣðX ,XÞ

p
ð2Þ

Histograms and normalized Gaussians with a mean and SD
identical to those of the sample were used to visualize the results.

Finally, correlation coefficients F were computed according to

FðX , YÞ ¼ ΣðX , YÞ
σðXÞ σðYÞ ð3Þ

4. RESULTS

4.1. Basis Set Convergence. The B3LYP AEEs using def2-
TZVP basis sets are compared to experimental reference values
in Table 2. A statistical analysis of the basis set convergence is
presented in Table 3 and illustrated in Figure 1; a complete list of
the results is provided as Supporting Information. The basis set
convergence of other density functionals and CIS is similar.
Higher l-quantum numbers and more diffuse functions are
necessary for CC2 and ADC(2), but a systematic assessment
of the basis set convergence of these methods is beyond our
present scope. Overall, the B3LYP results change very little when
going from the smaller def2-SV(P) to the larger def2-TZVP basis
set or adding diffuse augmentation. Table 3 suggests that the
residual basis set error of the B3LYP/TZVP results is 0.03 eV or
less, roughly an order of magnitude less than the method error.
Diffuse or triple-ζ basis sets are important for π�π* excitations
as in styrene and for π�σ* excitations as in aminoethane and
diatomic molecules where electrons are excited into diffuse
orbitals. Further examples are discussed in section 5.
4.2. Exchange-Correlation Functionals.The performance of

different functionals was assessed using def2-TZVP basis sets.
A statistical analysis is given in Table 4, and a complete list of results
is available as Supporting Information. The hybrid functionals
B3LYP and PBE0 have the smallest SD (0.28 eV and 0.30 eV)
and a mean error (ME) close to zero (�0.08 eV and 0.01 eV),
followed by the TPSS meta-GGA with a SD of 0.41 eV and a ME
of �0.20 eV. The GGA functionals PBE and BP86 feature a
larger SD of 0.49 eV and a ME of�0.33 eV. LSDA performs just
as well as the GGA functionals with a SD of 0.49 eV and a ME
of�0.31 eV. CIS strongly overestimates the experimental results
as reflected by its large positive ME, and the SD of 1.16 eV is
almost 4 times that of B3LYP and PBE0.
The histograms in Figure 2 illustrate that all density func-

tionals except PBE0 underestimate experimental AEEs. The
maximum of the distribution lies between zero deviation and
the ME. An underestimation by 0.5 eV or more is fairly common
for nonhybrid functionals. CIS shows a broad error distribution
and seems to have little predictive power for AEEs. The max-
imum positive and negative deviations for each level are listed in
Table 5. The table shows that maximum deviations increase from
hybrid GGAs to (meta-)GGAs and to LSDA. The total range of
errors increases with the maximum deviations. Again, CIS

Table 2. Continued
molecule state experiment B3LYP reference

vinyl radical 22A 2.48 2.56 127

VO 14Π 1.56 1.41 118
aThe calculated zero-point vibrational energy corrected values are
compared to experimental values. All theoretical values were obtained
using the B3LYP functional and def2-TZVP basis sets.

Table 3. Performance of B3LYP AEEs on the 109 Set Using
Different Basis Setsa

basis MAE ME SD MaxAE

def2-SV(P) 0.25 �0.07 0.30 0.69

def2-SVPD 0.22 �0.13 0.29 0.78

def2-TZVP 0.21 �0.08 0.28 0.73

def2-TZVPD 0.22 �0.11 0.29 0.74
aMAE denotes the mean absolute error, ME the mean error, SD the
standard deviation, and MaxAE the maximum absolute error. All values
are in eV.
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performs more weakly than the density functional methods, with
a total range of errors of almost 4 eV.
4.3. A Posteriori Corrections. Jacquemin and co-workers

proposed to use linear regression to correct TDDFT excitation
energies in solution and reduce the ME and SD.34 This proce-
dure is useful for samples of similar compounds. In Table 6, we
show how the statistical parameters are affected when AEEs are
shifted by a constant that makes the ME vanish. CIS benefits most
from such a shift, which partially corrects the systematic over-
estimation of AEEs. LSDAand (meta-)GGAs, which underestimate
excitation energies, are considerably improved, with reductions of
∼0.1 eV in the MAE and SD. As expected from their small MEs,
the hybrid results change little: B3LYP and PBE0 still outperform
all other functionals, even after application of the shift. Thus, our

gas-phase data support a posteriori corrections for nonhybrid
functionals only.
4.4. Correlations. We compare the similarity of the AEEs

obtained with two functionals by calculating correlation coeffi-
cients and the maximum absolute deviation between two calcu-
lated AEEs (Table 7). The thus obtained correlation coefficients
deviate from unity in the second to fourth digit. The maximum
absolute deviations range from 0.2 to 1.2 eV.
The correlation analysis shows marked differences between

LSDA, GGA, meta-GGA, and hybrid functionals. Within each
rung of functionals, correlations are higher; e.g., the BP86 and PBE
functionals perform very similarly, as indicated by a correlation
coefficient of 0.9997 and a maximum deviation of 0.19 eV. Table 7
also shows that LSDA andGGAAEEs are highly correlated, in line
with the empirical observation that GGAs tend to improve little
upon LSDA for excitation energies. The TPSS results are quite
similar to the GGA results, confirming that the improvement from
GGAs to meta-GGAs is quite small for excitation energies.128 On
the other hand, the hybrid functionals PBE0 and B3LYP show
lower correlations to other methods. This underlines the fact that
hybrid exchange systematically improves over LSDAandGGAs for
AEEs, consistent with the results of section 4.2.
4.5. Zero Point Vibrational Energies.The ZPVE corrections

to the AEEs in our benchmark set range from�0.30 eV to +0.26
eV; they are positive in only eight cases. A complete list of the
ZPVE corrections is available as Supporting Information. The
largest ZPVE corrections occur when amino groups become
planar in the excited state. Examples are aminomethane, ami-
noethane, and ammonia.

Table 4. Performance of AEEs Obtained from Various Ex-
change-Correlation Functionals Using def2-TZVP Basis Setsa

method MAE ME SD MaxAE

B3LYP 0.21 �0.08 0.28 0.73

PBE0 0.25 0.01 0.30 0.66

TPSS 0.32 �0.20 0.41 1.05

BP86 0.39 �0.32 0.49 1.14

PBE 0.40 �0.33 0.49 1.14

LSDA 0.39 �0.31 0.49 1.19

CIS 0.98 0.90 1.16 3.04
a See Table 3 for further explanation. All values are in eV.

Figure 1. Error histograms of B3LYP AEEs obtained using different basis sets (see insets). Also shown are normal distributions with the computed
ME and SD of the sample.
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On our data set, the inclusion of ZPVE corrections does not
significantly improve the overall accuracy of the B3LYP/TZVP
AEEs, see Table 4, but it does not worsen them either. ZPVE
corrections are a byproduct of molecular Hessian calculations,
which are needed to identifyminima. This is particularly important
for excited states, where symmetry breaking and saddle point
structures are common.
4.6. Excited State Relaxation.Do B3LYP AEEs deteriorate if

the molecular structure changes strongly upon excitation? To
address this important question, we computed the correlation
coefficient between excited state relaxation energies and errors in
the corresponding AEEs. If such a correlation existed, it could be

used as a diagnostic for AEEs. However, on our present data set,
the correlation coefficient between excited state relaxation energies
and AEE errors is �0.29; i.e., there is essentially no correlation.
This result suggests that the incorrect dissociation behavior of
spin-restricted TDDFT potential energy surfaces129 has little
effect on the AEEs in our benchmark set.

5. DIFFICULT AND NOTEWORTHY CASES

5.1. Aminomethane: 31A.Diffuse functions are necessary for
an adequate description of the 31A state of aminomethane: The
B3LYP AEE changes from 6.37 eV to 6.22 eV when the basis set

Figure 2. Error histograms of AEEs obtained with different functionals (see insets). Also shown are normal distributions with the computedME and SD
of the sample.
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size is increased from the def2-SV(P) basis set to def2-SVPD and
from 6.36 eV to 5.97 eV when enlarging the def2-TZVP basis set
to def2-TZVPD. This is consistent with a Rydberg π f s
excitation.130 The agreement of the nonaugmented basis set
result with the experimental value of 6.22 eV67 is fortuitous.
5.2. Benzene: 11B1u.The excited state potential energy surfaces

of benzene are a challenge for excited state methods.75,131,132

The PBE0 AEE of 5.26 eV and the CC2 AEE of 4.92 eV75 are
larger than the experimental AEE of 4.72 eV. The corresponding
CASPT2 result of 4.37 eV is too small and might approach the
CC2 result when the modified zeroth-order Hamiltonian is
used.132�134 B3LYP, CC2, and CASPT2 excited state bond
lengths agree up to 1 pm.
5.3. CuH: 21Σ+. The ground state of CuH has 1Σ+ symmetry

and is dominated by a 2S(sd10) configuration of the copper
atom.135,136 For the 21Σ+ state, multireference configuration inter-
action calculations show a mixed d9�d10 character at the
equilibrium bond lengths and strong spin�orbit coupling to
the 13Π state.135 Within TDDFT, all functionals yield AEEs
within 0.1 eV of the experiment. An exception is PBE0 with an
AEE too large by 0.63 eV. Diffuse augmentation is necessary but
deteriorates the agreement with experimental results. Upon excita-
tion, the dipole moment increases by ∼2.4 D in the B3LYP
calculation. The charge-transfer character of the excitation, the
multiconfiguration character of the ground state, and the large
spin�orbit coupling make this system difficult for response
methods.135,137

5.4. Cu2: 1
1Πu. For the 1

1Πu state of Cu2, large basis sets are
essential to reproduce the experimental result of 2.71 eV:86 The
AEEs change from 2.02 eV to 2.15 eV and to 2.63 eV when
going from def2-SV(P) to def2-SVPD138 and to def2-TZVP.
There is little further change when the basis set is increased to
def2-TZVPD (2.62 eV) or QZVP43 (2.60 eV). The TDDFT
excitation vectors are dominated by one single-electron excita-
tion, whereas the CIS excitation vector shows a multiconfigura-
tional state 3.04 eV above the experimental AEE. The
Hartree�Fock and hybrid functional ground state place the
bonding 4s σg orbital above all antibonding 3d orbitals.

139 The
results are stable with respect to tightened ground state
convergence criteria.
5.5. p-Benzoquinone: 11B1g. The AEE of p-benzoquinone is

underestimated by more than 0.6 eV at the TDDFT level and
overestimated by 0.8 eV at the CIS level. While the optimized
ground state has C�C bond lengths between 134 and 148 pm,
the optimized excited state has C�C bond lengths between 141
and 144 pm. This indicates a reduction of the quinoidal character
upon excitation, and an excitation into a hydroquinone like state,
in agreement with CASPT2 results of Weber and co-workers.140

5.6. Quinoline: 13A0. The ground state of quinoline shows a
near triplet instability141 at the B3LYP level. This is reflected in
the weak performance of the density functional methods for the
lowest triplet state 13A0. The quality of the singlet excitations
appears to be unaffected by nearby triplet instabilities.
5.7. NO3: 1

2E0. The AEE predicted by CIS is lower than the
experimental value of 1.87 eV104 by 0.76 eV. Since CIS usually
overestimates excitation energies, this underestimation indicates
a multiconfigurational ground state. The underestimation of the
CIS AEE is in line with the strong vibronic coupling between the
ground and 12E0 excited state.142 Inclusion of double and higher
excitations will mostly lower the ground state energy and increase
the AEE. Multireference contributions are noticeable but not
dominant in the excited state.143 Nonhybrid functionals over-
estimate the AEE by 0.71�1.00 eV, indicating that NO3 is too
electron-rich for a reliable description by semilocal functionals.

Table 5. Excited States with Maximum Negative Deviation
(MND) and Maximum Positive Deviation (MPD) from the
Experimental AEE for Each Level of Theorya

level MND MPD

B3LYP/SV(P) p-benzoquinone: 11B1g �0.69 benzene: 11B1u 0.46

B3LYP/SVPD p-benzoquinone: 11B1g �0.78 benzene: 11B1u 0.37

B3LYP/TZVP p-benzoquinone: 11B1g �0.73 benzene: 11B1u 0.42

B3LYP/TZVPD p-benzoquinone: 11B1g �0.74 benzene: 11B1u 0.40

PBE0/TZVP quinoline: 13A0 �0.66 CuH: 21Σ+ 0.63

TPSS/TZVP p-benzoquinone: 11B1g �1.05 NH: 13Π 0.79

BP86/TZVP p-benzoquinone: 11B1g �1.14 NO3: 1
2E0 0.71

PBE/TZVP p-benzoquinone: 11B1g �1.14 NO3: 1
2E0 0.74

LSDA/TZVP quinoline: 21A �1.19 NO3: 1
2E0 1.00

CIS/TZVP N2: 1
1Δu �0.85 Cu2: 1

1Πu 3.04
aAll values are in eV.

Table 6. Performance of AEEs Obtained from Various Ex-
change-Correlation Functionals and CIS Using def2-TZVP
Basis Setsa

method MAE SD MaxAE

B3LYP 0.22 0.26 0.64

PBE0 0.25 0.30 0.66

TPSS 0.30 0.36 0.99

BP86 0.30 0.37 1.03

PBE 0.29 0.36 1.07

LSDA 0.30 0.38 1.31

CIS 0.55 0.73 2.14
a For each method, a constant shift has been applied to make the ME
vanish. See Table 3 for further explanation. All values are in eV.

Table 7. Correlation Coefficients G and Maximum Absolute
Deviations |Δmax| (in eV) between AEEs Computed with
Different Density Functionals

(a) correlation matrix

B3LYP PBE0 TPSS BP86 PBE LSDA

B3LYP 1 0.9983 0.9909 0.9888 0.9881 0.9832

PBE0 0.9983 1 0.9880 0.9849 0.9836 0.9781

TPSS 0.9909 0.9880 1 0.9979 0.9971 0.9912

BP86 0.9888 0.9849 0.9979 1 0.9997 0.9964

PBE 0.9881 0.9836 0.9971 0.9997 1 0.9975

LSDA 0.9832 0.9781 0.9912 0.9964 0.9975 1

(b) maximum absolute deviations matrix

B3LYP PBE0 TPSS BP86 PBE LSDA

B3LYP 0 0.48 0.69 0.93 0.94 0.91

PBE0 0.48 0 0.95 1.16 1.17 1.14

TPSS 0.69 0.95 0 0.77 0.79 0.81

BP86 0.93 1.16 0.77 0 0.19 0.40

PBE 0.94 1.17 0.79 0.19 0 0.36

LSDA 0.91 1.14 0.81 0.40 0.36 0
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5.8. Tetrazine: 21A. Hybrid functionals underestimate the
AEE by ∼0.26 eV and slightly outperform the CASPT2 result
of 1.94 eV of Sch€utz et al.144 The TDDFT excitation vectors tend
to converge to solutions dominated by many different single
excitations with default convergence settings. Excitation vectors
dominated by one single excitation in agreement with experimen-
tal results are obtained with tighter energy and density conver-
gence criteria in the ground state calculation (10�8 au).

6. STRUCTURAL CHANGES

The main symmetry breaking structural changes encountered
upon excited state relaxation fall into three groups:
(1) out-of-plane bending of a CdO or CdS group
(2) planarization of an amino group
(3) others
In group 1 systems, a π f π* excitation of a CdO or CdS

chromophore leads to a sp2 f sp3 rehybridization of the carbon
atom. In group 2 molecules, planarization is caused by s f p
promotion of an electron occupying a nitrogen lone pair orbital.
The nonplanarity of excited ketyl groups and the planarity of
excited ammonia is discussed by Herzberg.23 The four other cases
are the twisted intermolecular charge-transfer state of dimethyl-
aminobenzonitrile,32 the bend excited states of HCN and C2H2,

23

and biphenyl. In biphenyl, the ground state is nonplanar due to
the steric repulsion of hydrogen atoms in the adjacent rings. The
excitation to the 11B1 state takes place from an orbital that is
antibonding between the rings to an orbital that is bonding
between the rings. This causes the phenyl�phenyl bond to
shorten by 7 pm to 141 pm upon excitation and a twist of the
rings to a nearly planar structure.145

7. REDUCED DATA SET

7.1. Composition. Out of the original 109-membered set, we
generated a reduced set containing only 15 states. The reduced
set was required to approximately reproduce the B3LYP/TZVP
ME, MAE, and SD of the original set and cover a variety of
different chromophores and states but was randomly chosen
otherwise. The resulting reduced data set is shown in Table 8,

and results for density functionals other than B3LYP and CIS are
available as Supporting Information.
Due to its small sample size, the reduced set cannot replace the

original 109 set. The aim of the reduced set is to provide a
convenient and fast initial screening test for new methods, which
is desirable for computationally demanding theories.
7.2. Performance of CC2 andADC(2).To illustrate the use of

the reduced data set, we investigate the performance of the
correlated wave function methods CC2 and ADC(2) on the
reduced set (Table 9). CC2 and ADC(2) behave similarly. On
average, CC2 overestimates excitation energies, as reflected in a
positive ME. However, the addition of diffuse functions con-
siderably lowers the CC2 ME, MAE, and SD,22,146 and CC2/
TZVPD outperforms all other methods on the reduced data set.
Scrutiny of the results in Table 8 shows that the largest CC2

errors occur for the benzophenone ketyl radical and for the 14Π
state of VO. It can be argued that CC2 and ADC(2) are not
expected to work for these open-shell systems whose ground
states show some amount of multireference character. Diagnostic
criteria to identify such cases are available,118,147 and thus it can

Table 8. Composition of the 15-Membered Subset and Computed AEEs in eV

molecule state experiment CC2/TZVPD B3LYP/TZVP reference

acetaldehyde 21A 3.69 3.70 3.81 63

anisol 21A 4.51 4.60 4.73 69

benzene 11B1u 4.72 4.94 5.14 75

benzophenone ketyl radical 22A 2.29 2.84 2.31 77

BF 11Π 6.34 6.39 6.14 71

C2H2 21A 5.23 5.36 4.72 80

cinnoline 11A00 2.82 2.77 2.43 83

CO 11Π 8.07 7.99 7.99 71

glyoxal 11Au 2.72 2.72 2.43 80

p-diethynylbenzene 11B2u 4.25 4.59 4.17 110

propynal 21A 3.24 3.27 3.25 112

pyridone lactim 21A 4.48 4.70 4.60 115

quinoline 21A 3.99 3.66 3.51 116

ScO 12Π 2.04 2.02 2.14 118

VO 14Π 1.56 1.96 1.41 118

Table 9. Performance of Computed AEEs on the Reduced 15-
Membered Subseta

(a) full subset

method MAE ME SD

B3LYP/TZVP 0.21 �0.08 0.28

CC2/TZVP 0.21 0.16 0.29

CC2/TZVPD 0.17 0.10 0.24

ADC(2)/TZVP 0.23 0.14 0.34

(b) subset after exclusion of VO and benzophenone ketyl radical

method MAE ME SD

B3LYP/TZVP 0.23 �0.08 0.30

CC2/TZVP 0.16 0.10 0.20

CC2/TZVPD 0.12 0.05 0.17

ADC(2)/TZVP 0.15 0.04 0.20
a See Table 3 for further explanation. All values are in eV.
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be justified to consider a “single-reference” subset which does not
contain VO and benzophenone ketyl. Whereas the B3LYP errors
are essentially unchanged, CC2/TZVPD performs very well on
the single-reference subset, yielding a MAE of 0.12 eV.
7.3. Sensitivity to Equilibrium Structures. To evaluate the

sensitivity of our results to errors in the B3LYP ground and excited
state structures, the reduced data set was evaluated using fully
optimized PBE0 structures. Table 10 compares the mean errors,
mean absolute errors, and standard deviations for B3LYP and
PBE0 structures on the reduced data set. The results are virtually
identical, withmaximum deviations of 0.03 eV for CIS and 0.01 eV
for density functional methods. This relative insensitivity to the
molecular structure reflects the quadratic dependence of adia-
batic excitation energies on nuclear displacements, because both
the ground and the excited state are in a minimum for adiabatic
excitations. Thus, errors in the underlying equilibrium structures
are less of a concern here than for vertical excitation energies,
which depend linearly on nuclear displacements.

8. CONCLUSION

“There are lies, damned lies, and statistics.” � It is possible
to construct excited state “benchmarks” that (dis)favor a par-
ticular method or conclusion. For example, a data set contain-
ing mostly Rydberg and charge-transfer excitations will make
common density functionals look bad, while single-reference
wave function methods will perform poorly for transition
metal compounds and radicals with multireference ground
states. This is consistent with the work of Jacquemin and co-
workers,17 who observe a significant dependence of their
statistical error measures on the subset of molecules or states
considered. We have biased the present benchmark set toward
systems and states where accurate spectroscopic data are
available. A central new aspect is the focus on adiabatic rather
than vertical excitation energies which are rigorously defined
by differences of observable vibronic energy levels. The main
remaining sources of inaccuracies on the theoretical side are
the quality of the B3LYP/TZVP structures used and the
neglect of relativistic and beyond-Born�Oppenheimer correc-
tions. We estimate148,149 that theses effects are 0.05 eV or less
on average.

None of the methods tested here comes close to the desirable
“chemical accuracy” of ∼0.05 eV in excitation energies. Clearly,
there is ample room for improvement. We hope that the present
work will catalyze the development of excited state methods by
providing a critical, accurate, and easy to use benchmark.
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ABSTRACT: We present a simple, broadly applicable method for determining the numerical properties of quantum chemistry
algorithms. The method deliberately introduces random numerical noise into computations, which is of the same order of
magnitude as the floating point precision. Accordingly, repeated runs of an algorithm give slightly different results, which can be
analyzed statistically to obtain precise estimates of its numerical stability. This noise is produced by automatic code injection into
regular compiler output, so that no substantial programming effort is required, only a recompilation of the affected program sections.
Themethod is applied to investigate: (i) the numerical stability of the three-center Obara�Saika integral evaluation scheme for high
angular momenta, (ii) if coupled cluster perturbative triples can be evaluated with single precision arithmetic, (iii) how to implement
the density fitting approximation inMøller-Plesset perturbation theory (MP2)most accurately, and (iv) which parts of density fitted
MP2 can be safely evaluated with single precision arithmetic. In the integral case, we find a numerical instability in an equation that is
used in almost all integral programs. Due to the results of (ii) and (iv), we conjecture that single precision arithmetic can be applied
whenever a calculation is done in an orthogonal basis set and excessively long linear sums are avoided.

1. INTRODUCTION

Numerical computations are done with number representa-
tions of limited accuracy. In special circumstances, an unfortunate
amplification of rounding errors can occur, such that the final
calculation result (for example, a total molecular energy) is much
less accurate than expected or desired. Algorithms with this
behavior are called numerically unstable. Unfortunately, in general
it is very hard to determine if a concrete implementation of a
quantum chemistry (QC) method suffers from numerical in-
stabilities, and if it does, where the sources lie. In this article we
present a numerical analysis method based on random rounding.
This method is easy to apply and can answer both questions with
minimal programming effort.

Various accuracy pitfalls arise from the properties of the ubiq-
uitous floating point (FP) arithmetic, which violates common
mathematical identities.1 For example, the associativity law of
addition does not hold for FP numbers a, b, c: In general, (a + b) +
c 6¼ a + (b + c), and which summation order is taken can have
stark impact on the calculation result. For example, if we consider
single precision FP numbers with about seven decimal digits of
precision (ε ≈ 6 � 10�8) and set

a ¼ 1:4142136 b ¼ � 1:4142136

c ¼ 1:2345678� 10�5

then we get for a + b + c, depending on the summation order:

ða + bÞ + c ¼ 1:2345678� 10�5 or

a + ðb + cÞ ¼ 1:2397766� 10�5 ð1Þ
In the second variant the last five digits are completely bogus; the
result’s relative accuracy is only 5 � 10�4, despite the fact that a
single precision variable could store results accurate to 6� 10�8.
Under unfortunate conditions, such rounding errors can accumu-
late and amplify in nontransparent ways and induce an inaccurate
final calculation result.

QC programs usually do not state how many digits of a
calculation result can be trusted—because this information is not
readily available and obtaining it used to require lots of work. For
the same reason a detailed numerical analysis of a program is
usually not done unless obvious numerical problems show up,
and even then typically the problems and/or solutions are only
published as side remarks, if at all (e.g., refs 2�9). While one can
expect that time-proven programs are “accurate enough” in
practice, this does not necessarily hold for newly developed
programs. In particular, algorithms which rely on deep recurrence
relations are prone to numerical problems (e.g., molecular integral
evaluation for Gaussian basis sets),10 as are molecular dynamics
algorithms which depend on time-reversibility (e.g., transition
path sampling),11 and algorithms employing any kind of large, semi-
redundant basis set (e.g., density fitting basis sets in Hartree�
Fock12,13 and MP2 theories,14,15 complementary auxiliary basis
sets in F12 theory16�18 or nonredundant orbital rotations,19,20 or
configuration spaces20,21 in multireference theories).

As another aspect, new computational hardware systems, like
general purpose graphics processing units (GPUs), field-pro-
grammable gate arrays (FPGAs), or Cell processors, are seeing a
rapid increase in popularity. For example, several groups have
implemented parts ofQCprograms, likemolecular integrals,22�25

Hartree�Fock or density functional theory,23,24,26�29 or density-
fitted MP2,30�32 on GPUs or similar platforms.33,34 Unlike on
central processing units (CPUs), where until very recently single
precision arithmetic offered only minor processing speed bene-
fits, arithmetic in single precision is much faster than in double
precision on such novel hardware. This is the case because in this
context double precision support is typically reduced to a
(economical) minimum, because low-precision arithmetic can
lead to distinct advantages in the hardware costs associated with
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chip area, clock period, latency, and power consumption. For
example, the hardware resources required for an addition circuit
scale linearly with word length, while for a multiplication circuit
they even scale quadratically.35 In light of these hardware
developments, it is worthwhile to investigate whether (and how)
expensive parts of calculations, for example, the perturbative (T)
triples correction36 in coupled cluster theory, can be evaluated
with sufficient accuracy also with single precision arithmetic.
Some of the aforementioned articles24,26,32 also dealt with these
issues; additionally ref 37 explicitly investigated whether parts of
Cholesky-decomposition MP2 (CD-MP2) can be done in single
precision arithmetic.

For these reasons we believe that better tools for numerical
error analysis are required. In this article we describe one novel,
easily applied approach, which can be executed without extensive
source code modification.

So let us assume that we compute a FP number Edbl with some
program, and we want to find out how many digits of Edbl can be
trusted. Then traditionally one of the following techniques
is used:
Comparison with a High Precision Reference. If the pro-

gram can be changed to employ high-precision or multiprecision
FP arithmetic instead of the standard double precision arithmetic,
then we can in this way calculate a more accurate E = Ehp in high
precision again and see if it agrees with the double precision result
Edbl.
The main problem here is that the source code of the

calculation program usually has to be modified, and this can
imply a huge workload. (It should be noted that some recent
compilers (e.g., Intel Fortran) can redefine intrinsic floating
point data types to quadruple precision, thus potentially greatly
simplifying the calculation of Ehp reference values. However,
since this implies a change of the memory layout of the program,
addressing, I/O operations, data compression, interfaces within
the program to to external programs and libraries, etc. may still
need to be adjusted in nonstraightforward ways.) Additionally,
high-precision arithmetic must be emulated and can become very
slow. Furthermore, since only one Edbl is available, and this result
might by chance be very bad or very good, the precise size of the
expected rounding errors is hard to estimate. Also, in some cases
the convergence of the result with increasing precision can be
misleading; an extreme example was constructed by Rump:38,39

f ¼ ð333:75� a2Þb6 + a2ð11a2b2 � 121b4 � 2Þ + 5:5b8 + a
2b

where a = 77617 and b = 33096. When the computations are
performed in single, double, and quadruple precision, the follow-
ing results are obtained

Single precision : fs ¼ 1:172604

Double precision : fd ¼ 1:17260394005318

Quad precision : fq ¼ 1:1726039400531786318588 3 3 3

Exact result : f ¼ � 0:827396059946821368141 3 3 3

By looking at the first three results, the single precision result
seems to be accurate, yet the correct answer is not even foundwith
quadruple precision (it requires 122 mantissa bits to get the
leading term correct). Thus, in pathological cases the comparison
with a high-precision reference can lead to erratic results, unless

one can guarantee that the high-precision reference is really
precise enough. The method we will present does not have this
defect.
Interval Arithmetic (IA). IA is a well-known method of

numerical stability analysis.40 In IA, a single standard FP number
is replaced by a pair of FP numbers representing its strict upper
and lower bound; the basic arithmetic operations are defined on
those intervals and incorporate rounding errors into the bounds.
IA generates strict bounds on rounding errors, but it is less useful
to obtain information on the practical numerical stability of
algorithms. The strict bounds tend to exaggerate the actual
accuracy loss due to rounding by orders of magnitude, since
error cancellation cannot possibly occur.41 Additionally, IA is
difficult to implement into an existing program, requiring large-
scale changes to the entire source code, and IA is much slower
than straight FP arithmetic.
Since both high-precision reference and IA computations

require large modifications of the affected programs, they are
not commonly applied inQC. The only actually applied “stability
analysis” method we are aware of is to try if the same calculation
gives different results if other compilers or other numerical
libraries (BLAS etc.) are used. Obviously, the reliability of this
approach is limited.
Instead of the sketched methods, we propose to use a

modification of a little-known probabilistic error analysis tech-
nique by Vignes.42,43 The original method has been termed
controle et estimation stochastique des arrondis de calculs
(CESTAC) or in a slight modification discrete stochastic arith-
metic (DSA).44 These methods work by estimating rounding
errors during the run time of a program in a statistical manner
and thus attempt to model correct rounding error propagation.
They have been used successfully for numerical analysis in a few
previous cases.45�47 The original implementations of the DSA
method are based on operator overloading, and thus are re-
stricted to programming languages supporting this feature (e.g.,
not Fortran 77 or C, two popular languages for numerical
software), and furthermore, they incur the same (or even more)
program adjustment overhead as IA or high-precision reference
calculations.
In contrast to CESTAC/DSA, our method is noninvasive

(does not require source-code modification) and focuses on
obtaining rounding error estimates of final calculation results, not
of every single intermediate number. With our approach, accu-
rate numerical stability estimates can be obtained quickly and
with little programming effort. Additionally, our method works
for most popular programming languages, as long as they are
compiled.

2. METHOD

The goal of a numerical stability analysis is: (i) to assess how
the tiny intermediate rounding errors of FP arithmetic combine
into the uncertainty of the final calculation result and (ii) to
quantify how uncertainties are introduced or amplified by the
various subtasks of a calculation. Both questions can be answered
experimentally by introducing random numerical noise into the
performed FP arithmetic. Concretely, if we want to judge the
numerical impact of a subtask S (say, the calculation of molecular
integrals) on the final result E (say, a total molecular energy), we
proceed as follows:
• For each FP operation in S, we add numerical noise on the

same order of magnitude as the precision of the individual
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FP numbers occurring. For a double precision number f * 2m,
where f is themantissa andm is the exponent, thismagnitude
is (2�53 (≈10�15.95, in the 16th decimal digit).

• Because the noise is so small, under optimal conditions it
does not affect the final calculation E noticeably. If, how-
ever, some amplification of the rounding errors takes place,
then our introduced numerical noise is amplified in exactly
the same way as the inherent finite precision rounding error
(whose impact is what we actually want to quantify).

• If we now run the entire calculation of Emultiple times, we
will observe some numerical scattering in its result, which is
caused by the noise introduced by S. By statistically analyz-
ing the individual results Ei (i = 1, ..., n) obtained in n runs of
the program, we can estimate how many digits of accuracy
in E are lost due to S. A first indication is given by the order
of magnitude of the root-mean-square deviation (rmsd):

rmsdðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑i

ðEi � ÆEiæÞ2
s

ð2Þ

which approximates the standard deviation of the scattering
of the calculation results. Due to the central limit
theorem,49 in most cases one can expect the scattering in
E to follow a normal distribution. In this case a statistically
sound reliability analysis can be obtained even for small n
(say, 3, ..., 5) by weighting with Student’s t-distribution.49 If
the scattering exactly follows a normal distribution around
the exact result, then 2 3 rmsd(E) is a good estimate of the
95% confidence interval of the numerical error. But since
the actual distributions often have wider tails, errors of 3 3
rmsd(E) or even 4 3 rmsd(E) can occasionally be seen.

• The original methods42�44,50 now go at great length to
estimate the number of trustworthy digits from this devia-
tion.We omit this part because: (i) it provides no additional
information to the rmsd and (ii) there are cases when the
obtained results are wrong (see below).

Until here we closely followed the CESTAC/DSA pre-
scriptions in refs 42�44. But the indiscriminate nature of the
method—every FP operation acquires noise—makes it possible
to implement it not bymodifying the source code of a programbut
rather the compilation process transcribing it. This is very
important when the program in question consists of severalmillion
lines of code, like Molpro,51 which we will use as our test subject.
As most compilers can produce an intermediate representation of
a compiled program in terms of assembler code, and as the logical
context of the FP operations is not required, this modification can
even be accomplished without changing the compiler program
itself. Rather than that, the intermediate assembly representation
of the program being compiled is altered to include the noise
production. (The assembly representation of a program contains a
list of mnemonics of machine instructions with operands. It
corresponds closely to the final binary program code. All instruc-
tions and accesses to registers and memory are explicit there.)

We implemented the concept for the Fortran 95/x86�64 and
C++/x86�64 combination of platforms. Concretely, we devel-
oped a Python script which pretends to be either the g95 Fortran
compiler or the GNU C/C++ compiler, respectively. The script
accepts the same command line arguments as the compiler and
can thus be seamlessly substituted for it when compiling the
program to be analyzed. The script first calls the real g95 or g++

compiler in order to compile input source code to assembler files.
It then scans generated assembly code, and whenever it en-
counters a FP instruction from a predefined list, it injects code for
changing the x87 roundingmode in a pseudorandommanner (see
below). It then runs the real compiler again to assemble and/or
link the resulting modified assembly files (see Figure 1). The
script and support files will be made freely available on theWeb at
http://www.theochem.uni-stuttgart.de/random_rounding/.

The rounding mode of the FPU determines if intermediate FP
computations round nonprecise digits toward the next represen-
table number (“nearest”), toward +∞ (“up”), or toward �∞
(“down”), with “nearest” being the default choice for obvious
reasons. But by changing this rounding mode randomly to up/
down before the operations, computations are influenced only
on the order of magnitude of the machine epsilon, which is
exactly what we want for introducing noise. (On hardware
platforms not supporting x87-style rounding modes, this behavior
can be emulated by multiplying FP operands with 1 ( ε where
ε ≈ 2�53 before executing the original FP operations, as Vignes
originally suggested.43)

The technical details of how the random rounding mode is
implemented are described in the Appendix. Here we just note
that the implementation allows for switching between the round-
ing modes “nearest, 64bit”, “random up/down, 64bit”, “nearest,
32bit”, and “random up/down, 32bit” during the runtime of the
program by simple function calls. To apply the propsed analysis
method it is thus sufficient to recompile the parts of the program
which are to be analyzed (or the whole program, if this is desired)
with the noise-injecting meta-compiler and to call the functions
for switching between the rounding modes at the appropriate
places. Then the program is executed multiple times, and the
random scattering of the numerical results is used to assess its
numerical stability. The modified program is significantly slower
than the original program, typically by a factor of 5�50. But as we
will demonstrate later on, meaningful calculations can still be
performed easily, since the bad scaling of QC algorithms allows
one to offset this cost by choosing a somewhat smaller molecule
for numerical testing. Note also that the slowdown is specific to
the x87 pipeline hardware architecture and can be greatly
reduced on other architectures.52

Figure 1. Modified compilation process for random rounding analysis.
The script causes the compiler to generate assembly code, modifies the
assembly to include the random rounding code,and then again uses the
real compiler for assembly and linking.
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2.1. Pitfalls of Random Rounding Analysis. In calculations
with FP numbers, by far the most important and most intran-
sparent source of numerical problems is the elimination of sig-
nificant digits due to subtraction, because this process leads to an
amplification of relative accuracy loss (sketched around eq 1. In
general we always eliminate relative accuracy when subtracting
FP numbers of similar magnitude: If a ≈ �b, then a + b is
inaccurate unless both a and b are exact.). This is called
amplification error in this section. This process is very accurately
modeled by the random rounding approach described above and
is hard to describe in other ways. However, random rounding
may lead to problems in two situations sketched in this section.
2.1.1. Iterative Processes. Although we have not personally

seen this, it is possible that the analysis of iterative processes is
jeopardized by their self-adjusting nature. However, provided
that the same sequence of floating point operations is executed in
each iteration, an numerical analysis can still be carried out easily.
For this it is sufficient to reseed the pseudorandom number
generator used for the rounding mode generation to the same
seed value at the beginning of each iteration. In this way the same
rounding sequences are used in each iteration during a single run
of the program, and the results obtained in one run of the
program are equivalent to a sequence one could get if the entire
program was run on another machine (which would lead to
different rounding errors, but in always the same way in each
iteration). Additionally it might be advantageous to fix the
number of iterations to some specified value because, otherwise,
the number of iterations could differ between different runs in a
sample if convergence thresholds are only closely met or missed.
2.1.2. Summing Up Large Amounts of Very Small Numbers.

Apart from the elimination of significant digits due to subtrac-
tion, there is also another, qualitatively different kind numerical
accuracy loss: the simple, nonamplified accumulation of less-
than-machine precision (ε) sized individual errors which just
happen to be done often enough to still cause significant devia-
tions in final results. This case can occur in some quantum
chemistry algorithms due to the immense amount of data
handled, and it requires special consideration (think of the
assembly of correlation energies from integrals and wave func-
tion amplitudes via four- or six-dimensional sums).
For an extreme example, let us assume that we work with single

precision FP numbers (which have approximately 7.2 decimal
digits of precision) and that we want to calculate the sum:

The exact value of the sum is sexact = 2.0. But with default single
precision FP arithmetic (i.e., using round to nearest) we would
get sFP = 1.0, because in each single operation s := s + 1e�8 the
change in s is smaller than 0.5 units in the last place (ulp), and it
remains at s = 1.0. Note that there is no amplification of rounding
errors at all—every single operation has an accurate result. And
yet the entire process combined results in a relative error of
100%. If we would execute this operation with random rounding
instead of standard FP arithmetic, then we would get a different
result. For each operation s := s + a, the random rounding process
introduces a numerical scattering on the order of (0.5 ulp on s,
the direction of which depends only on the sign of (s + a) � s
(here: always positive, since a = 1e�8). As described, typically
this is exactly what one wants to have, but in the current case, this
does not lead to a noticeable scattering in the sum s but rather to a

systematic bias in its probabilistic mean value. The random
rounding result obtained is s ≈ 62.736 with standard deviation
δs ≈ 0.016, instead of s = 2.0 with δs ≈ 1 as one might expect.
And in fact, one would get the same result of s ≈ 62.7 when 108

times summing up 1e�9, 1e�15, or 1e�30 to 1.0. In the latter
cases the default round-to-nearest results of sFP = 1.0 would be
almost exact by accident.
We have seen that the mass truncation error is not properly

reflected in the scattering produced by random rounding. How-
ever, the method is still useful for this case because a systematic
bias is easilymeasured (by comparing the random-roundingmean
value to the default round-to-nearest result), and its presence
indicates that the investigated algorithm may suffer from mass
truncation errors. While the possible truncation error can be
greatly exaggerated by the difference betweenmean and round-to-
nearest results (unlike the amplification error, the straight truncation
error is reflectedmore in a worst-case than average way), the absence
of such a bias is a very strong indication of the absence of truncation
errors. Thus, if an algorithm shows neither sizable bias in the mean
values nor sizable scattering, it is most likely numerically stable.
Note that a mass truncation error of this kind is: (i) rare and

easily identified in the source code, due to the immense amount of
data required to produce nonentirely negligible effects and (ii)
easily fixed by employing a compensated summation algorithm53,54

(five lines of code!) or by performing the sum in higher precision.
Note also that an artificial version of the bias problem will arise

when treating molecules with higher point group symmetry but
using only the D2h subgroups of this symmetry explicitly. In this
case there are many almost zero values in the calculation (which
would be exactly zero if wave functions were exactly converged).
These values have no influence on default round-to-nearest results
but may create systematic shifts in random rounding results. We
recommend to avoid this problem by choosing suitable test
molecules for analyzing algorithms.

3. APPLICATIONS

In order to demonstrate the practical feasibility of the method,
we apply it to some numerical questions which arose during our
own development activities on the Molpro program package.51

Concretely, these are: (i) Which parts of correlation calculations
can safely be done in single precision floating point arithmetic,
now that hardware is gaining momentum which actually profits
from that?, (ii) How numerically accurate are molecular integrals
for high angular momenta?, and (iii) How do various ways of
implementing the density fitting equations perform in relation to
one another in terms of accuracy? These questions are answered
in the following sections.
3.1. Perturbative (T) Correctionof CCSD(T).We investigated

whether the perturbative (T) correction36 of the coupled cluster
singles and doubles (CCSD)method can be evaluated accurately
with single precision FP arithmetic. This correction is a prime
candidate for acceleration on new high-performance platforms,
because it is very expensive and its working equations are simple
and well-conditioned if evaluated in an orthogonal basis. Con-
cretely, for a converged Hartree�Fock reference function the
closed-shell working equations are55,56

EðTÞ ¼ 1
3∑
occ

ijk
∑
vir

abc
ð4Wijk

abc +W
ijk
bca +W

ijk
cabÞ

� ðVijk
abc � Vijk

cbaÞ=Dijk
abc ð4Þ
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Wijk
abc ¼ Pijkabc½ðbdjaiÞTkj

cd � ðckjjlÞTil
ab� ð5Þ

Vijk
abc ¼ Wijk

abc + ðbjjckÞtia + ðaijckÞtjb + ðaijbjÞtkc ð6Þ

Dijk
abc ¼ εi + εj + εk � εa � εb � εc ð7Þ

where i,j,k,l and a,b,c,d run over canonical occupied and virtual
orbitals, respectively, ta

i and Tab
ij are the converged CCSD cluster

amplitudes, εr are the canonical orbital energies, and

Pijkabc½Xijk
abc� ¼ Xijk

abc + X
ikj
acb + X

kij
cab + X

kji
cba + X

jki
bca + X

jik
bac ð8Þ

is a permutation operator.
In order to quantify the rounding errors introduced by single

precision arithmetic in the (T) correction, we calculatedHartree�
Fock reference functions, CCSD wave functions, and transformed
four-index integrals in standard double precision and then made
multiple calculations of the (T) correction with single precision
random rounding. The numerical stability was estimated from the
numerical scattering produced in eight runs of the (T) correction
as explained before. For the test cases, we chose SO2/AV5Z,

57,58 a
small molecule with a large basis set, and a naphthalene/VDZ,59

a larger molecule with a small basis set. The SO2 molecular
geometry was optimized on MP2/AVTZ, and naphthalene was
optimized on DF-KS(PBE)60/def2-TZVPP.61,62

In these calculations it turned out to be essential that the final
correlation energy (eq 4) is summed up in double precision when
using large basis sets, because otherwise the previously discussed
mass truncation error occurs and therefore the results become
rather inaccurate (or, alternatively, a single precision compen-
sated summation algorithm should be used53,54). This summation
is a O(o3v3) process, with o/v the number of occupied/virtual
orbitals, respectively, and thus its computational expense is
insignificant compared to the O(o3v4) and O(o4v3) steps (eq 5)
in the (T) correction. Similarly, for the case of CD-MP2

correlation energies, Vysotskiy et al. found that the final summa-
tion should be done in double precision.37

The results obtained are given in Table 1. The numbers were
obtained in the default (T) triples implementation63 of Molpro,
which does not take any special measures to preserve numerical
accuracy; apart from switching back to double precision for the
energy summation, no further adjustments were done. Never-
theless, even so the obtained (T) triples energies from single
precision calculations were far more accurate than the about
≈0.1 kJ/mol (40 μEh) which would be sufficient for single point
calculations. In fact, we have seen not an amplification of
rounding errors but rather a cancellation: The final results
obtained are more accurate than the machine epsilon for single
precision arithmetic (≈6e�8), since all the individual energy
contributions in the O(o3v3) sum are tiny and well-behaved.
These are the entries the single precision arithmetic applies to
because, as described, the final summation is done in double
precision. This high accuracy is certainly unexpected. We cross-
checked the result by performing additional calculations of (T)
contributions in which all standard matrix multiplications have
been replaced by a routine which explicitly converts its input to
single precision FP numbers, calls sgemm (single precision BLAS
matrix multiplication), and then converts the results back to
double precision. These tests showed that the random rounding
results are correct: deviations between final (T) energies with
single and double precision matrix multiplications were in the
10th or 11th digit (e.g., for SO2/AVQZ we obtained�0.039 463
660 530 au and �0.039 463 660 633 au for single and double
precision matrix multiplications, respectively).
The results obtained here clearly show that theO(N7) steps of

(T) calculations should be done with single precision arithmetic
if that leads to large computational savings and that it is unlikely
that this can cause problems in any situation, except maybe for
the calculation of higher numerical derivatives.
3.2. Three-Index Molecular Integrals with High Angular

Momenta.One of the most fundamental processes in QC is the
calculation of integrals over Gaussian-type orbital (GTO) basis
functions. The calculation of such integrals is based on deep
recurrence relations, in which intermediate results for derivatives
of integrals over lower angular momenta (AM) are linearly
recombined into integrals over higher AM.64 Integral evaluation
for high AM (gg) is thus prone to numerical problems, unless
designed carefully.
Here we analyze the numerical properties of a very efficient

method for evaluating three-center two-electron integrals (ab|c),
namely the Obara�Saika scheme65�67 in Ahlrichs’ three-center
solid harmonic modification,68 as implemented in Molpro’s AIC
integral core.69 Such integrals occur in both conventional and
explicitly correlated QC methods involving the density fitting
approximation (see below). For high-accuracy benchmark calcu-
lations it would be desirable to be able to calculate integrals with
angular momenta of up to (ki|l) (i.e., l = 7, 6, and 8), as they
would occur in explicitly correlated QC methods applied with
sextuple-ζ orbital basis sets. An interest in such highly accurate
calculations was indicated in some previous articles.70�74

While it is straightforward to write code for calculating these
integrals, the numerical properties of the resulting quantities are
completely unknown, and furthermore, in this regard there exists
no prior experience to draw upon.We thus applied our numerical
analysis method to this integration algorithm in order to check its
numerical properties. The concrete equations are noted in the
Appendix, where the process is also described in more detail.

Table 1. Numerical Stability of the Single Precision (T)
Triples Correctiona

SO2/AV5Z naphthalene/VDZ

Double Precision, Round to Nearest

RHF �547.319 262 404 907 �383.382 869 789 653

CCSD �0.720 154 348 436 �1.347 263 987 000

(T) �0.040 519 128 711 �0.063 745 284 695

Single Precision, Random Rounding

(T), #1 �0.040 519 128 614 �0.063 745 284 643

(T), #2 �0.040 519 128 781 �0.063 745 284 703

(T), #3 �0.040 519 128 515 �0.063 745 284 682

(T), #4 �0.040 519 128 717 �0.063 745 284 712

(T), #5 �0.040 519 128 709 �0.063 745 284 708

(T), #6 �0.040 519 128 883 �0.063 745 284 648

(T), #7 �0.040 519 128 690 �0.063 745 284 757

(T), #8 �0.040 519 128 673 �0.063 745 284 659

mean �0.040 519 128 698 �0.063 745 284 689

rmsd 0.000 000 000 102 0.000 000 000 036
aThe first three lines give energies (in au) of standard double precision
runs, and the next eight lines give individual values obtained with single
precision and random rounding.
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We tested the integration accuracy by calculating batches of
primitive (ab|c) integrals, for a fixed geometry and varying
exponents R, β, γ and angular momenta la, lb, lc (where la g lb,
see Appendix). (An integral batch is the collection of integrals for
all combinations of solid harmonic components of a, b and c. E.g.,
in a (pd|f) batch there are 3 3 5 3 7 = 105 entries.) The functions a
and bwere centered on the oxygen atoms of a SO2 molecule, and
the function c was centered on the sulfur atom:

This combination of distributing a, b, and c turned out to be
the most challenging one because there is significant overlap
between the (ab| and the |c) charge distributions, and yet there is
nontrivial angular momentum transfer. The SO2 geometry was
chosen because we previously experienced numerical problems
with SO compounds during early stages of the development of
F12 methods; SO2, particularly, has short bond lengths and high
exponents in the basis functions. For each test we calculated an
integral batch 16 times with random rounding turned on and
stored the calculated final integrals. From the 16 runs we then
calculated root-mean-square (rms) deviations from the mean for
each individual component of the integral batch. As a summary
we report the value v = rms values of the integrals (to give an in-
dication of average order ofmagnitude of the integrals in the batch)
and the value r = rms of the rms deviations for the components,
divided by v (r is thus some measure of the relative instability of
the calculated values). The best possibly achievable rates are
around 1e�16, which is the machine precision. Any value of r
below 1e�10 is to be considered good enough for practical use.
Our analysis shows two main results: First, integrals of type

(as|c) (i.e., where b is a s function) and general integrals (ab|c)
where R g β can be computed accurately to high angular
momenta, even if relatively low exponents are used on either
center. For example, Table 2 gives the integral instabilities forγ=0.1
and varying R = β. We can see that, although there does seem to
be an exponential increase of the relative instability with angular
momentum, the actual values of r are still small (<1e�10) even
for very high angular momenta (la = lb = lc = 8), for tiny absolute
integral values (v ≈ 1e�45 with R = β = 10) and even for very

diffuse exponents like R = β = 0.001 (which are, in fact, so small
that they are already far from reasonable).
The secondmain result, however, is disturbing. If the exponent

β is much larger than the exponent R, then the integration
becomes numerically unstable even formoderate angularmomenta
(for this it has to be noted that in the integration procedure, as is
usually done, angular momentum is first accumulated on center
A (where la g lb) and then transferred to B in the final step, see
Appendix). Table 3 shows the average values and instabilities of
(gg|s) integrals with varying values of R and β and fixed γ. Note
that integrals are supposed to be symmetric regarding the
exchange of a and b. We can see that there is a major difference
in the stabilities, depending on whether β/R is large or small, and
that unacceptably large relative instabilities of almost 1e�3 are
already reached in semirealistic cases [β = 100, R = 0.1, (gg|s)
integrals]. While this problem is unlikely to show up in standard
calculations of valence correlation energies with conventional
QCmethods (due to the nonpresence of high-AM functions with
steep exponents), there are other cases in which it does occur.
For example, in F12 treatments, high-exponent high-AM func-
tions are required for the resolution of the identity (RI)
approximation, and these are affected by this issue; basis sets
for all-electron calculations of higher elements include affected
functions (e.g., ANO-RCC for the Rn atom75 includes f

Table 2. Order ofMagnitude (v) and Instability (r) of Integrals (ab|c) withR=β andγ=0.1 on the SO2Geometry (a,b onO, c onS)a

R = β = ... (ss|s) (pp|p) (dd|d) (ff|f) (gg|g) (hh|h) (ii|i) (kk|k) (ll|l)

v, R = β = 10.0 1.17e�48 1.39e�47 1.40e�46 1.02e�45 5.57e�45 2.37e�44 8.16e�44 2.34e�43 5.71e�43

r, R = β = 10.0 1.39e�13 1.42e�13 1.20e�13 1.61e�13 1.65e�13 3.39e�13 4.17e�13 2.14e�12 7.01e�12

v, R = β = 1.0 9.65e�05 1.07e�04 1.03e�04 8.10e�05 5.51e�05 3.39e�05 1.97e�05 1.11e�05 6.19e�06

r, R = β = 1.0 4.98e�15 3.70e�15 4.45e�15 2.71e�14 9.21e�14 6.69e�13 1.93e�12 1.12e�11 5.93e�11

v, R = β = 0.1 2.03e+00 2.66e�01 8.38e�02 3.49e�02 1.98e�02 1.14e�02 7.81e�03 5.18e�03 3.99e�03

r, R = β = 0.1 4.38e�15 3.28e�15 5.38e�15 3.47e�14 7.39e�14 3.37e�13 8.73e�13 2.15e�12 7.88e�12

v, R = β = 0.01 2.88e+00 9.56e�02 2.46e�02 4.99e�03 1.47e�03 4.71e�04 1.47e�04 5.51e�05 1.82e�05

r, R = β = 0.01 1.85e�15 1.90e�15 4.79e�15 1.08e�14 1.60e�14 4.71e�14 1.41e�13 1.25e�12 2.73e�12

v, R = β = 0.001 1.10e+00 4.52e�03 1.07e�03 2.46e�05 6.60e�06 2.46e�07 6.23e�08 3.05e�09 7.07e�10

r, R = β = 0.001 2.13e�15 1.65e�15 4.42e�15 1.21e�14 1.83e�14 6.43e�14 2.63e�13 4.81e�12 9.35e�12
aWhere v is the rms batch average of the integral values (see text) and r the relative numerical instability (theoretical optimum: 1e�16).

Table 3. Order of Magnitude (v) and Relative Instability (r)
of Integrals (gg|s) with γ = 0.5 and Varying R,β on the SO2

Geometrya

(gg|s),γ = 0.5 β = 100.0 β = 10.0 β = 1.0 β = 0.1

v, R = 100.0 0.00e+00 6.95e�83 2.54e�10 1.37e�07

r, R = 100.0 2.82e�13 4.23e�14 2.40e�11

v, R = 10.0 6.95e�83 1.58e�42 4.25e�07 6.95e�05

r, R = 10.0 4.25e�11 1.78e�13 2.61e�14 1.98e�13

v, R = 1.0 2.54e�10 4.25e�07 8.72e�03 1.58e�02

r, R = 1.0 4.93e�07 1.17e�10 9.86e�14 5.33e�14

v, R = 0.1 1.37e�07 6.95e�05 1.58e�02 1.42e�01

r, R = 0.1 7.81e�04 1.24e�07 2.25e�11 5.28e�14
aNote that the table would be symmetric under optimal conditions.
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primitives with exponent 689.88), and calculations involving
bond centered functions (often used for calculations of potential
energy surfaces76) are affected because distance between basis
function centers is decreased, and thus, the unstable integrals
have a higher relative impact on the energy. The problems
get much worse with increasing ratio β/R and with increasing
angular momentum la and lb (the lc dependence, however, is weak).
In fact, for angular momenta k and lwe have seen cases where the
results were completely bogus, and the integral values suggested
the presence of non-negligible integrals of size 1e�7, where the
actual (negligible) integral values were in the range of 1e�60.
The reason for this asymmetric numerical instability turns out

to lie in the contracted transfer equation eq 21, which is applied
as final step in almost every efficient integral core in use (in both
Rys quadrature2,77�80 based and Obara�Saika65�67 based
cores). An analysis of the issue and its possible remedies are
given in the Appendix. Our current understanding is that this
problem cannot easily be solved without both additional com-
putational cost and significant changes to the existing integral
programs. An extensive literature search showed that this issue
was discovered before,81 but it does not appear to be well-known.
3.3. Density Fitting Equations in DF-MP2. Density fitting

(DF)82�85 is an approximation technique widely used to accelerate
the evaluation of transformed four-index molecular integrals in a
large variety of contexts.86�96 For example, in DF-MP2,87 the
two-electron exchange integrals (ia|jb) are approximated as

ðiajjbÞ � ∑
A
DA
iaðAjjbÞ ð9Þ

where i,j denote occupied orbitals, a,b denote virtual orbitals, and
A,B are basis functions from an auxiliary fitting basis set. The
fitting coefficientDia

A approximates the |ia) orbital product density
such that |ia) ≈ ∑ADia

A|A), and it is formally determined by92,97

DA
ia ¼ ∑

B
½ J�1�ABðBjiaÞ ð10Þ

JAB ¼ ðAjBÞ ð11Þ
There are multiple ways to evaluate eqs 9 and 10 (in parentheses
are the central LAPACK operations involved):
(i) An inverse matrix J�1 is explicitly constructed from J’s LU

decomposition (dgetrf and dgetri), and eqs 9 and
10 are evaluated as written.

(ii) Equation 10 is evaluated as a system of linear equations
using J’s LU decomposition and pivoted Gaussian elim-
ination (dgetrf and dgetrs).

(iii) A matrix J�1/2 is evaluated from J’s spectral decomposi-
tion (dsyev), and eqs 9 and 10 are evaluated in the
symmetric form:

ðiajjbÞ � ∑
C

~DC
ia
~DC
jb ð12Þ

~DC
ia ¼ ∑

A
ðiajAÞ½ J�1=2�AC ð13Þ

(iv) A matrix J�1/2 is evaluated as in (iii), and eq 10 is
calculated as

DA
ia ¼ ∑

B
½ J�1=2�AB ∑

C
½ J�1=2�BCðCjiaÞ

 !
ð14Þ

(i.e., there are two transformations with J�1/2 instead of
one with J�1 as done in (i); apart from that, (i) and (iv)
are identical).

The strategies (i�iii) have been used in various programs
(e.g., (i) in refs 98 and 99 (ii) in refs 3 and 100�104 (iii) in refs
86 and 105), with (ii) and (iii) being the most common choices
and (iv) is investigated out of curiosity. In any case, the closed-
shell DF-MP2 correlation energy is given by

EMP2 ¼ ∑
ijab

½2ðiajjbÞ � ðibjjaÞ�ðiajjbÞ
εa + εb � εi � εj

ð15Þ

where the εr are the canonical orbital eigenvalues obtained in the
Hartree�Fock calculation.
That (i) works poorly has been found previously, but to our

knowledge, a detailed numerical stability study comparing the
various methods of calculating (ia|jb) has never been performed.
With our statistical analysis method, we can easily determine the
impact of the various choices on the final calculation result EMP2.
To that end, we performed random rounding DF-MP2

calculations on an artificial cage-like molecule (Figure 2) using
the aug-cc-pVQZ orbital basis set57 (1264 basis functions) and
the associated AVQZ/MP2FIT basis set of Weigend et al.106

(2506 basis functions). As reference we used a tightly converged
DF-RHF wave function, obtained with VQZ/JKFIT98 as fitting
set. This combination of molecule and orbital basis set was
chosen because it presents a formidable challenge due to the high
redundancy of the basis sets in the closely packed environment
(e.g., the ratio between the highest and the lowest eigenvalue of
the JABmatrix is 1.2e+11). For each of the four described ways of
evaluating the DF equation systems, we performed eight calcula-
tions employing double precision random rounding throughout
the entire DF-MP2 procedure and measured the final correlation
energies obtained in the runs.
The results are shown in Table 4. Here we can see that, not

surprisingly, the pivoted Gaussian elimination (ii) is the most
accurate way of solving the DF equations, while method (i), based
on the explicit calculation of J�1, is the least accurate one. The
numerical scattering obtained for method (i) is already large enough
to cause significant problems when calculating numerical derivatives
(for example, in calculations of vibrational frequencies or molecular
properties).Method (i) is thus best avoided.The twomethods based
on the J�1/2 decomposition, (iii) and (iv), are similarly stable, and
although their accuracy is worse than that of the pivoted elimination,
it is notmuchworse, and the errors introduced through them are still
acceptable. This is perhaps most surprising for the asymmetric
formula (iv) which, after all, is just a re-expression of method (i)
with two J�1/2 multiplications instead of one with J�1. While this
method is obviously not something one should use for newprograms

Figure 2. Cage-like molecule used for numerical testing of the DF-MP2
methods. The structure was chosen to be tightly packed yet realistic, in
order to create a large redundancy when using diffuse basis sets.
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[it is both slower and less accurate than (ii)], it might be used as a
quick fix to older programs employing the J�1 construction or,
generally, any other case outside the context of density fitting where
projection operators or inverse matrices are employed.
A comparison of the random rounding mean values with the

results of an unmodified code (see caption of Table 4) shows a
small bias of ≈1e�8 H in all cases. As explained previously, this
can indicate the presence of a mass truncation error, most likely
in the energy summation. As this effect is reflected in a worst case
way and still produces negligible errors, we can assume that
DF-MP2 is generally numerically very stable as long as the
explicit inversion of JAB is avoided.
3.4. SpeedingUpDF-MP2withMixed PrecisionArithmetic.

Vysostoskiy and Cederbaum37 recently performed a numerical
analysis of Choleski-decomposition MP2, where they found that
CD-MP2 energies can still be evaluated accurately if the CD-
analog of the DF assembly step eq 9 is performed in single pre-
cision arithmetic. We here perform a similar analysis for DF-MP2
but extend the coverage also to other steps of the total calculation.

The total DF-MP2 method consists of three steps with
different formal scaling properties:
(i) The evaluation of two- and three-index molecular integrals

[an O(N3) process, where N is some measure of the
molecular size].

(ii) The calculation of the fitting coefficientsDia
A according to

eq 10 [O(N4)].
(iii) The assembly of the final exchange integrals according

to eq 9 [O(N5)].
While for small molecules integral evaluation (i) dominates

the computational cost, for large molecules, eventually the
assembly step (iii) becomes dominant (usually if more than
≈1000�2000 basis functions are involved).
We thus investigated if mixed precision schemes can be em-

ployed to evaluate the DF-MP2 energy accurately. Concretely,
we tested the resulting numerical accuracy of the following
combinations:
(i) The total DF-MP2 method except for the energy summa-

tion (eq 15) and the calculation of J�1/2 is evaluated in

Table 4. Numerical Stability of the Different Variants of Solving the Density Fitting Equations in DF-MP2a

DF-MP2 (i) expl. J�1 (ii) LU/pivoted elim. (iii) sym. J�1/2 (iv) asym. J�1/2
3 J

�1/2

#1 �2.004 579 669 344 919 �2.004 579 715 663 295 �2.004 579 715 665 265 �2.004 579 715 673 580

#2 �2.004 579 690 862 029 �2.004 579 715 663 242 �2.004 579 715 669 322 �2.004 579 715 679 456

#3 �2.004 579 777 141 105 �2.004 579 715 662 883 �2.004 579 715 699 197 �2.004 579 715 675 233

#4 �2.004 579 738 407 475 �2.004 579 715 662 652 �2.004 579 715 675 525 �2.004 579 715 669 635

#5 �2.004 579 722 504 768 �2.004 579 715 662 659 �2.004 579 715 661 420 �2.004 579 715 678 294

#6 �2.004 579 728 945 659 �2.004 579 715 663 033 �2.004 579 715 667 403 �2.004 579 715 670 761

#7 �2.004 579 756 469 682 �2.004 579 715 662 888 �2.004 579 715 660 053 �2.004 579 715 684 286

#8 �2.004 579 658 373 851 �2.004 579 715 661 850 �2.004 579 715 669 734 �2.004 579 715 663 029

mean �2.004 579 717 756 186 �2.004 579 715 662 813 �2.004 579 715 670 990 �2.004 579 715 674 284

rmsd 0.000 000 039 039 628 0.000 000 000 000 426 0.000 000 000 011 605 0.000 000 000 006 174
aThe rows contain individual energy values (in au) obtained with random rounding for the cage molecule in Figure 2 with the aug-cc-pVQZ basis set.
The standard values obtained with an unmodified code are E(DF � HF) = �867.520895102141 au and E(DF �MP2) = �2.004579708652200 au.

Table 5. Results Obtained for the DF-MP2 Correlation Energy of the Ethanol Molecule Using Regular (left) and Augmented
(right) Basis Sets of Double- ζ to Quadruple-ζ Cardinalitiesa

cc-pVnZ aug-cc-pVnZ

SP steps card. mean rmsd mean rmsd

int, DF, asm DZ �0.480 233 851 0.000 000 658 �0.507 113 084 0.000 001 830

DF, asm DZ �0.480 233 484 0.000 000 592 �0.507 109 818 0.000 001 928

asm DZ �0.480 233 835 0.000 000 005 �0.507 105 174 0.000 000 003

(none) DZ �0.480 233 824 �0.507 105 163

int, DF, asm TZ �0.601 515 520 0.000 001 835 �0.647 189 353 0.009 018 198

DF, asm TZ �0.601 516 124 0.000 001 726 �0.636 752 456 0.009 256 710

asm TZ �0.601 514 922 0.000 000 002 �0.612 762 154 0.000 000 001

(none) TZ �0.601 514 915 �0.612 762 147

int, DF, asm QZ �0.643 779 496 0.000 040 769 �84.512 702 083 14.999 787 051

DF, asm QZ �0.643 715 620 0.000 022 033 �60.558 243 374 5.506 838 535

asm QZ �0.643 521 307 0.000 000 001 �0.648 550 399 0.000 000 001

(none) QZ �0.643 521 307 �0.648 550 395
a Int (three-index integrals), DF (density fitting), and Asm (assembly) refer to the steps in the DF-MP2 calculation to which single precision random
rounding was applied (the other steps used double precision round-to-nearest).
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single precision. That means that three-center integrals,
fitting coefficients, and the final exchange integrals are all
evaluated in single precision arithmetic.

(ii) Unlike in (i), the integrals are evaluated in standard
double precision arithmetic.

(iii) Unlike in (i) and (ii), also the ~Dia
A
fitting coefficients

(eq 13) are evaluated in double precision arithmetic.
Only the final assembly of exchange integrals is done in
single precision random rounding.

In any case, the final summation of the energies (eq 15) is
performed in double precision arithmetic, as suggested in ref 37.
Additionally, the matrix [J]AB and its inverse square root are
calculated in double precision. The symmetric density fitting
formula eq 12 is used. As a test subject we use the ethanol
molecule. Again we perform eight calculations with random
rounding for each of the three computational schemes (i�iii),
and as basis sets, we employ VDZ�VQZ59 and AVDZ�AVQZ57

with the same fitting sets as before.
The results are noted in Table 5. We can see that for small,

nonaugmented basis sets it appear as if reasonable accuracy can
be obtained also when using single precision arithmetic globally.
However, it is obvious that the accuracy decreases quickly with
increasing size of the basis sets unless both the integrals and the
density fitting equations are evaluated in double precision (this
effect is even more pronounced for larger systems). When
augmented basis sets are employed, the errors due to single
precision arithmetic in integrals or density fitting equations are
amplified enormously. Already at AVTZ level the results are
completely bogus, and at AVQZ level the numerical errors
exceed the actual calculation result by orders of magnitude.
If, however, only the assembly step is performed in single

precision, then in all cases the results are very accurate. The main
difference between the assembly step and the DF equations step
is that the assembly step is done in an orthogonal basis set. This is
the same effect we have already seen previously for the (T)
correction. In fact, this leads us to the conjecture that likely in all
parts of calculations which are done in an orthogonal basis,
performing the actual core operations in single precision is
numerically fine and produces acceptable numerical errors, as long
as excessively long linear sums (and thus the mass truncation
error) can be avoided. The reason for this is that in an orthogonal
basis, the numerical size of the quantities in question carries
information about their importance, while in an nonorthogonal
basis, the relative importance may still be magnified or dimin-
ished by the same order of magnitude as the condition number of
the space’s overlap matrix.

4. CONCLUSIONS

Previously the means of numerical accuracy analysis for
quantum chemistry programs were rather limited, and for this
reason, such an analysis was rarely done in practice. However, as
our discovery of the instability in the widely used angular
momentum transfer equation showed, even established techni-
ques can have serious defects in unusual circumstances. For this
reason, better tools, especially simpler tools, and a more frequent
application of them were in dire need.

Our applications clearly demonstrate that the proposed
method is a practicable way of analyzing complex numerical
software packages. Additionally, unlike the previous techniques,
it is simple enough to be routinely applicable to newly developed
software. We thus believe that our approach is a valuable tool in

the development of newQC algorithms and for the identification
of persistent problems in algorithms already existing.

’APPENDIX

A. Technical Details.On the technical side, the injected code
changes the rounding mode by cycling through a table of 216 x87
floating point control words (FPCW), one of which is loaded to
the FPU before each arithmetic FP operation. A FPCW107 is a 16
bit integer whose bits control different aspects of the operating
mode of the FPU (e.g., two bits control the rounding mode, and
two other bits control the calculation precision of the FPU).
Since this table can be modified at run time, one can easily switch
between normal calculations (all table entries are “64 bit preci-
sion, round to nearest”), random rounding (table contains “64 bit
precision, round up” or “64 bit precision, round down” randomly
distributed) or reduced precision (e.g., all entries “32 bit preci-
sion, round to nearest”), such that a selective investigation of sub-
algorithms of the program in question can be done.
As noted previously, we generate the numerical noise by

changing the FPU rounding modes randomly before each
relevant floating point operation. This is realized by injecting
the following x86-64 assembler code before each relevant FP
operation. (These are the addition/subtraction operations
fadd, faddp, fiadd, fsub, fsubp, fisub, fsubr,
fsubrp, fisubr and the multiplication/division operations
fmul, fmulp, fdiv, fdivp, fdivr, fdivrp, fprem,
fprem1, fimul, fidiv, fidivr. We make sure that the
compiler generates only x87 FPU code and does not perform
the FP operations by some other means (e.g., SSE instructions)):

xchg rax, [LC_CWINDEX]
lea ax, [rax+1]
fldcw word ptr [LC_CWDATA+2*rax]
xchg rax, [LC_CWINDEX]

The variable LC_CWDATA is the start address of an array with
216 entries of FPU control words. The variableLC_CWINDEX is
a counter which contains the current index in this table. In each
execution of the injected code, the following happens:
(i) Thexchg instruction exchanges the current values of the

general purpose register rax and of the memory location
at LC_CWINDEX. This allows us to modify the table
index (subsequently in rax) and to keep a copy of the
original register value.

(ii) The load effective address (lea) instruction increments
ax (the lower 16 bits of rax) by one and resets it to zero
if it overflows 216. The effect of the instruction is equal to
“add ax,1”, apart from lea not affecting CPU flags.
Due to the implicit reset to zero on overflow, we can
directly use rax as index for the 216 entry rounding
mode table.

(iii) The load floating point control word (fldcw) instruc-
tion reads a FPCW from our table and activates its use by
the FPU. Thus, all following FPU operations will be
performed with a precision and rounding mode as
specified by the FPCW, until another FPCW is loaded.

(iv) Finally, the second xchg instruction resets the rax
register back to its original value and at the same time
writes back our updated table index.

All of the injected instructions preserve the CPU flags register,
and thus can be inserted without affecting any of the surrounding
code, apart from the FPU control word.
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The entries of the table LC_CWDATA can be changed at
runtime by the program itself. For example, when switching into
“random rounding” mode, a function is called which distributes
“round up” and “round down” control words randomly in the
table using the KISS pseudorandom number generator108 in
David Jones JKISS modification.109 In order to investigate an
isolated sub-task of the program, the table is set to “random
rounding” before beginning the sub-task and is reset to “default
rounding” afterwards. This way all FP operations between the
two calls are subject to the random rounding behavior, and all
other FP operations proceed as normal.
In practice it may be sufficient to inject code for FPU random

rounding mode changes only before additions and subtractions,
since these operations are most prone to causing accuracy loss.
Because the rounding mode has a “state nature” and remains
active until set to something different, the other instructions
would still be affected by random rounding, since they occur
interleaved with addition/subtraction operations. Here, however,
the random rounding was also applied to multiplications and
divisions. Apart from that, we reset the rounding mode to “64 bit,
nearest” before callingmathematical library functions, likeexp or
log. The reason for this is that the implementation of these
functions may depend on exact rounding properties of inter-
mediate values, and thus the random rounding might misrepre-
sent the accuracy loss caused by them.

B. Equations for the Molecular Integrals. A Cartesian GTO
basis function has the functional form

ajðrÞ ¼ ðrx � AxÞaxðry � AyÞayðrz � AzÞaz

�∑
R
ΓjR expð � Rkr� Ak2Þ ð16Þ

where A is the center of the basis function, R runs over primitive
exponents, j runs over contractions (with contraction coefficients
ΓjR), and a = (ax,ay,az) indexes the Cartesian powers of the
polynomial. In the actual basis functions used, the polynomial pre-
factors are transformed into solid harmonics Sma

la (r � A).64

Similar definitions hold for bk(r) and cl(r), with their own centers
and exponents. Using the notation of Ahlrichs,67,68 the three-
center primitive integral over the scalar integral kernel K(t):

ðabjcÞ ¼
ZZ

aðr1Þbðr1ÞKðkr1 � r2kÞcðr2Þd3r1d3r2 ð17Þ

is then calculated by the following recurrence relations:

ð00j0Þm ¼ π

ζ + γ

� �3=2

exp � Rβ
R + β

k
�

A � Bk2
�
GmðF,TÞ

ð18Þ

ða0j0Þm ¼ ðPi � AiÞðða� 1iÞ0j0Þm +
ai � 1
2ζ

ðða� 2iÞ0j00Þm

� F
ζ
ðPi � CiÞðða� 1iÞ0j0Þm + 1

� Fðai � 1Þ
ζ2

ðða� 2iÞ0j0Þm + 1 ð19Þ

ða0jcÞm ¼ F
γ
ðPi � CiÞða0jc� 1iÞm + 1 +

ai
2ðη + γÞ ðða� 1iÞ0jc� 1iÞm + 1

ð20Þ

ðabjcÞ ¼ ðða + 1iÞðb� 1iÞjcÞ � ðBi � AiÞðaðb� 1iÞjcÞ ð21Þ
where i = x, y, or z (no summation), Gm(F,T) is a family of scalar
functions depending only on the integral kernelK,67 and the other
occurring intermediates are ζ = R + β and

F ¼ ζγ

ζ + γ
P ¼ RA + βB

R + β
T ¼ FkP�Ck2: ð22Þ

The final integrals are (ab|c) = (ab|c)m=0. Equation 21 is called the
transfer equation, because it transfers angular momentaum from a
to b. Note that it does not contain any exponents and thus can be
applied to contracted integrals instead of primitives.
In our implementation, the eqs 18�20, followed by the solid

harmonic transformation of c, are evaluated for each combination
of primitive integrals. The primitive integrals (a0|c) (with total
AM from la to la + lb in the first label) are then accumulated into
their respective general contractions. In eq 19we evaluate (P�A)
as (β /(R + β))(B� A), as this increases the numerical stability
when R/β is large. Finally, for each already contracted inter-
mediate (a0|c), first the label a is transformed to solid harmonics,
then the transfer equation eq 21 is applied to form (ab|c),and
then label b is transformed to solid harmonics.

C. On theAsymmetric Instability of theContracted Transfer
Equation. As noted previously, the discovered asymmetric
numerical instability is caused by the contracted transfer equa-
tion (eq 21), which is used as final step in not only the described
integral core but also in almost every other one. This equation is
popular because it can be applied to already contracted integral
intermediates, as already pointed out, and can thus lead to
significant time savings.
In the one-dimensional case, the numeric instability can be

described as follows: We are calculating the desired integrals

ðla, lbjlcÞ ¼
ZZ

ðx1 � AxÞlae�Rðx1 � AxÞ2 3

ðx1 � BxÞlbe�βðx1 � BxÞ2 ... d3x1d3x2 ð23Þ
by first calculating (la + lb,0|lc), that isZZ

ðx1 � AxÞla + lbe�Rðx1 � AxÞ2 e�βðx1 � BxÞ2 ... ð24Þ

and then re-expressing some of the (x1 � Ax) as (x1 � Bx) +
(Bx� Ax) (this is what this contracted transfer relation is doing).
The problem now is this: if the exponent on B is much larger than
that onA, then in the integral only such x1 will have contributions
where x1 is very close to B. Thismeans that, on average, (x1�Bx)
is a small quantity, which, we express as a difference of two large
quantities, (x1 � Ax) and (Bx � Ax); this situation inevitably
leads to accuracy loss. The exponents do not explicitly occur in
these transfer formulas, but the integral intermediates already
contain them implicitly; namely encoded as the difference between
the various components of the la + lb batch.
Since the reverse direction R > β works fine (see above) and

since we have the integral identity (ab|c) = (ba|c), one could
think that this problem can simply be solved by always accumu-
lating the angular momentum on the center with the large
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exponent first (i.e., exchanging a and b if R is much smaller than
β). However, this solution leads to various technical problems,
because: (i) the transfer equation is generally implemented only
for lag lb (since this is much more efficient than la < lb), and thus
if la 6¼ lb, the order of a and b is already fixed by their angular
momenta, and more importantly, (ii) in general one deals with
contracted basis functions, in which primitive integrals with
several exponents are set into some fixed linear combination.
Thus bothR < β and β >Rwill occur at the same time for a single
contracted integral (and the transfer equation is applied to
contracted intermediates).
A preliminary investigation suggests that the quantity:

r ¼ kP� Bk
kA� Bk
� �lb

¼ R
R + β

� �lb

is a good indicator of the relative accuracy loss due to the angular
momentum transfer. Thus, for the moment the best workaround
to the problem would be to estimate the accuracy loss with this
relation for each primitive combination and, if it turns out to be
unacceptable for some combination to do the computationally
expensive angular momentum transfer from b to a for these
primitives, additionally to the a to b transfer for the other primi-
tives in the contraction.
Our current understanding is that this issue applies to almost

every efficient integral core in use and that it cannot easily be
solved without additional computational cost. We might revisit
this issue in the future.
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Mazgorzata M. Szczȩ �sniak,*,‡ and Grzegorz Chazasi�nski‡,||

†Crystallographie, R�esonance Magn�etique et Mod�elisations, Institut Jean Barriol, Nancy University and CNRS,
F-54506 Vandoeuvre-l�es-Nancy, France
‡Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
§School of Chemistry, The University of Nottingham, Nottingham NG7 2RD, Great Britain

)Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland

ABSTRACT: The aurophilic interaction is examined in three model systems Au2(
3Σg

+), (AuH)2, and (HAuPH3)2 which contain
interactions of pairs of the Au centers in the oxidation state (I). Several methods are employed ranging from wave function theory-
based (WFT) approaches to symmetry-adapted perturbation theory (SAPT) and range-separated hybrid (RSH) density functional
theory (DFT) methods. The most promising and accurate approach consists of a combination of the DFT andWFT approaches in
the RSH framework. In this combination the short-range DFT handles the slow convergence of the correlation cusp, whereas the
long-range WFT is best suited for the long-range correlation. Of the three tested RSH DFT methods, the one which uses a short-
range exchange functional based on the Ernzerhof�Perdew exchange hole model with a range-separation parameter of 0.4 bohr�1

seems to be the best candidate for treatment of gold. In combination with the long-range coupled cluster singles, doubles, and
noniterative triples [CCSD(T)] treatment it places the strength of aurophilic bonding in (HAuPH3)2 at 5.7 kcal/mol at R = 3.09 Å.
This value is somewhat larger than our best purely WFT result based on CCSD(T), 4.95 kcal/mol (R = 3.1 Å), and considerably
smaller than the Hartree�Fock+dispersion value of 7.4 kcal/mol (R = 2.9 Å). The 5.7 kcal/mol estimate fits reasonably well within
the prediction of the empirical relationship proposed by Schwerdtfeger et al. (J. Am. Chem. Soc. 1998, 120, 6587). A direct
computation of dispersion energy, including exchange corrections, results in values of ca.�9 kcal/mol for Au2(

3Σg
+) and (AuH)2

and �13 kcal/mol for (HAuPH3)2 at the distance of a typical aurophilic bond, R = 3.0 Å.

I. INTRODUCTION

Experimental studies of two-coordinate gold compounds
reveal structural motifs where Au(I) centers are in direct contact
with each other but are not chemically bound. This provides the
evidence for intermolecular bonding between seemingly closed-
shell (5d)10 Au(I) cores known as aurophilic interactions.1 The
d10 subshells are spherically symmetric and exhibit valence
repulsion; thus, the attractive interactions must originate, or so
the explanation goes, from the dispersion effect, i.e., a nonlocal,
dynamic correlation.2,3 Aurophilic interactions are comparable in
strength to hydrogen bonding and play an important competing
role in the assembly of gold compounds.1 Other reasons for
interest in these interactions include their relevance to the
electronic structure of gold nanoparticles, where Au(I) cores
provide the confining potential for a collective behavior of jellium
electrons.4 Therefore, study of these interactions has wider impli-
cations for the coordination chemistry of gold, gold clusters, and
gold nanoparticle�ligand interactions.

Previous computational studies of the aurophilic effect em-
ployed wave function theory (WFT) and density functional theory
(DFT) based methodologies, as surveyed recently in exhaustive
review papers.2,3 To our knowledge, no publication appeared on
the use of recent rangehybrid methods for description of auro-
philicity. Except for a very recent publication,5 aurophilic inter-
actions have not been systematically studied by symmetry-adapted

perturbation theory (SAPT), which is a method intrinsically
designed for intermolecular forces.

To summarize some highlights of previous studies, one should
start from the work of of Pyykk€o and Zhao, who proposed a
clever model for studying the aurophilic effect, (XAuPH3)2 (X =
ligand) (in a gauche orientation), and first determined that the
interaction between the Au(I) centers originated from electron
correlation effects.6 An important finding of Pyykk€o et al. was
that in the Møller�Plesset (MP2), CCSD, and CCSD(T) series
the correlation shows an oscillatory behavior. Therefore, the use
of MP2 may overestimate interaction energies by as much as a
factor of 2 compared with CCSD(T).7 The work of Magnko
et al.8 on the same model (XAuPH3)2 (X = H, Cl) employed
supermolecular, local MP2 (LMP2) calculations. From the
analysis of LMP2 excitations the authors concluded that for
the complex with X = H about one-half of the post-Hartree�
Fock (HF) attraction originated from dispersion-type excitations
while the rest came from ionic contributions. Both post-HF
contributions displayed distinctly different distance dependence.
More recently, Pyykk€o and Zaleski-Ejgierd estimated the basis
set limit for the MP2 interaction9 in the same system. O’Grady
and Kaltsoyannis10 carefully compared several WFT treatments
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and made the first attempt to test DFT with the BP86 functional
in the context of aurophilic (and metallophilic) interactions.
They were surprised to observe that “DFT values are not
significantly out of step with the ab initio results” although “the
reasons why are not clear”. Assadollahzadeh and Schwerdtfeger11

presented further comparisons of the BP86 DFT and WFT
approaches for other ligands in the studies of the nonadditivity of
aurophilic interactions.

Density functional theory in the Kohn�Sham formulation
and with standard exchange-correlation functionals is able to
provide a reliable description of short-range dynamic correlation
effects, and in special circumstances it is able to mimic some
amount of static correlation as well.12 However, strongly non-
local dynamic correlation effects, responsible for London disper-
sion forces, still remain a formidable challenge for DFT13 despite
vigorous efforts to design new DFT-based methods, which are
suited for this purpose. For aurophilic interactions, the words of
Pyykk€o, “No proof has been given that any supramolecular DFT
treatment would reproduce the aurophilic attraction for a good
physical reason”,3 remain certainly valid for all conventional local
and semilocal functionals used in a simple Kohn�Sham frame-
work. However, it might be worthwhile to revisit some aspects of
Pyykk€o’s statement in light of recent works aimed at including
the London dispersion forces in DFT calculations. Extensively
parametrized semiempirical functionals, like M05-2X14 and
M06-2X15 of the Truhlar group, which proved to be extremely
successful for a wide range of phenomena, including binding in
van der Waals complexes around their equilibrium structures, fail
to grasp physical origins of dispersion forces as reflected by the
fact that the asymptotic 1/R6 decay of the potential energy is
completely missed. Therefore, from our point of view, they are of
rather limited interest. Promising new developments include the
nonlocal vdW functionals,16,17 the a posteriori correction of the
DFT total energy with C6 R

�6 or higher-order atom�atom type
corrections, exemplified by the work of Grimme,18 which in its
more recent variant adjusts the atomic dispersion coefficient by
an appropriate algorithm to the local bonding environment.19

Following different routes, the atomic dispersion coefficients can
be made functionals of the density, as in the approach of
Tkatchenko and Scheffler20 or in the model of Becke and
Johnson of the local properties of the exchange hole.21 Another
type of recent development ensures the presence of dynamic
correlation effects, responsible for London dispersion forces, by a
generalization of the concept of hybrid functionals. In this
category, one should mention the double-hybrid functionals
with an explicit, usually empirically weighted MP2 contribution,
such as B2LYP22 or XYG3,23 and finally the combination of
short-range DFT with long-range WFT treatment of the dyna-
mical correlation in a range-separated hybrid framework.24�27 It
is worth mentioning that several of these rangehybrid approaches
have been used for a systematic study of the group 11 hydrides
and halides.28 Some of these different categories of functionals
designed for dispersion forces have recently been compared and
tested by Sherrill and co-workers.29 We think that it is timely to
explore the impact of some of these new advances on the
understanding of aurophilic interactions.

In all previous works on aurophilic interactions (except for a
very recent contribution5) their nature was inferred from super-
molecular calculations, i.e., from such observations as the
repulsive HF potential and the R�6 asymptotic behavior
of the supermolecular interaction energy upon inclusion of
correlation.3

One of the goals of the present paper is to determine the
nature of the interaction between the two Au(I) centers em-
bedded in a molecular framework by direct application of the
perturbation theory approach. The Au(I)—Au(I) interacting
unit will be included in three model systems of decreasing
complexity. We begin with the same model system as that used
in the work of Pyykk€o and Zhao6—a dimer of the two-coordinate
Au species: HAuPH3 in a gauche configuration (i.e., with a
dihedral angle of 90�, which allows for minimization of electro-
static forces by ensuring a vanishing dipole�dipole interaction).
Next, the two PH3 ligands are removed and one has (AuH)2 in a
gauche conformation. A thallium analog of this model was used
by Schwerdtfeger in 199130 as a model system for Tl(I)�Tl(I)
thallophilic interactions to show that the attraction is essentially a
correlation effect. Next, the H atoms are removed, leaving Au2 in
the 3Σu

+ state (see Figure 1).
A broader objective of the present study is to demonstrate that

the challenges of aurophilic interactions, which are indeed
considerable, can be met using the methodologies based on the
concept of range separation that combine the advantages of DFT
for short-range electron�electron interactions with the long-
range capabilities ofWFTmethods. Themain advantage ofWFT
methods is that they allow for a clear-cut identification of
dispersion forces as a post-HF correlation effect. While one
can be sure that at the HF level the London dispersion forces
cannot be present, such clear guidance is absent in Kohn�Sham
calculations. On one hand, it has been observed that numerous
exchange-correlation (xc) functionals lead to sometimes quite
reasonable attractive wells on potential energy curves even for
the simplest, fully dispersion-bound systems, such as rare gas
binary complexes. Typically, LDA and GGA functionals, usually
based on a Perdew-type exchange functional (e.g., PBE, PW91),
which satisfy the Lieb�Oxford bound31 locally, fall in this
category. On the other hand, in functionals based on an exchange
component as developed by Becke, no binding is observed in the
above-mentioned category of dispersion-bound complexes; on
the contrary, the potential curves are often significantly more
repulsive than the HF ones.32

How does one choose a functional which provides reasonable
reference energy for explicit, physically sound dispersion correc-
tions? One strategy consists in tailoring an xc functional to
reproduce as well as possible the genuinely dispersion-free HF
potential curve. Several groups have shown recently the feasi-
bility of this approach.33,34 An alternative strategy is based on the
use of mutually polarized Kohn�Sham densities of the mono-
mers and an explicit calculation of the intermolecular Coulomb
and exchange effects.35 The spurious overpolarization of the
monomers has been avoided by a Pauli�blockade method,36

leading to dispersion-free total energy. Finally, similar results
can be obtained in the rangehybrid scheme, where long-range

Figure 1. Geometrical configurations of three model aurophilic
compounds.
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(predominantly) intermolecular electron�electron (e�e) interac-
tions are treated at the HF level while short-range (intramolecular)
e�e interactions are handled by a short-range xc functional. Such
hybrid calculations lead to essentially dispersion-free total en-
ergies, as first shown by the group of Hirao,37 constituting a
convenient starting point for long-range WFT correlation treat-
ments of dispersion effects.

II. METHOD AND COMPUTATIONAL DETAILS

The gold atoms are described using the 19-electron, small-
core (1s�4f), relativistic effective core potential (ECP) of Figgen
et al.38 ECP is combined with the augmented correlation-
consistent basis set of triple-ζ quality (unless stated otherwise)
recently optimized by Peterson and Puzzarini (aug-cc-pVTZ-PP),
which includes orbitals up to the g symmetry.39 The remaining
atoms are described by the aug-cc-pVTZ basis set.40

The supermolecular calculations are performed at several
post-HF levels of theory up to CCSD(T)41 defining the inter-
action energy as

EXint ¼ EXdimer � 2EXmonomer; where X ¼ HF,

HF þ MP2,HF þ CCSD,HF þ CCSDðTÞ
where the monomer contributions are calculated in the basis set
of the whole dimer. For direct comparison with the dispersion
energy we also use the quantity Eint

corr which is the correlation
contribution to the interaction energy at a given level and defined
as the difference between Eint

X and Eint
HF. In the correlated

calculations the outer-core 5s25p6 electrons were active.
The calculations of dispersion energy and its exchange coun-

terpart employ two variants of symmetry adapted perturbation
theory. For 3Au2 WFT open-shell symmetry adapted perturba-
tion theory [SAPT(WFT)] is used.42 The dispersion energy is
obtained from the time-dependent (TD) coupled HF theory as
described in ref 43 and henceforth denoted Edisp

(2) (CHF), and its
exchange counterpart is Eexdisp

(2) (CHF). For the remaining dimers,
which are closed shell, SAPT theory based on the DFT descrip-
tion of monomers44 is used as implemented in MOLPRO.45

According to SAPT(DFT), the total interaction energy through
the second-order perturbation theory, DSAPT[2], is expressed
as the following sum of the electrostatic (es), induction (ind),
and dispersion (disp) terms as well as their respective exchange
counterparts

DSAPT½2� ¼ Eð1Þes þ Eð1Þexch þ Eð2Þind þ Eð2Þexind þ Eð2Þdisp þ Eð2Þexdisp

ð1Þ
where the perturbation terms are obtained from Kohn�Sham
(KS) orbitals. The induction and dispersion terms as well as their
exchange counterparts are obtained from the coupled KS (CKS)
approach (see refs 46 and 47 for details). The dispersion
and exchange�dispersion terms will henceforth be denoted
Edisp
(2) (CKS) and Eexdisp

(2) (CKS), respectively. Additionally, a resi-
dual HF term, δHF, is defined as a supplement to eq 1 with higher
order terms and other residual effects taken from the HF level

δHF ¼ EHFint � Eð1Þes � Eð1Þexch � Eð2ÞindðCHFÞ � Eð2ÞexindðCHFÞ ð2Þ
where the perturbation terms subtracted from the supermolecular
HF interaction energy are all evaluated from theHForbitals. TheKS
orbitals for the SAPT(DFT) calculations are obtained using the
asymptotically corrected48 PBE0 functional.49

Range-separated hybrid (RSH) calculations have been per-
formed with a range-separation parameter μ of 0.5 and 0.4
bohr�1 for sr-LDA and sr-PBE functionals, respectively. Several
independent studies indicated these values as optimal.50�52 The
short-range LDA and two flavors of short-range PBE xc func-
tionals have been explored in the present work. The sr-LDA
functional is composed of the short-range LDA exchange53 and
the complementary short-range correlation derived from Quan-
tum Monte Carlo simulations on the long-range interacting
homogeneous electron gas.54 The sr-PBE functionals differ only
in their exchange components. One of the variants is based on the
form suggested by Toulouse et al.55 and extended by Goll
et al.56,57 and keeps the same form as the original PBE functional
but introduces a μ dependence of the parameters. The second
type of sr exchange functional is constructed from an analytical
model of the PBE exchange hole, developed by Ernzerhof and
Perdew58 (referred to here as PBE-EP), which is integrated with
the short-range interaction function, erfc(μr)/r (see also ref 59).
This approach is analogous to the method followed in the
construction of the HSE functional,60 the main difference being
that the role of the short and long range is inverted. The sr-PBE
correlation functional used here has been described in ref 57. The
applied rangehybrid methods will be designated by the following
acronyms: sr-{LDA,PBE,PBE-EP}+lr-{MP2,CCSD,CCSD(T)}.
The basis set is the same augmented valence triple-ζ quality as for
the full-range correlated WFT and SAPT calculations, with the
only difference being that it is not augmented on the phosphine
H atoms.

The geometrical parameters are as follows. In gauche (AuH)2
complex r(Au�H) = 1.524 Å.61 In (HAuPH3)2 we use the same
dimer configuration as in ref 8. In the WFT and SAPT calcula-
tions the intramonomer HAuPH3 geometrical parameters were
taken from ref 8 (r(Au�P) = 2.385 Å, r(Au�H) = 1.606 Å,
r(P�H) = 1.416 Å, —(H�P�Au) = 118.5�), whereas in the
rangehybrid calculations these parameters were optimized at the
CCSD(T) level of theory (r(Au�P) = 2.325 Å, r(Au�H) =
1.598 Å, r(P�H) = 1.407 Å, —(H�P�Au) = 119�).62 The basis
sets in these geometry optimizations were ECP-VTZ for Au and
VTZ (without augmentation functions) on the P and H atoms.
The coordinate R(Au�Au) was varied keeping the monomer
geometries unchanged.

Figure 2. Comparison between the total dispersion energy Edisp
(2) (CHF) +

Eexdisp
(2) (CHF) (denoted DISP) of 3Au2 and the correlation contribution to

the interaction energy at the CCSD(T) level of theory (CORR).
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III. RESULTS AND DISCUSSION

1. WFT and SAPT Methods. a. Dispersion Energy in Au2-
(3Σu

+). It is convenient to begin our discussion with the interac-
tion between Au atoms in the Au2(

3Σu
+) state. The open-shell

calculations in this section are performed using spin-restricted
coupled cluster formalism and spin-unrestricted formalism in the
SAPT dispersion calculations (unless stated otherwise).
In the ground state Au2 is covalently bound by a single σ bond

formed by two 6s electrons. In 3Σu state the molecule is bound by
long-range forces. The key difference between the two states is
the exchange energy, which distinguishes the singlet from the
triplet state. The ground state Au2(

1Σg) has been carefully ben-
chmarked by Peterson and Puzzarini39 using CCSD(T). Their
calculation, which included relativistic effects, basis set limit
estimation, and core�valence correlation, yielded a well depth
of 53.2 kcal/mol at Re = 2.47 Å. Our present treatment places the
well depth of the ground state some 7% above their value. For the
Au2(

3Σu
+) state we obtain a well depth of 3.698 kcal/mol at the

roughly optimized Re of 2.924 Å at the UCCSD(T). A recent,
more saturated CCSD(T) result for De for this complex is
reported to be 4.3 kcal/mol.63

In our calculations of the CHF dispersion energy, which is
known to be more basis-set dependent than the CKS variants,64

we employ a slightly larger basis set (aug-cc-pVQZ-PP from which
the more compact g and h orbitals were removed) augmented by
a bond function (3s, 3p, 3d, 3f).
A comparison between the sum of Edisp

(2) (CHF) + Eexdisp
(2) (CHF)

of 3Au2 and the correlation contribution to this interaction
Eint
CCSD(T) is presented in Figure 2.
One can see that the two quantities agree extremely well in the

wide range of distances. Two values of dispersion energy are
particularly noteworthy. Around the van der Waals minimum of
3Au2 (R = 3 Å) the dispersion effect amounts to �8.8 kcal/mol
with Edisp

(2) (CHF) = �12.36 kcal/mol and Eexdisp
(2) (CHF) = 3.57

kcal/mol. Around the chemically bound minimum 1Au2 (R =
2.47 Å) the total dispersion effect amounts to �18.22 kcal/mol
out of which the dispersion is�29.75 kcal/mol and the exchange

dispersion is 11.53 kcal/mol. The C6 dispersion coefficient fit to
the long-range tail of the RHF-UCCSD(T) correlation interac-
tion energy of 3Au2 amounts to 345 au. This value increases by
4.5% upon freezing the 5s, 5p electrons in the calculations.
Next, we examine the effect of the scalar relativity on the

dispersion interaction and more precisely on the correlation
contribution to the 3Au2 bonding. The relativistic effects lower
the static dipole polarizability of Au from 64 to about 36 au.65

They also lead to the doubling of the electron affinity of Au (from
1.283 to 2.295 eV) and to the increase of the ionization potential
by some 2 eV (see Table 3 in ref 3). In gold�ligand interactions
Au�PH3 these effects result in a “relativistic bond” as described
by Granatier et al.66 Our present comparison is indirect and
qualitative in nature and involves the following strategy: For the
“nonrelativistic” treatment we perform all-electron calculations,
without the Douglas�Kroll option, and with the fully nonrela-
tivistic basis set named Hy-PolX.67 The “relativistic” calculation
employs the above-mentioned relativistic ECP with aug-cc-
pVTZ-PP, which contains a similar number and type of polariza-
tion functions as Hy-PolX. To ensure that the same number of
electrons is correlated in both calculations, the former keeps 68
electrons on each Au in the core while the latter keeps 8 electrons
on each Au in the core. The result of this comparison is shown in
Figure 3.
It appears that in the long range the “nonrelativistic” curve is

slightly more attractive, consistent with the larger nonrelativistic
static polarizability, if London’s model of dispersion is to be
followed. In the short range the “relativistic” curve is more
attractive, reflecting the larger ionization potential at the relati-
vistic level. It is also interesting that the curves cross each other
around 3.2 Å. Thus, at shorter distances, relativistic effects
slightly strengthen and at longer distances slightly weaken the
correlation interaction in 3Au2. However, the most significant
changes between the two approaches appear (not unexpectedly)
at the HF level of theory. As seen in Figure 3b, the relativistic
effects shift the repulsive wall toward shorter distances, enabling
the atoms to approach closer and thus benefitting from a stronger
dispersion attraction.

Figure 3. Comparison of “nonrelativistic” (NR) and “relativistic” (R) treatment of the interaction energy in 3Au2: (a) correlation CCSD(T)
contribution to the interaction energy and (b) uncorrelated HF component. For definitions see the text.
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Finally, it is also possible to evaluate the magnitude and sign of
the three-body terms in the interaction of three Au atoms. To this
end, we choose the high-spin, quartet Au3 for which the restricted
open-shell CCSD(T) calculations are performed. The results are
shown in Table 1.
Eint(abc) denotes the entire trimer interaction energy (i.e.,

both two-body and three-body terms). Assuming that the
correlation contribution to the interaction energy consists mainly
of the dispersion energy (as shown above in the two-body case),
we observe that the three-body dispersion interaction is positive
in the equilateral triangle configuration and slightly negative in
the linear configuration, which is consistent with the Axilrod�
Teller�Muto angular dependence of the dispersion interactions
as well as with our previous diagrammatic analysis of the n-body
contributions to the supermolecular MP perturbation theory
interaction energies.68 One can also notice that the nonadditivity
of the HF interaction energy has a opposite sign as it results from
the first-order exchange three-body term (see a similar behavior
for other metals from Ia and Ib groups69).
b. (AuH)2.A comparison between the results for 3Au2, (AuH)2,

and (HAuPH3)2 is shown in Table 2. Let us focus on the first two,
leaving (HAuPH3)2 for later discussion. The calculations for
(AuH)2 are performed for the orientation of the monomers
shown in Figure 1 (C2 point group). The supermolecular dimer
CCSD(T) calculations indicate that there may be some multi-
configurational character in the reference function, namely,
rather large T1 (0.03) and D1 (0.1) diagnostic70,71 values have
been found. Indeed, the EOM-CCSD calculations show that
there are two low-lying singly excited states 1B and 1A at 2.97 and
3.13 eV, respectively, at R = 3.0 Å. Nevertheless, the CCSD(T)
calculations provide results consistent with those for 3Au2
and yield a CCSD(T) interaction curve with the minimum at
R(Au�Au) = 3.09 Å with a well depth of 3.03 kcal/mol.
Both 3Au2 and (AuH)2 have purely repulsive HF potential

curves, and they are bound only upon inclusion of correlation
effects. Both complexes have further similar characteristics: they
are relatively weakly bound by about �3.6 and �2.93 kcal/mol,

respectively, and their total dispersion effect (including exchange) is
very similar,�8.8 vs�9.1 kcal/mol, respectively. It is particularly
noteworthy that uncoupled KS dispersion energy is severely
overestimated in magnitude. Compared to HF+CCSD(T), HF+
MP2 leads to a stronger binding. Also shown is the HF+Disp
approximation, which combines HF with the coupled dispersion
and exchange�dispersion terms. In 3Au2 this approximation
gives values in reasonable agreement with HF+CCSD(T) as
discussed in the previous section. In the case of (AuH)2 it exceeds
HF+CCSD(T) by a factor of 2.
c. (HAuPH3)2. The supermolecular HF+CCSD(T) calcula-

tions for this dimer, in the geometry shown in Figure 1, yield a
well depth of 4.95 kcal/mol at around R(Au�Au) = 3.1 Å. In this
value the effects of outer-core correlation (i.e., 5s and 5p
electrons in Au) contribute only 0.2 kcal/mol toward the stabi-
lization. Incidentally, both types of diagnostics, T1 and D1, are in
the normal range, indicating that the single-reference character
improves upon addition of the PH3 ligands. However, this result
obtained in aug-cc-pVTZ is probably far from basis set saturation.
The HF interaction energy results in a purely repulsive potential
curve. SAPT(DFT) values of dispersion energy terms Edisp

(2) (CKS)
and Eexdisp

(2) (CKS) are also shown. In addition, we also list corre-
sponding values of dispersion energy calculated using the CHF and
UCHF approach, Edisp+ex

(2) (CHF) and Edisp+ex
(2) (UCHF), respec-

tively. The other SAPT(DFT) components are not shown because
the theory appears to diverge for aurophilic interactions.
Figure 4 shows the R dependence of the SAPT(DFT) con-

tributions for (HAuPH3)2. DSAPT[2], the sum of all the terms
through the second order (see eq 1), is dominated by the
induction effects and falls precipitously for shorter distances
without any minimum. Adding the residual HF term δHF (eq 2)
as suggested in the instances of using ECP (see refs 72 and 73)
also fails to produce the minimum (see DSAPT[2]δ curve). One
should add that δHF, which is strongly repulsive, eludes physical
justification. By contrast, HF+Disp displays a minimum with
reasonable position and depth (see Figure 4).
The causes of the SAPT divergence are related to the over-

estimated induction energy (�131 kcal/mol at R = 3.0 Å!),
which cannot be properly constrained by the exchange effects

Table 1. Three-Body (3-b) Contributions in 4Au3 from
Restricted Open-Shell CCSD(T) Calculations (in kcal/mol)a

geometry Eint(abc) E3-b(HF) E3-b(corr)

D3h �11.49 �2.33 0.51

D∞h �6.30 0.41 �0.21
aThe three-body term is partitioned into the HF and correlation
contributions.

Table 2. Comparison of 3Au2, (AuH)2, and (HAuPH3)2
Interaction Energies at R = 3 Å (in kcal/mol)a

term 3Au2 (AuH)2 (HAuPH3)2

HF 4.43 3.21 5.63

HF+CCSD(T) �3.64 �2.93 �4.83

HF+CCSD �2.12 �1.75 �2.82

HF+MP2 �5.05 �5.73 �8.92

HF+Disp �4.36 �5.94 �7.40

Edisp+ex
(2) (CKS) �8.80b �9.06 �13.02 (�12.28)

Edisp+ex
(2) (UCKS) �19.07 �27.01 (�17.47)

aThe values in parentheses for (HAuPH3)2 correspond to Edisp+ex
(2) from

CHF and UCHF calculations, respectively. b from the CHF calculations.

Figure 4. Radial dependence of the interaction energy terms in
(HAuPH3)2 from SAPT(DFT). E(1) denotes the sum of the electro-
static and exchange energy, IND denotes the sum the CKS induction
and exchange-induction terms, DISP denotes the sum of the CKS
dispersion and exchange-dispersion terms, DSAPT[2] denotes the sum
of the SAPT(DFT) terms through the second order, see eq 1, and
DSAPT[2]δ includes also the residual δHF term of eq 2.
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(see Figure 4). The approximate treatment of the exchange
interactions with the partner’s core as a result of using the ECP
(see ref 72) is a contributing factor but not the cause of it. Broadly
speaking, it is the fundamental inseparability of the induction and
exchange, which is the root of this problem.74 It should be
stressed that the calculated values of the dispersion and exchange
dispersion terms are sound.
The equilibrium results obtained at various levels of theory are

shown in Table 2, where they can be compared with both
(AuH)2 and 3Au2. The (HAuPH3)2 dimer is more strongly
bound than the other Au-containing systems, but the pattern is
similar: the dimer is unbound at theHF level of theory; HF+MP2
overestimates the binding compared to HF+CCSD(T) to an
even greater degree. The same is true of the HF+Disp approx-
imation. The strengthening of the aurophilic bonding upon
addition of the PH3 group to AuH can be explained by a subtle
balance between the first-order repulsion and dispersion attrac-
tion. For example, at R = 3.0 Å addition of PH3 results in the 2.4
kcal/mol net gain in the first-order interaction (Ees

(1)+Eexch
(1) ),

which almost exactly accounts for the change in the HF term
(Table 2). Simultaneously, adding the ligands leads to enhanced
net dispersion (Edisp

(2) + Eexdisp
(2) ) stabilization of �4 kcal/mol.

In aurophilic interactions one is faced with a number of
unpleasant realities: (i) the cluster expansion converges slowly
as evidenced by the large contribution from the triples; (ii) the
HF+Disp approximation overestimates the interaction as com-
pared to HF+CCSD(T). Furthermore, as seen in Table 2, the
UCHF dispersion energy is too large in magnitude compared to
both CHF and CKS (although not as outrageously so as UCKS).
Since the UCHF type of dispersion resides implicitly in the
supermolecular MP2 interaction contribution,75,76 HF+MP2
should also lead to overbinding. Finally, it is not possible to
substitute the HF interaction for another “dispersionless” ap-
proach based on SAPT(DFT) because the latter is divergent and
the quality of its components cannot be ascertained.
2. Range-Separated DFT + WFT Approaches for Aurophi-

lic Interactions. The combined sr-DFT + lr-WFT approaches
have proven very successful in such challenging systems as
rare gas dimers56,77 and alkaline earth dimers.78�80 Therefore, it
is interesting to test them in the circumstance of the aurophilic
bond. Such approaches are predicated on the range separation of
the e�e interactions,24,53,78,81�83 where the short range is des-
cribed within the DFT theory and the long range, nonlocal
correlation is obtained from the WFT methodology. The calcu-
lations in this section are performed in a slightly different
monomer geometry of HAuPH3 (see section II), which has a
negligible effect on the interaction energy.62

The first emerging question is how to select the sr-DFT
containing only the short-range correlation effects, i.e., which is
expected to be essentially dispersion free. It is difficult to predict
how the dispersion-free potential should appear for Au(I)�Au-
(I) and by what criteria it should be judged. Unlike for rare-gas
dimers where one is certain that such potential should be repulsive
there is no such certitude in the present case, especially in light of the
findings of refs 8 and 84 that have identified the nondispersion, post-
HF ionic contributions to the aurophilic bond.
Figure 5a and 5b presents the sr-DFT potentials for (AuH)2

(Figure 5a) and (HAuPH3)2 (Figure 5b) obtained with the
following range-separated functionals described in section II: sr-
LDA (μ = 0.5), sr-PBE (μ = 0.4), and sr-PBE-EP (μ = 0.4).
The results show that sr-PBE-EP is the least attractive of the

three sr-DFT options for both systems, although it is much less

so than HF. sr-PBE is the most attractive of the three, whereas sr-
LDA closely follows sr-PBE-EP. One can notice that even sr-
PBE-EP and sr-LDA are slightly attractive for (AuH)2. However,
the interaction between two AuH has some multiconfigurational
character (see section b), which could manifest itself as short-
range correlation effects (such as ionic contributions observed by
Magnko et al.8)
In the next step the sr-DFT orbitals are used in the MP2,

CCSD, and CCSD(T) calculations, resulting in lr-MP2, lr-
CCSD, and lr-CCSD(T), which are added to the sr-DFT part.
These are compared with the “full-range”WFT approaches HF+
MP2, HF+CCSD, and HF+CCSD(T). The comparison is
shown in Figure 6a for (AuH)2 and Figure 6b for (HAuPH3)2.
We observed before (see Table 2) that in full-range coupled

cluster treatment the role of triples was overwhelming: 40% of
the well depth in (AuH)2 and 42% in (HAuPH3)2. Furthermore,

Figure 5. Comparison of sr-LDA, sr-PBE, and sr-PBE-EP potentials for
(a) (AuH)2 and (b) (HAuPH3)2.

Figure 6. Comparison between sr-DFT + lr-WFT and full-range WFT
approaches for (a) (AuH)2 and (b) (HAuPH3)2.
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HF+MP2 overestimated the well depth of both complexes by
nearly 2-fold. By contrast, our best candidate for dispersion-free
rangehybrid, sr-PBE-EP, in combination with lr-WFT shows to
be a quickly convergent treatment of electron correlation. Speci-
fically, in both complexes, the sensitivity to triples has practically
disappeared. The performance of lr-MP2 also appears to be
much improved compared to the full-range approach, particu-
larly for (HAuPH3)2. For (AuH)2 the three range-separated sr-
DFT + lr-WFT potentials which run very close to each other are
considerably deeper than HF+CCSD(T). This again may be
related to the fact that already the dispersion-free sr-PBE-EP is
slightly attractive. Overall, the results show that the sr-PBE-EP
rangehybrid combined with lr-WFT provides an excellent de-
scription of aurophilic interactions. To see how the remaining sr-
DFT approaches behave in combination with lr-WFT we sum-
marize the equilibrium well-depth parameters in Table 3.
The sr-LDA approach combined with lr-WFT leads to deeper

potential wells (by up to 2 kcal/mol for lr-CCSD/CCSD(T) and
3 kcal/mol for lr-MP2) with minima shifted toward shorter
distances. For sr-PBE combined with lr-WFT the deepening is
evenmore pronounced. Still the effect of triples in lr-CCSD(T) is
quite small, on the order of 0.5 kcal/mol or less. Interestingly, it is
not the lr-correlation which differentiates between the potentials.
For (AuHPH3)2, the lr-CCSD contribution at R = 3.0 Å is almost
the same if obtained from the sr-PBE-EP or sr-PBE orbitals,
namely, �7.46 vs �7.57 kcal/mol, respectively. The differences
reside in the sr-DFT, i.e., the putative dispersion-free part of the
interaction. Let us also mention that the lr-CCSD contribution
obtained from the sr-LDA orbitals amounts to �8.35 kcal/mol
and that from the HF orbitals amounts to �8.45 kcal/mol.
Finally, the lr-CCSD(T) calculations lead to the dramatically
improved T1 and D1 diagnostics. For example, the sr-PBE-EP +
lr-CCSD(T) calculations give at R = 3 Å the T1/D1 diagnos-
tics of 0.0146/0.04689 and 0.0102/0.0339 for (AuH)2 and
(HAuPH3)2, respectively.

From the computational point of view, there is at present no
particular time advantage of the sr-DFT + lr-WFT approach if
one compares the calculations in the same basis set. However,
since the basis set gets saturated much faster, a “converged” result
is much cheaper to obtain.

IV. CONCLUSIONS

Aurophilic interactions present a formidable challenge for
computational treatments in that they include a large number
of strongly correlated, relativistically contracted electrons. We
explored a number of possible treatments for these interactions,
which include symmetry-adapted perturbation theory, super-
molecular full-range WFT methods, and the hybrid sr-DFT +
lr-WFT approaches based on the concept of range separation.

SAPT(DFT) leads to a divergent description of these inter-
actions due in large part to the spurious overpolarization of
monomers which cannot be constrained by the exchange. A
contributing factor is the use of the effective core potentials for
the Au centers. The important SAPT(DFT) terms that appear to
be unaffected are the dispersion and exchange�dispersion terms.
This fact can be traced to the dispersion energy being related to
the two-electron part of the intermolecular interaction operator as
first noted in ref 72. When combined with the HF interaction
energy, HF+Disp provides a reasonable approximation for 3Au2
but becomes erratic for (AuH)2 and (HAuPH3)2, presumably
due to the larger role of the neglected intramonomer correlation.
The dispersion attraction of two Au atoms is increased at long
intersystem distances and reduced in the short range by inclusion
of relativistic effects. These changes are consistent with the
effects of relativity on the polarizability and ionization potential
of Au. However, the strongest effect relativity exerts on the HF
interaction potential, causing the shift of the repulsive wall
toward shorter distances.

Of the full-range WFT approaches examined in this work, HF
+MP2 leads to a significant overbinding because of a consider-
able overestimation of the dispersion energy by the UCHF
approximation for aurophilic interactions, as demonstrated in
this work. The results of the HF+CCSD and HF+CCSD(T)
calculations point to a significant role of triples. This indicates
that to saturate correlation effects it may be necessary to include
in the cluster expansion not only the iterative triple excitations
but also the quadruples.

By contrast, the range-separated sr-DFT+ lr-WFT approaches
examined in this work show a much weaker dependence on the
triple excitations as seen by the small difference between lr-
CCSD and lr-CCSD(T) contributions. One plausible explana-
tion is that the triple excitations are more important in the short
range of the e�e interactions, but their contribution to the long
range is smaller. In the combined sr-DFT + lr-WFT approach
these short-range interactions are efficiently accounted for by a
sr-DFT component.

The sr-DFT approach offers the added benefit of serving as a
dispersion-free approximation—the DFT analog of the HF
interaction energy. Of the three candidates examined here the
sr-PBE-EP functional with a range-separation parameter of 0.4
appears to fit the characteristics of such an approximation for
gold. We base this determination on the values of the sr-PBE-EP+
lr-CCSD(T) interaction energies for (AuH)2 and (HAuPH3)2,
which appear to be themost sensible. The sr-PBE-EP+lr-CCSD(T)
approach places the strength of aurophilic interaction in the
(HAuPH3)2 gauche dimer of the two unrelaxed monomers at

Table 3. Energy Minimum Parameters of the (AuH)2 and
(HAuPH3)2 Dimers Obtained withDifferent Levels of Theory

(AuH)2 (HAuPH3)2

theory

E(min),

kcal/mol

R(min),

Å

E(min),

kcal/mol

R(min),

Å

HF+MP2 �6.01 2.89 �9.15 2.91

HF+CCSD �2.04 3.16 �3.28 3.25

HF+CCSD(T) �3.03 3.09 �4.95 3.11

HF+Disp �6.04 2.91 �7.39 3.00

sr-PBE-EP �0.52 3.18 �0.01 4.99

sr-PBE-EP + lr-MP2 �5.42 2.92 �6.68 3.06

sr-PBE-EP + lr-CCSD �4.75 2.93 �5.37 3.10

sr-PBE-EP+ lr-CCSD(T) �5.01 2.93 �5.72 3.09

sr-LDA �1.08 3.10 �0.04 3.58

sr-LDA + lr-MP2 �8.03 2.84 �9.84 2.89

sr-LDA + lr-CCSD �6.38 2.87 �7.14 2.97

sr-LDA + lrCCSD(T) �6.84 2.86 �7.79 2.95

sr-PBE �2.55 2.95 �1.05 3.20

sr-PBE + lr-MP2 �8.23 2.85 �9.86 2.90

sr-PBE + lr-CCSD �7.51 2.86 �8.28 2.93

sr-PBE + lr-CCSD(T) �7.80 2.86 �8.71 2.92
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5.7 kcal/mol at R = 3.09 Å. This value is somewhat larger than the
HF+CCSD(T) one of 4.95 kcal/mol (R = 3.1 Å) and consider-
ably smaller than the HF+Disp value of 7.4 kcal/mol (R = 2.9 Å).
The 5.7 kcal/mol estimate fits reasonably well within the
prediction of the empirical relationship proposed by Schwerdt-
feger et al.,85 which gives ca. 6 kcal/mol at this distance.

The aurophilic interactions in Au2(
3Σg

+) and (AuH)2 models
are very similar (�3.6 vs �2.9 kcal/mol). Addition of the PH3

ligands to (AuH)2 results in a dramatic increase in the dispersion
stabilization by 4 kcal/mol, which is counterbalanced by a
2.4 kcal/mol net increase in the first-order repulsion in the
minimum region.
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’NOTE ADDED IN PROOF

The notation for the sr-DFT term should be understood as
containing also the long-range HF component.
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ABSTRACT:We address the conundrum posed by the well-known failure of time-dependent DFT (TDDFT) with conventional
functionals for “charge-transfer-like” excitations in oligoacenes. We show that this failure is due to a small spatial overlap in orbitals
obtained from the underlying single-electron orbitals by means of a unitary transformation. We further show that, as in true charge-
transfer excitations, this necessarily results in failure of linear-response TDDFT with standard functionals. Range-separated hybrid
functionals have been previously shown tomitigate such errors but at the cost of an empirically adjusted range-separation parameter.
Here, we explain why this approach should succeed where conventional functionals fail. Furthermore, we show that optimal tuning
of a range-separated hybrid functional, so as to enforce the DFT version of Koopmans’ theorem, restores the predictive power of
TDDFT even for such difficult cases, without any external reference data and without any adjustable parameters. We demonstrate
the success of this approach on the oligoacene series and on related hydrocarbons. This resolves a long-standing question in TDDFT
and extends the scope of molecules and systems to which TDDFT can be applied in a predictive manner.

I. INTRODUCTION

Time-dependent density functional theory (TDDFT) is an
approach for the calculations of excited-state properties that is
based on mapping the time-dependent Schr€odinger equation
into an equivalent set of Schr€odinger-like equations for fictitious,
noninteracting electrons.1�5 In principle, TDDFT is an exact
theory. In practice, the above-mentioned mapping relies on an
exchange�correlation potential, which is a functional of the
electron density, but whose exact dependence on the density is
unknown. The success or failure of TDDFT therefore hinges
entirely on the availability of practical and reliable approximate
forms for the exchange�correlation potential.

Almost all practical TDDFT calculations are performed using
the adiabatic approximation, i.e., assuming that at each moment
in time the exchange�correlation potential depends only on the
contemporaneous density. In local or semilocal approximations,
such as the local density approximation (LDA)6 or the general-
ized gradient approximation (GGA),7 it is further assumed that
at each point in space the exchange�correlation potential
depends only on the density at this point (in LDA) or also on
its gradient (in GGA). In hybrid functionals (e.g., B3LYP,8,9 a
functional of great popularity in organic chemistry), a fraction of
a nonlocal Fock-exchange operator is also used. Linear-response
TDDFT calculations with these standard approximations have
proven to be a remarkably accurate tool for first principles
calculations of valence excitations in broad classes of molecular
and nanoscale systems.2,4,10�13 Despite this impressive success,
lingering doubts about the true predictive power of TDDFT
using these approximations remain, because failures are some-
times encountered in simple and seemingly straightforward
scenarios.

Perhaps the best-known example of a failure without an
obvious root in the underlying formalism is the prediction of
πfπ* singlet excitation energies in the oligoacene series,

C2+4nH4+2n (n = 2�6).14 The two lowest such excitations,
usually labeled 1La and

1Lb, a notation due to Platt,15 differ in
character. 1La is dominated by the highest occupied molecular
orbital (HOMO)�lowest unoccupied molecular orbital
(LUMO) transition and is short-axis polarized. 1Lb is dominated
by a mixture of two transitions, usually the HOMO-1�LUMO
and HOMO�LUMO+1 ones, and is long-axis polarized.
Grimme and Parac noticed that whereas the 1Lb excitation energy
is reasonably well-predicted by TDDFT using a GGA functional
(BP86)16,17 and very-well predicted by using a hybrid functional
(B3LYP)8,9, the 1La excitation energy is consistently and sub-
stantially underestimated by either functional. These conclusions
have been confirmed since by numerous additional studies and
also extended to related systems exhibiting πfπ* excitations,
notably nonlinear polyaromatic hydrocarbons (see, e.g., refs 5
and 18�23). They are underscored in Figure 1, where TDDFT
with both BP86 and B3LYP are compared to the approximate
coupled-cluster singles and doubles method (CC2) results of
Grimme and Parac,14 which we take as a reference.24 For the 1Lb
excitation energy, the mean error between the TDDFT-B3LYP
and the CC2 results across the naphthalene to hexacene series is a
satisfactory 0.04 eV. But for the 1La excitation energy, TDDFT-
B3LYP consistently underestimates the CC2 results, with an
unsatisfactory mean error of 0.47 eV.

A different arena where linear-response TDDFT calculations
with the same approximate functionals are known to fail is the
prediction of charge-transfer excitation energies.25�27 These
excitations are characterized by a small spatial overlap between
the initial and the final orbital of the excited electron. Here
and throughout, we define the spatial overlap between two
orbitals, O12, as the inner product of the moduli of two orbitals
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ψ1 and ψ2,
28 namely

O12 � Æjψ1jjjψ2jæ ð1Þ
One perspective for this failure, given by Dreuw and Head-
Gordon,25 is that it is a direct consequence of the above-defined
small spatial overlap. For such a case, exact (Fock) exchange
would yield the correct electron�hole attraction term, but Fock
exchange is completely absent in semilocal functionals and only
a fraction of it is present in standard hybrid functionals. There-
fore, at least within adiabatic linear response theory,29 they cannot
be expected to yield the correct result.

In the past few years, many studies30�42 have shown that the
charge-transfer excitation problem can be remedied with the aid
of a novel class of hybrid functionals known as range-separated
hybrid (RSH) functionals.43�49 In this class of functionals, the
repulsive Coulomb potential is split into a long-range (LR) and
short-range (SR) term, e.g., via r�1 = r�1 erf(γr) + r�1erfc(γr).
The components are treated differently in the generation of the
exchange term. The SR exchange is represented by a local
potential, typically derived from a GGA expression, whereas
the LR part is treated via an “explicit” or “exact” exchange term.
This affords a natural way for providing themissing Fock term for

long-ranged interactions between nonspatially overlapping orbi-
tals while maintaining the compatibility between exchange and
correlation for short-ranged interactions.

Very recently, Wong and Hsieh50 have shown that use of a
RSH functional also cures the above-discussed underestimate of
1La excitation energies in oligoacenes and still performs well for
1Lb excitations energies. Subsequently, Richard and Herbert51

have confirmed these findings and extended them to a wide range
of nonlinear polyaromatic hydrocarbons. This success is not at all
trivial because 1La excitations are certainly not charge-transfer
excitations in the sense of eq 1, and even more refined quanti-
tative measures of the nature of the excitation28 clearly identify
them as regular valence excitations.19,50�52 This has led Richard
andHerbert51 to postulate that such excitations possess a “charge-
transfer character in disguise” and to pose two important and
related questions, which we paraphrase as follows: (1) How can
this charge-transfer-like character be detected a priori? and (2) In
the absence of accurate (ab initio or experimental) reference
data, can we really trust TDDFT to have predictive power in
such cases?

In this article, we propose a solution to this conundrum. First,
we show that the elusive charge-transfer-like characteristics are
due to a small spatial overlap in orbitals obtained from the
underlying single-electron orbitals by means of a unitary trans-
formation. Second, we show that the optimally tuned RSH
functional, which we have previously established for charge-
transfer excitations,53,54 restores the predictive power of TDDFT
even for such difficult cases without any external reference data
and without any adjustable parameters. The success of this
approach is demonstrated on the oligoacene series as well as
on related molecules.

II. THEORY OF CHARGE-TRANSFER-LIKE EXCITATIONS

To understand what is a “charge-transfer-like” excitation and
how it may arise, consider the general form of the linear-response
TDDFT equations based on a RSH functional of the type des-
cribed above. By straightforward extension of the formalism of ref
55 from a conventional hybrid functional to anRSHone, we obtain

C D
�D �C

 !
X
Y

 !
¼ pω

X
Y

 !
ð2Þ

Where X, Y are the electron�hole and hole�electron compo-
nents, respectively, of the eigenvector in the molecular orbital
representation with

Cksσ, jtσ0 ¼ ðkσsσjr�1
12 jjσ0 tσ0 Þ + ðkσsσjf γσσ0 jjσ0 tσ0 Þ

� δσσ0 ðkσjσ0 juγðr12Þjsσtσ0 Þ + ðEsσ � EkσÞδstδkjδσσ0 ð3Þ
and

Dksσ, jtσ0 ¼ ðkσsσjr�1
12 jjσ0 tσ0 Þ + ðkσsσjf γσσ0 jjσ0 tσ0 Þ

� δσσ0 ðkσtσ0 juγðr12Þjjσ0 sσÞ ð4Þ
where σ, σ0 are spin indices, k,j and s,t are, respectively, indices for
occupied and unoccupiedmolecular orbitals,ψ, and eigenvalues, ε,
and

ðkσsσjr�1
12 jjσ0 tσ0 Þ ¼

ZZ ψσ
k ðrÞψσ

s ðrÞψσ0
j ðr0Þψσ0

t ðr0Þ
jr� r0j d3rd3r0 ð5Þ

Figure 1. Excitations energies of the 1La (a) and
1Lb (b) transitions in

the oligoacene series, C2+4nH4+2n (n = 2 to 6). TDDFT data obtained
with the BP86 GGA functional (red squares), the B3LYP standard
hybrid functional (blue diamonds), and the optimally tuned BNL range-
separated hybrid functional (green triangles) are compared to reference
CC2 values, taken from ref 14 (black ‘�’ signs).
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ðkσsσjf γσσ0 jjσ0 tσ0 Þ ¼
Z

ψσ
k ðrÞψσ

s ðrÞf γXCðr; σ, σ0Þψσ0
j ðrÞψσ0

t ðrÞd3r
ð6Þ

ðkσjσ0 juγðr12Þjsσtσ0 Þ ¼
ZZ

ψσ
k ðrÞψσ0

j ðrÞuγðjr� r0jÞψσ
s ðr0Þψσ0

t ðr0Þd3rd3r0

ð7Þ
where for simplicity all orbitals are assumed to be real and finally,
where:

uγðr12Þ ¼ erf ðγr12Þ
r

u̅γðrÞ ¼ erfcðγr12Þ
r

ð8Þ

and f XC
γ (r;σ,σ0) is the (semi-)local exchange�correlation kernel

arising from the combination of the (semi-)local exchange corre-
sponding to the short-range potential, uγ(r), and the (semi-)local
correlation. For the simple case of an excitation dominated
by a singletHOMO�LUMOtransition, such that the contribution
of all other transitions can be neglected, eq 2 reduces to a 2 � 2
matrix equation involving only the HOMO (H) and LUMO (L)
orbitals:

c d
�d �c

 !
x
y

 !
¼ pω

x
y

 !
ð9Þ

where, using H(L) for the HOMO (LUMO) index, both of same
spin, and ɛLH = ɛL � ɛH, we have

c ¼ ELH + d + ðHLjuγðr12ÞjHLÞ � ðHHjuγðr12ÞjLLÞ
d ¼ ðHLju̅γðr12Þ + f γσσjHLÞ ð10Þ

which, after straightforward algebra yields

ðpωÞ2 ¼ c2 � d2 ¼ EcgðEcg + 2dÞ ð11Þ
where we defined a “corrected gap”, ɛcg, as

Ecg ¼ c� d
¼ ELH � ðHHjuγðr12ÞjLLÞ + ðHLjuγðr12ÞjHLÞ ð12Þ

In the “extreme CT excitation case” the HOMO and LUMO
orbitals are separate, i.e., their spatial overlap is vanishingly
small and |ψH (r)||ψL (r)| ≈ 0 for all r. In this case, d = 0, and
the excitation energy equals the corrected gap: pω = ɛcg = ɛLH �
(HH|uγ(r12)|LL), i.e., the HOMO�LUMO gap corrected by
subtracting the long-range Coulomb energy between the electron
density and the hole density. When the underlying functional is
GGA the correction term is zero, and the excitation energy is equal
to the KS HOMO�LUMO gap. This should be compared to the
exact optical excitation energy, which in the extreme charge-
transfer case is given by the Mulliken limit,56 IP � EA � 1/R,
where IP is the ionization potential of the donor, EA is the electron
affinity of the acceptor, and R is the (large) distance between the
electron and the hole. The quantity IP� EA is often referred to as
the fundamental gap.43 Because ɛLHobtained from a local potential
is much smaller than the fundamental gap43 and because it is
independent of R for large R, the charge-transfer excitation energy
predicted from TDDFT based on GGA is usually much too low
when compared to the experimental gap. We stress that this is a
fundamental limitation of the formalism (as opposed to, e.g., an
insufficiently accurate choice of parameters). The GGA functional
possesses no mechanism that would allow for either increasing the
fundamental gap value or including the 1/R dependence. With

B3LYP the problem is somewhat mitigated, but ɛLH is still
significantly smaller than the fundamental gap and, owing to the
fraction of exact exchange, only a fraction of the 1/R term is cap-
tured. With RSH, ɛLH can be quantitatively close to the funda-
mental gap,57 and the electron�hole binding energy is close to 1/R
for large R, which immediately explains why charge-transfer exci-
tations are described realistically.

The above explanation of the failure of conventional func-
tionals in describing charge-transfer excitations within linear-
response TDDFT cannot be carried over, as is, to a similar phenom-
enon concerning La excitations in oligoacenes, because the
HOMO and LUMO spatially overlap strongly, and so there is
no charge-transfer to begin with. For example, using B3LYP for
anthracene, the spatial overlap between the HOMO and the
LUMO orbitals, as defined in eq 1, is 0.88. Thus a different ex-
planation is needed.

There are many cases in the analysis of molecular orbitals
where improved intuitive understanding as well as further quanti-
tative analysis is possible with the aid of auxiliary orbitals ob-
tained from the original ones via a unitary transformation. An
important and well-known example is the effect of unitary
transformations on the degree of orbital localization.58�61 It is
therefore interesting to examine the effect of such transforma-
tions on the degree of spatial overlap. As a first step, consider two
auxiliary orbitals, ψ1 and ψ2, which are obtained from the
HOMO and LUMO orbitals via the following simple unitary
transformation:

ψ1 ¼ ðψH +ψLÞ=
ffiffiffi
2

p
, ψ2 ¼ ðψH �ψLÞ=

ffiffiffi
2

p ð13Þ
In terms of these auxiliary orbitals, eqs 10 and 12 yield

Ecg ¼ ELH � ð11juγðr12Þj22Þ + ð12juγðr12Þj12Þ
d ¼ 1

4
½ð11ju̅γðr12Þ + f γσσj11Þ + ð22ju̅γðr12Þ + f γσσj22Þ

� 2ð11ju̅γðr12Þ + f γσσj22Þ� ð14Þ
and ɛLH can be expressed as

ELH ¼ ÆψLjĤDFT jψLæ� ÆψHjĤDFT jψHæ

¼ � 2Æψ1jĤDFT jψ2æ ð15Þ
where ĤDFT is the ground-state single-electron Hamiltonian
corresponding to the approximate exchange�correlation func-
tional chosen.

Importantly, the GGA-based linear-response TDDFT equa-
tions are obtained from eq 9 by considering the limit γ f 0, in
which uγ f 0 and uγ f 1/r. In this limit, eq 14 shows that the
corrected gap is equal to the HOMO�LUMO gap, and so the
excitation energy is given by

ðpωÞ2 ¼ ELHðELH + 2dÞ ð16Þ
Just as we defined the “extreme charge-transfer excitation

case” to correspond to completely nonspatialy overlapping
HOMO and LUMO orbitals, let us now define the “extreme
charge-transfer-like excitation case” to correspond to completely
nonspatially overlapping auxiliary orbitals, i.e., |ψ1 (r)||ψ2 (r)| = 0
for every r. In practice, in oligoacenes one does not have an
extreme charge-transfer-like case, but as shown in Figure 2 for the
representative case of anthracene, this scenario is approximately
obeyed—the spatial overlap, O12, is 0.30 with B3LYP (0.29 with
BNL), compared to 0.88 between the original HOMO and



2411 dx.doi.org/10.1021/ct2002804 |J. Chem. Theory Comput. 2011, 7, 2408–2415

Journal of Chemical Theory and Computation ARTICLE

LUMO. In fact within a simple H€uckel picture the zero overlap
scenario is fully obeyed. Now, because the GGA Hamiltonian
contains no long-range components, we find from eqs 15 and 16
that in this limit, perhaps counterintuitively, both the HOMO�
LUMO gap, ɛLH, and the optical excitation energy, pω, become
vanishingly small! Therefore, the GGA-based calculation neces-
sarily yields very small excitation energies. Just like in the true
charge-transfer case, GGA is flawed here. The small spatial
overlap of the auxiliary orbitals is a necessity of symmetry and
thus inevitably leads to very small gaps, an error for which GGA
fundamentally offers no “mechanism” of correction and therefore
fails to produce realistic optical gaps. At the same time, the RSH-
based calculation, where γ 6¼ 0, is saved from such failure because
the long-range exchange terms in ĤDFT of eq 15 prevent the
HOMO�LUMO gap from vanishing. Furthermore, similar
to the CT case, the corrected gap in eq 14 is: ɛcg = ɛLH �
(11|uγ(r12)|22), which differs from the HOMO�LUMO gap
precisely by an “exciton binding energy”, but between the
auxiliary orbital charge distributions, |ψ1 (r)|

2 and |ψ2 (r)|
2.

The similarities and differences between a charge-transfer-like
and a true charge-transfer excitation are now clear: In both types
of excitations, the serious errors that GGA-based calculationsmay
arise from the presence of weakly spatially overlapping orbitals
and the absence of nonlocality in the exchange�correlation
kernel. And in both types of excitations, use of a Fock exchange
term results in excitonic terms that correctly describe the physics of
the transition. But in charge-transfer-like excitations, unlike in true
charge-transfer ones, all this does not involve the orbitals obtained
directly from the ground-state DFT calculation but rather a unitary
transformation thereof. Consequently, the charge-transfer-like char-
acter cannot be exposed by considering only the untransformed
orbitals or the density difference induced by the excitation.

We note that the above-scenario is clearly just one out of an
entire family of charge-transfer-like scenarios, in which weakly
spatially overlapping orbitals are obtained via a unitary transfor-
mation of the molecular ones. For example, the pertinent unitary
transformation does not have to be one of a 45� rotation in the

orbital space. In this sense, the true charge-transfer excitation is
simply the one obtained with the trivial (identity) unitary trans-
formation. Furthermore, if the transition is dominated by more
than one pair of orbitals, the requisite unitary matrix will be larger.
An interesting special case of the latter scenario, analyzed in detail
by Hieringer and G€orling,62�64 is that of excitations in a spatially
separated homodimer. There, the transition is dominated by four
orbitals, two corresponding to a linear combination of theHOMO
of eachmonomer and two corresponding to a linear combination
of the LUMO of each monomer. Also in this case the excitation
does not involve charge-transfer that can be deduced from
density differences, and yet linear-response TDDFT based on
GGA fails. But a 4 � 4 unitary transformation exposes the
absence of spatial overlap between the HOMO of one monomer
and the LUMO of the other as the true source of this failure.65

Determining whether, and which, unitary transformation min-
imizes the spatial overlap of pertinent orbitals and whether
weakly spatially overlapping orbitals can be obtained, then emerges
as a path to deciding a priori whether a TDDFT failure associated
with charge-transfer-like excitations may occur, thus answering
the first challenge posted by Richard and Herbert.51

We further note that Peach et al.28 introduced a “spatial
overlap measure”, Λ, to be used as a diagnostic tool in a general
scenario involving multiple molecular orbitals:

Λ ¼
∑
ia
k2iaOia

∑
ia
k2ia

ð17Þ

where kia = Xia + Yia (X and Y are the vector solutions of the
linear-response TDDFT equations defined in eq 2 and Oia is the
spatial overlaps defined in eq 1 with ψ1 the i

th (occupied) mole-
cular orbital and ψ2 the ath (unoccupied) molecular orbital. A
value of Λ that is too small indicates a charge-transfer situation,
warning the user not to rely on standard functionals. The above
discussion immediately explains the observation50,51 thatΛ does
not “sound the alarm” when a charge-transfer-like situation

Figure 2. Orbital maps of the HOMO and LUMO orbitals (top) and their normalized sum and difference (bottom) for anthracene, as obtained from
the optimally tuned BNL functional.
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arises, because the spatial overlap between the original orbitals is
not small. However, the present work suggests that a relatively
straightforward remedy is to seek the unitary transformation that
minimizes a spatial overlap criterion such as that of Peach et al.,
then use as a diagnostic warning tool the value computed using
the orbitals obtained with this unitary transformation.

III. PREDICTING CHARGE-TRANSFER-LIKE EXCITATIONS
FROM AN OPTIMALLY TUNED RANGE-SEPARATED
HYBRID FUNCTIONAL

Having laid out the general principles of charge-transfer-like
excitations in the previous section, we make no attempt here at
creating a comprehensive catalogue of charge-transfer-like sce-
narios. Instead, we move to the second and practically more
pertinent challenge raised by Richard and Herbert:51 How can
the predictive power of TDDFT, even in the presence of such
“difficult cases”, be restored? eq 14 and its associated analysis,
together with the excellent numerical results of Wong and
Hsieh50 and of Richard and Herbert,51 clearly suggest the use
of an RSH functional. However, a serious difficulty remains,
which is the choice of the range separation parameter, γ. The
above-mentioned previous TDDFT studies of oligoacenes with
RSH functionals have deduced appropriate values for γ from
either coupled cluster or experimental data. While this is a
perfectly valid approach, it limits the application of the method
to new and unknown systems, especially given that the best
choice of γ is known to generally vary with system.30,54,57,66,67

In previous work on inter- and intramolecular charge-transfer
excitations,53,54 we have shown that full predictive power can be
obtained by optimally tuning the range-separation parameter, γ.
The suggested tuning procedure has been discussed in detail
elsewhere.53,54,57 Briefly, as mentioned above, in the limit of an
infinite donor�acceptor separation, the lowest excitation energy
of true charge-transfer systems reduces to the difference between
the ionization potential of the donor and the electron affinity of
the acceptor. Therefore, these quantities must be well predicted
by ground-state DFT eigenvalues if the computation is to reduce
to the correct limit. If the exact exchange�correlation functional
is used, then the DFT version of Koopmans’ theorem establishes
that the highest-occupied eigenvalue is equal and opposite to
the ionization potential.68�70 This implies that an optimal choice
for obtaining the correct ionization potential of an N electron
system from the highest occupied RSH eigenvalue is to enforce
Koopmans’ theorem, i.e., to find γ such that

� EγHðNÞ ¼ IγðNÞ � EgsðN � 1; γÞ � EgsðN; γÞ ð18Þ
where Iγ(M) is the ionization potential of anM electron system,
calculated as a ground-state energy difference, ɛH

γ (M) is the
HOMO energy, and Egs(M;γ) is the ground-state energy of anM
electron system. For determining the electron affinity, we employ
Koopmans’ theorem also for the ionization potential of the nega-
tively charged system, which, barring relaxation effects, is the
same as electron affinity of the original system. Because there is
one parameter but two conditions, we seek the γ that minimizes
the overall deviation expressed in the target function:

J2ðγÞ ¼ ðEγHðNÞ + IγðNÞÞ2 + ðEγHðN + 1Þ + IγðN + 1ÞÞ2
ð19Þ

The down-side of using eq 19 is that the optimal value of γ needs
to be determined for each system of interest separately. Among

other things, this does not allow for size consistency of the
functional. But a crucial observation as far as predictive power is
concerned is that using eq 19 to choose the optimal γ does not
require any empirical input and that the procedure contains
no adjustable parameters. In other words, eq 19 is a tuning
procedure but not a fitting procedure. Furthermore, it is based
on upholding a physical criterion (enforcing a known and
pertinent limit the exact functional must obey) rather than on
semiempirical considerations. In the following, we examine
whether the same approach is also useful for charge-transfer-
like scenarios.

All RSH calculations presented in this work were performed
using the Baer, Neuhauser, and Livshits (BNL) functional,30,47 as
implemented in version 3.2 of Q-CHEM.71 In this functional, the
long-range exchange term is a Fock-like term based on the
r�1 erf(γr) potential, whereas the short-range exchange is a local
expression, due to Toulouse et al,72 which is based on the
r�1 erfc(γr) potential. The correlation term is the standard Lee,
Yang, and Parr (LYP) expression.73 All BNL calculations were
performed using the correlation-consistent triple-ζ basis set,
cc-PVTZ,74 which was carefully tested for convergence. All ground-
state structures were optimized within a B3LYP calculation. For
the oligoacenes, we used the coordinates provided by Wong
and Hsieh.50 For other molecules, we performed our own
optimization.

For oligoacenes, we have previously shown57 that optimal
tuning using eq 19 (or using eq 18 for molecules without a
positive electron affinity) does yield a quantitatively accurate pre-
diction for the fundamental gaps (i.e., differences between the
ionization potential and the electron affinity) throughout the
series. Importantly, we found that the optimally tuned γ values
decrease monotonically with system size; for naphthalene, the
optimal value is 0.28, whereas for hexacene it is a significantly
smaller 0.19. We have interpreted this physically as being due to
the increase of electron delocalization with increasing size of this
conjugated system, which renders the necessary weight of exact
exchange smaller.

The TDDFT results obtained from the optimally tuned BNL
calculations for the 1La and

1Lb excitation energies are shown in
Figure 1, along with the previously discussed GGA and B3LYP
results and the reference CC2 values. Unlike the GGA or B3LYP
results, the optimally tuned BNL calculations are on par with
those of the CC2 reference results for the 1La excitation energy.
Specifically, the GGA and B3LYP results significantly under-
estimate the CC2 ones by a mean value of 0.74 and 0.47 eV,
respectively. But the optimally tuned BNL results only

Figure 3. Schematic representation of benzene, azulene, phenanthrene,
and biphenylene.
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underestimate the CC2 ones by 0.15 eV, which is within the
accepted error margin of either approach.54,75 Exactly as in true
charge-transfer excitations, the fact that B3LYP contains a
fraction of exact exchange has mitigated, but not solved, the
quantitative failure resulting from the charge-transfer-like char-
acter of the excitation. We note that in refs 50 and 51 a smaller
mean average error between RSH-based and CC2 results, of
∼0.05 eV, was obtained with some of the RSH-based functionals
used. Some of this difference is likely due to details of the local
exchange and correlation used. However, given the limits of
accuracy of the CC2 reference data themselves, our results are on
par with the previous ones, without recourse to empirical
parameters.

Equally importantly, the transition from B3LYP to optimally
tuned BNL functional does not compromise accuracy for the 1Lb
excitation energies, where the mean error with B3LYP and BNL
is 0.04 and 0.09 eV, respectively (GGA produces a less satisfac-
tory, but perhaps tolerable, mean error of 0.28 eV). In other
words, one obtains quantitative agreement with experiment
(∼0.1�0.2 eV), irrespective of the presence or absence of charge-
transfer-like characteristics. Again, this is on par with the previous
RSH-based results of refs 50 and 51 without recourse to empiri-
cism. Thus, the second challenge raised by Richard and Herbert—
achieving true predictive power—can be met even without going
through themathematical tedium of identifying the unitary trans-
formationwhichminimizes the spatial overlap of pertinent orbitals,
from which the nature of the failure of standard functionals be-
comes apparent.

For further confirmation of our computational approach, we
performed similar calculations for four additional molecules:
benzene, azulene, phenanthrene, and biphenylene, shown in
Figure 3. These four molecules were chosen for several reasons.
First, these molecules represent scenarios that are more general
than that afforded by the oligacene series. Benzene is of higher

symmetry, azulene is a nonalternant hydrocarbon, phenanthrene
is a nonlinear hydrocarbon, and biphenylene exhibits antiaroma-
ticity. Second, Falden et al. recently provided wave function-
based reference values for these molecules (of which we use the
CC2 results for consistency).76 Third, as summarized in Table 1,
when using B3LYP each molecule exhibits both “well-predicted”
low-lying excitation energies (i.e., showing differences of∼0.1�
0.2 eV from the CC2 values) and “poorly-predicted” low-lying
excitation energies (i.e., showing differences of ∼0.3�0.5 eV
from the CC2 values).

Table 1 shows that the optimized BNL results provide for a
balanced and satisfactory level of accuracy (a mean error of
∼0.15 eV for both types of excitations), despite the different
nature of both the problematic and the nonproblematic transi-
tions. Furthermore, as also shown in Table 1, each molecule
possesses its own different optimally tuned range-separation
parameter, underscoring the importance of optimal, molecule-
specific tuning. They also lend further support our above pre-
sented theory of charge-transfer-like excitation: For azulene,
unlike its alternant analogue, naphthalene, the HOMO�LU-
MO dominated transition is well-described by B3LYP. And
indeed, for azulene no unitary transformation of the HOMO
and LUMO orbitals was found to result in weakly spatially
overlapping orbitals. The minimal spatial overlap was found
to be 0.55 with B3LYP (0.57 with BNL), for the original
HOMO and LUMO, and any 2� 2 unitary transformation of
the HOMO and LUMO orbitals was found to merely increase
this number. This again underscores the diagnostic role unitary
transformations play in uncovering whether, and which, excita-
tions may be prone to charge-transfer-like errors. At the same
time, it shows that with an optimally tuned RSH functional, such
diagnostics are not essential to obtaining quantitatively predic-
tive results.

Table 1. Lowest Singlet Excitations for Benzene, Azulene, Phenanthrene, and Biphenylenea

molecule BP86 B3LYP BNL* CC276 dominant transition optimal γ transition dipole moment

“Well-Predicted” Excitation
benzene 5.32 5.47 5.50 5.27 HfL

H-1fL+1

0.310 0.00

azulene 2.34 2.41 2.35 2.31 HfL 0.262 0.37 (short axis)

phenanthrene 3.66 3.98 4.19 4.04 H-1fL

HfL+1

0.247 0.10 (short axis)

biphenylene 3.67 3.93 4.11 3.88 H-1fL

HfL+1

0.253 1.08 (long axis)

“Poorly Predicted” Excitation

benzene 6.07 6.16 6.40 6.56 HfL+1

H-1fL

0.310 0.00

azulene 3.49 3.64 3.79 3.95 H-1fL

HfL+1

0.262 0.19 (long axis)

phenanthrene 3.92 4.22 4.57 4.70 HfL

H-1fL+1

0.247 0.85 (long axis)

biphenylene 3.14 3.32 3.57 3.69 HfL 0.253 0.00
a Excitation energies, in eV, obtained fromTDDFT calculations with the BP86GGA functional, the B3LYP standard hybrid functional, and the optimally
tuned BNL range-separated hybrid functional are compared to reference CC2 values, taken from ref 71. Transitions where TDDFT with B3LYP
provides satisfactory agreement with CC2 results (“well-predicted” excitations) are grouped separately from transitions where agreement was not
satisfactory (“poorly predicted” excitations). Also given are the dominating transitions (where “H” stands for HOMO and “L” for LUMO) as well the
optimal range-separation parameter, γ, and the resulting dipole moment (in atomic units) for the optimally tuned BNL calculations.
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IV. CONCLUSIONS

In conclusion, we have addressed the conundrum posed by
“charge-transfer excitations in disguise”. We have shown that
such excitations are due to a small spatial overlap in orbitals ob-
tained from the underlying single-electron orbitals by means of a
unitary transformation. Furthermore, we have shown that, as in
true charge-transfer excitations, this necessarily results in failure
of linear-response TDDFT with standard functionals. Second,
we show that with optimal tuning of a range-separated hybrid
functional, so as to enforce the DFT version of Koopmans’
theorem, the predictive power of TDDFT is restored even for
such difficult cases without any external reference data and
without any adjustable parameters. We demonstrated the success
of this approach on the oligoacene series and on related hydro-
carbons. This resolves a long-standing question in TDDFT and
extends the scope of molecules and systems to which TDDFT
can be applied in a predictive manner.
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ABSTRACT:R12methods have now been established to improve both the efficiency and accuracy of wave function-based theories.
While closed-shell and spin�orbital methodologies for coupled cluster theory are well-studied, R12 corrections based on an open-
shell, spin-restricted formalism have not been well developed. We present an efficient spin-restricted R12 method based on the
symmetric exchange or Z-averaged approach that reduces the number of variational parameters. The current formalism reduces spin
contamination relative to unrestricted methods but remains rigorously size consistent in contrast to other spin-adapted
formulations. The theory is derived entirely in spin�orbital quantities, but Z-averaged symmetries are exploited to minimize the
computational work in the residual equations. R12 corrections are formulated in a perturbative manner and are therefore obtained
with little extra cost relative to the standard coupled cluster problem. R12 results with only a triple-ζ basis are competitive with
conventional aug-cc-pV5Z and aug-cc-pV6Z results, demonstrating the utility of the method in thermochemical problems for high-
spin open-shell systems.

1. INTRODUCTION

With only modestly sized basis sets, explicitly correlated
methods can achieve remarkable accuracy, providing superior
results for molecular energies,1�6 geometries,7,8 vibrational
frequencies,9,10 and other properties.11�13 Approaches based
on one-particle basis sets are unable to accurately treat the
coalescence region between two electrons, which requires a cusp
and a surrounding depletion of electron density (Coulomb hole)
near r12 = 0.14�17 In many extrapolation schemes18,19 the error
decreases as n�3 in the cardinal number of a Dunning correlation
consistent (cc-pVnZ) basis set.20 For methods with an N4 basis
set dependence, the correlation energy error only converges
as t�1/4 in the computational time!21,22 Supplementing the
orbital basis with pair functions depending explicitly on the
interelectronic distance, r12, directly includes the correct Cou-
lomb hole shape, rapidly accelerating basis set convergence.
Inclusion of r12-dependent terms leads to a large number of
difficult three- and four-electron integrals,23�25 which originally
restricted application to small molecules. R12 methods avoid
these difficult integrals through a resolution of the identity (RI)
approximation,26�28 factoring the numerous many-electron in-
tegrals into products of simple two-electron integrals. Closed-
shell coupled-cluster singles and doubles CCSD-R12 and unrest-
ricted CCSD-R12 based methods are now well established, and
the R12 corrections add little extra cost relative to the conven-
tional computation.

While spin restriction is trivially imposed in closed-shell
coupled cluster methods, extending R12 corrections to spin-
restricted and multireference methods presents several new
challenges. While the concepts of normal ordering and similarity
transformation are trivially formulated in a spin-free manner in
closed-shell problems, open-shell problems are much more
difficult since the singly occupied orbitals can correspond to both
hole (occupied) and particle (unoccupied) indices. While much

focus has been given recently to multireference coupled cluster
theory,29 even the single-reference, high-spin problem for open
shells is nontrivial. This is clearly illustrated by the numerous
high-spin open-shell approaches introduced for coupled cluster,
including spin�orbital restricted open-shell Hartree�Fock
(ROHF-CCSD),30 partially spin-adapted (PSA-CCSD),31�33

spin-restricted (SR-CCSD),34 and spin-adapted (SA-CCSD)35

coupled cluster methods. Although ROHF references spin�
project correlation energy,36�38 they do not necessarily eliminate
spin contamination in the actual wave function. Important
progress was made on state specific, rigorously spin-adapted
methods for high-spin open-shell problems by Li and Paldus39,40

and Bartlett andNooijen.41 The normal-ordered exponential and
Hausdorff expansion that forms the basis of closed-shell coupled
cluster was generalized in an elegant manner but lost the
simplicity of the conventional Hausdorff expansion. Themajority
of high-spin open-shell applications therefore still employs a
spin�orbital framework even if the cluster operator is expanded
in CSFs.32,34,35 In R12 methods, the Hausdorff expansion is
central to simplifying approximations which ignore particular
commutators,42 making some rigorously spin-adapted ap-
proaches incompatible with current R12 methods. A spin�
orbital approach which uses spin restriction to both reduce
computational cost and spin contamination therefore presents
the most tractable framework for developing efficient coupled
cluster R12 methods, especially in extending the treatment
beyond CCSD.

Beyond the theoretical simplifications, spin�orbital methods
can even improve accuracy in some cases. Specifically in sym-
metry-breaking problems, unrestricted Hartree�Fock (UHF)-
like solutions that break orbital symmetries often provide
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superior results, most notably for vibrational frequencies.43 In
particular, there has recently been renewed interest in unrest-
ricted methods combined with spin constraints,44 exploiting
the physical picture of spin polarization while still avoiding the
problematic spin contamination inherent in UHF.45 For
symmetry breaking problems, Brueckner methods can also
improve results, but even for ROHF, references will break R,β
symmetry when reoptimizing the orbitals.46,47 Due to the
unrestricted nature of the orbitals and the need to recompute
integrals on each iteration, however, tractable open-shell R12
extensions for Brueckner methods have not yet been
proposed.

An “ideal”R12 coupled cluster formulation would therefore be
spin restricted in nature, even in orbital-optimized approaches,
like Brueckner theory, reducing computational cost and spin
contamination while still maintaing a spin�orbital framework to
make the R12 corrections tractable. This compromise is achieved
in the Z-averaged approach of Lee and Jayatilaka48�51 which
employs symmetric spin functions:

σ+ ¼ 1ffiffiffi
2

p ðR + βÞ ð1Þ

σ� ¼ 1ffiffiffi
2

p ðR� βÞ ð2Þ

in the singly occupied space, ensuring that the open-shell
exchange is symmetric for R and β orbitals. Proceeding in an
unrestricted formalism with no a priori assumptions, amplitude
symmetry relations are automatically obtained similar to the
closed-shell case which drastically reduce the computational
cost. By spin-averaging exchange, ZA-CCSD can also be
extended to a Brueckner theory which does not break orbital
symmetries, drastically reducing the number of integrals that
need to be recomputed. As an initial investigation of ZA-CCSD
in explicitly correlated coupled cluster theory, we therefore
present a partially spin-adapted formulation of ZA-CCSD for
high-spin open-shell systems. R12 corrections are obtained
based on the CCSD(2)R12 ansatz of Valeev,52�54 which
provides a noniterative, pertubative R12 correction to the
conventional CCSD energy. In previous formulations51 based
on symmetric spin functions, the theory was greatly compli-
cated by the presence of R,β-exchange excitations that do not
conserveMS. We make important simplifications regarding the
R,β-exchange excitations which both increase computational
efficiency and actually decrease spin contamination. Excellent
basis set convergence is observed for a set of atomization
energies, rivaling conventional aug-cc-pV5Z and aug-cc-pV6Z
computations with only an aug-cc-pVTZ orbital basis set. The
new ZA-CCSD(2)R12 theory therefore maximizes efficiency
through accelerated basis set convergence, reduction in the
number of amplitudes and residuals, and use of a determinantal
formalism.

2. THEORETICAL BACKGROUND

2.1. Notation. In the current discussion, the following nota-
tion is used to distinguish orbital subspaces:

i,j,k,l, ... DOCC doubly occupied orbitals
a,b,c,d, ... VIR virtual orbitals
s,t, ... SOCC singly occupied orbitals
p,q, ... ORB computational orbital basis

Subspaces specific to R12 methods are also needed:

x, y, ... geminal space
p00, q00, ... CABS external orbitals
R, β, ... CBS complete basis set
p0, q0, ... RI resolution of the identity

The RI space approximates the complete basis obtained within
a finite computational basis. The complementary auxiliary basis
set (CABS) space represents those orbitals in the RI that are
orthogonal to the orbital basis set. The indices R, β denote
orbitals in a formally complete basis but which never enter the
programmable equations.
2.2. Z-averaged Coupled Cluster. For closed-shell coupled

cluster, the amplitudes are related by

TaRbR
iR jR ¼ T

aRbβ
iR jβ � T

aRbβ
jR iβ ð3Þ

which guarantees that even if the individual determinants in the
N-particle basis are not spin eigenfunctions, the total wave
function will be. For open-shell cases using a truncated model
space, such as CCSD or CISD, the determinantal basis does not
automatically produce a spin eigenfunction even if a restricted
open-shell Hartree�Fock (ROHF) reference is chosen. Due to
asymmetric exchange ofR and β orbital subspaces, the amplitude
symmetry in eq 3 is broken, resulting in unrestrictedTiR jR

aR bR,TiR jβ
aR bβ,

and Tiβ jβ
aβ bβ amplitudes. Furthermore, the projection manifold

usually includes only configurations in the Møller�Plesset
(MP2) first-order interacting space so that connected pseudo-
triple excitations:

Φ
aRbRsβ
iR jβsR ð4Þ

are neglected despite being necessary for an exact spin eigen-
function. This presents both an efficiency concern due to the
extra amplitudes and an accuracy concern due to spin contam-
ination in the wave function. Practically speaking, for high-spin
open-shell CCSD with ROHF or UHF references, spin contam-
ination is very small34,55 except for molecules, such as NO2,
which have severely spin-contaiminated UHF reference func-
tions. The model space for CCSD therefore seems to be
complete enough that Schr€odinger projection:

ÆΦab
ij jH̅j0æ ¼ 0 ð5Þ

is enough to eliminate much of the spin contamination.
Generally speaking, the most common approach is the unrest-

ricted coupled cluster with restricted orbitals scheme (ROHF-
CCSD) described above.30,56,57 The coupled cluster equations
are derived in a purely spin�orbital form, and separate ampli-
tudes are allowed for each spin case. No efficiency is gained
relative to UHF-based methods except that only a single set of
integrals is required. Many methods were therefore developed to
overcome the “unrestricted” problem of ROHF-based coupled
cluster. Janssen and Schaefer33 proposed a spin-adapted formu-
lation employing the unitary group generators. For singly
occupied orbitals, the unitary group operators contain both
excitation and de-excitation operators with respect to the ROHF
reference. The commutativity of the individual terms in T̂ is then
no longer guaranteed, and the Hausdorff expansion does not
truncate at quadruply nested commutators. Despite having fewer
independent amplitudes than the unrestricted approach, the
theory does not seem to provide a major efficiency advantage.
Similar problems are encountered in the approach of Li and
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Paldus.39,40 A simpler partially spin-adapted (PSA-CCSD) ap-
proach was therefore proposed by Janssen,33 Werner,32,58 and
Neogrady,31,59,60 who employed spin-adapted T̂ operators for
connected excitations resulting in spin adaptation of the linear
terms. A reduction in the number of independent amplitudes is
achieved, but no de-excitations are included in the cluster
operator, restoring the conventional Hausdorff expansion. The
independent amplitudes are determined from configuration state
function (CSF) projections, producing a minimal number of
residual equations. For the doublet case, CSFs are listed in
Tables 1 and 2 with doublet configurations denoted by D and
the external configurations denoted by Q, following the notation
of Gauss and Szalay.34 While the approach is almost entirely free
of spin contamination, the spin expectation value is not rigor-
ously, for example, 0.75 for doublet states, since the wave
function is only spin adapted in the linear excitations.
This partial spin adaptation was extended by Gauss and

Szalay34,35,61,62 in SR-CCSD. The Schr€odinger projections
(eq 5) for CSFs of the desired spin are supplemented by spin
constraints on the external configurations:

ÆQ ~Φab
ij jexpð � T̂ÞŜ2N expðT̂Þj0æ ¼ 0 ð6Þ

Here subscript N denotes normal ordering with respect to the
Hartree�Fock reference. The spin projections add almost no
extra computational cost relative to the Schr€odinger projections,
and the SR-CCSD method is therefore similar in computational
cost to the PSA-CCSD method. For SR-CCSD, the expectation
value ÆŜ2æ computed from differentiation of the CCSD Lagran-
gian is rigorously S(S + 1) for a given multiplicity. We must
emphasize, however, that the coupled cluster wave function is not
a spin eigenfunction unless the spin constraints are extended to
all configurations in the full configuration interaction (FCI) wave
function. Efforts along these lines were pursed byHeckert et al.,35

leading to the SA-CCSD approach. Gauss and Szalay suggested
only including spin constraints for those configurations in the
first-order interacting space, limiting the cluster operator to
connected double excitations.34 For accurate treatment of certain

excited states in the equation-of-motion (EOM) method, pseu-
dotriple excitations were also important,61 and the method was
further extended through SR-CCSDT.62

A fundamentally different approach to reducing the number of
independent parameters was given by Lee and Jayatilaka50,51 by
introducing a symmetric spin basis:

σ+ ¼ 1ffiffiffi
2

p ðR + βÞ ð7Þ

σ� ¼ 1ffiffiffi
2

p ðR� βÞ ð8Þ

for the singly occupied orbitals. This technique was denoted
either open-shell CCSD (OCCSD) or Z-averaged perturbation
theory (ZAPT).48,49 We here choose the name Z-averaged
CCSD (ZA-CCSD) to emphasize that symmetry relations
among the amplitudes are introduced by Z-averaging the SOCC
space against the DOCC space. The exchange operator, however,
no longer conservesMS in the DOCC space, producing nonzero
spin�exchange excitations:

Kaβ
iR ¼ 1

2∑s
Æsijasæ ð9Þ

which couple R and β subspaces via the symmetric spin orbitals.
The ZA-CCSD generalization of eq 3 is therefore

TaRbR
iRjR + T

aβbβ
iR jR ¼ T

aRbβ
iR jβ � T

aRbβ
jR iβ ð10Þ

where an additional set of independent amplitudes TiR jR
aβbβ is

nonzero. The ZA-CCSD approach can be greatly simplified by
noting from second-order perturbation theory that R, β-ex-
change amplitudes are not included in the first-order interacting
space and might be neglected in the cluster operator as higher-
order excitations. We therefore proceed by ignoring these R,
β-exchange terms.
In practice, CSF residuals are usually computed as linear

combinations of single determinant projections rather than
directly computed from spin-adapted matrix elements. The
single CSF residual:

ÆD ~Φab
ij ð1ÞjH̅j0æ ¼

1

2
ffiffiffi
3

p ð2RaRbR
iRjR

+ 2R
aβbβ
iβjβ + R

aRbβ
iR jβ

� R
aRbβ
jR iβ + R

aβbR
iβjR � R

aβbR
jβ iR Þ ð11Þ

Table 1. Doublet CSFs Used in SR-CCSD

D ~Φa
i ð1Þ ¼ 1ffiffiffi

2
p ðΦaR

iR +Φ
aβ
iβ Þ

D ~Φa
i ð2Þ ¼ 1ffiffiffi

6
p ðΦaR

iR �Φ
aβ
iβ � 2Φ

aRsβ
sR iβ Þ

D ~Φa
s ð1Þ ¼ ΦaR

sR

D ~Φs
i ð1Þ ¼ Φ

sβ
iβ

D ~Φab
ij ð1Þ ¼ 1

2
ffiffiffi
3

p ð2ΦaRbR
iR jR + 2Φ

aβbβ
iβ jβ +Φ

aRbβ
iR jβ �Φ

aRbβ
jR iβ +Φ

aβbR
iβ jR �Φ

aβbR
jβ iR Þ

D ~Φab
ij ð2Þ ¼ 1

2
ðΦaRbβ

iR jβ +Φ
aRbβ
jR iβ +Φ

aβbR
iβ jR +Φ

aβbR
jβ iR Þ

D ~Φab
si ð1Þ ¼ 1ffiffiffi

6
p ð2ΦaRbR

sR iR +Φ
aRbβ
sR iβ �Φ

bRaβ
sR iβ Þ

D ~Φab
si ð2Þ ¼ 1ffiffiffi

2
p ðΦaRbβ

sR iβ +Φ
bRaβ
sR iβ Þ

D ~Φas
ij ð1Þ ¼ 1ffiffiffi

6
p ð2Φaβsβ

iβ jβ �Φ
aRsβ
iR jβ +Φ

aRsβ
jR iβ Þ

D ~Φas
ij ð2Þ ¼ 1ffiffiffi

2
p ðΦaRsβ

iR jβ +Φ
aRsβ
jR iβ Þ

Table 2. External Quartet and Sextet CSFs Used in SR-CCSD

Q ~Φa
i ð1Þ ¼ 1ffiffiffi

3
p ðΦaR

iR �Φ
aβ
iβ +Φ

aRsβ
sR iβ Þ

Q ~Φab
ij ð1Þ ¼ 1

2
ffiffiffi
3

p ð2ΦaRbR
iR jR � 2Φ

aβbβ
iβ jβ +Φ

aRbβ
iR jβ +Φ

aβbR
jβ iR �Φ

aRbβ
jR iβ �Φ

aβbR
iβ jR Þ

Q ~Φab
ij ð2Þ ¼ 1

2
ðΦaβbR

iβ jR +Φ
aβbR
jβ iR �Φ

aRbβ
iR jβ �Φ

aRbβ
jR iβ Þ

Q ~Φab
ij ð3Þ ¼ 1ffiffiffi

6
p ðΦaRbR

iR jR +Φ
aβbβ
iβ jβ �Φ

aRbβ
iR jβ �Φ

aβbR
iβ jR +Φ

aβbR
jβ iR +Φ

aRbβ
jR iβ Þ

Q ~Φab
ij ð4Þ ¼ 1ffiffiffi

6
p ðΦaRbR

iR jR �Φ
aβbβ
iβ jβ �Φ

aRbβ
iR jβ +Φ

aβbR
iβ jR �Φ

aβbR
jβ iR +Φ

aRbβ
jR iβ Þ

Q ~Φab
si ð1Þ ¼ 1ffiffiffi

3
p ðΦaRbR

sR iR �Φ
aRbβ
sR iβ +Φ

bRaβ
sR iβ Þ

Q ~Φas
ij ð1Þ ¼ 1ffiffiffi

3
p ðΦaβ sβ

iβ jβ +Φ
aRsβ
iR jβ �Φ

aRsβ
jR iβ Þ
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RaRbR
iR jR ¼ ÆΦaRbR

iRjR jH̅j0æ ð12Þ
would therefore require three separate spin cases to be com-
puted. Because of the extra ZA-CCSD symmetry in eq 10, the
CSF projection in eq 11 only requires the spin�orbital residuals
RiR jβ
aRbβ and RiR jR

aβbβ (although the amplitudes TiR jR
aβbβ are chosen zero,

the corresponding residuals are not). The computational cost of
RiR jR
aβbβ is negligible, only requiring terms of the form:

R
aβbβ
iR jR r g

aβbβ
cβdβ

T
cβ
iR T

dβ
jR ð13Þ

R
aβbβ
iR jR r g

aβbβ
s�t�T

s�t�
iR jR ð14Þ

which involve either a T1 contraction or a SOCC index, and
therefore only N5 work. Only a single N6 spin�orbital residual
RiR jβ
aRbβ must therefore be computed, drastically reducing the

computational cost. The ZA-CCSD approach therefore imposes
useful amplitude symmetries via the symmetric spin basis, and
residuals are computed entirely in terms of determinantal rather
than CSF projections.
2.3. Brueckner and CCSD(T) Extensions.The spin-restricted

formalism in ZA-CCSD provides the foundation for two im-
portant, cost-saving extensions. First, Brueckner theory can be
reformulated such that the orbitals are not spin polarized,
drastically reducing the computational cost by maintaining spin
restriction in the integral transformation on each iteration. In
general, Brueckner theory reformulates the cluster operator:

expðT̂Þ ¼ expðT̂2 + T̂3 + ...Þ expðT̂1 � T̂†
1Þ ð15Þ

such that T̂1 now introduces a unitary transformation. In ZA-
CCSD we have two separate components: a conventional T̂1

which preserves MS and a T̂1
R,β which introduces the

spin�exchange excitations. We can redefine the Bruecker cluster
operator in ZA-CCSD as

expðT̂Þ ¼ expðT̂R, β
1 + T̂2 + T̂3 + ... Þ expðT̂1 � T̂†

1Þ ð16Þ
with only the conventional T̂1 generating a unitary transforma-
tion. Because ZA-CCSD has the amplitude symmetry:

TaR
iR ¼ T

aβ
iβ ð17Þ

the orbital transformation maintains equivalent R and β orbitals.
This partitioning of T̂1 is consistent with the perturbative analysis
of Lee and Jayatilaka who argue that the excitation rank of the
operator should include not only the number of orbital substitu-
tions but also the number of spin flips. In this regard, even though
T̂1
R,β corresponds to a single substitution, it should be considered a

double excitation. We therefore consider T̂1
R,β to be of rank two.

Initial attempts along these lines were attempted by Crawford
et al.47 and yielded promising results, particularly for vibrational
frequencies of difficult radicals like NO3. Rigorous benchmarking
of these Brueckner approximations, however, is not included in
this work, as we are here only concerned with validating the R12
approximations described above within the basic Z-averaged
formalism.
The ZA-CCSD formalism can also be further extended to

a spin-restricted CCSD(T) for open-shells.63 The CCSD(T)
formalism requires the full Hamiltonian to be partitioned into a
diagonal Ĥ0 and a perturbation V̂ . For ROHF references, Ĥ0 is
usually constructed by semicanonicalization of the orbitals,
diagonalizing the Fock operator separately within the occupied
and the virtual subspaces. The mixed occupied�virtual terms, fi

a,

are neglected in Ĥ0 instead being included in the perturbation.
Because of asymmetric exchange, however, the orbital canonica-
lization breaks R, β-symmetry requiring several different spin
cases to be treated. In contrast, diagonalization of the symmetric-
exchange Fock operator in ZA-CCSD maintains equivalent
orbitals and eigenvalues for R and β subspaces, requiring only
a single spin case to be treated. Additionally, in line with
the Brueckner arguments given above for T1, for ZA-CCSD
canonical orbitals, the matrix elements f iR

aR are rigorously zero.
Unlike most ROHF-based theories, ZA-CCSD therefore has a
pseudo-Brillouin condition similar to the closed-shell case,
and only the off-diagonal Fock matrix elements f iR

aβ must be
included in the perturbation. Again, we delay a complete discus-
sion of the CCSD(T) extension and focus here on the R12
treatment.
2.4. Explicitly Correlated CCSD. To illustrate the essential

concepts in R12 theory, we first briefly review the MP2
equations.16,26,64�66 In MP2-R12, the conventional residual
equations are generalized to

Rij
ab ¼ f caT

ij
cb + f

c
bT

ij
ac � f ikT

kj
ab � f jkT

ik
ab + C

xy
abT

ij
xy + g

ij
ab ð18Þ

where fp
q are Fock matrix elements and the Txy

ij are explicit
amplitudes associated with the pair correlations:

jijæ f Q̂ 12Fðr12Þjxyæ ð19Þ
with x, y the geminal generating space, usually taken to be
occupied orbitals. The correlation factor, F(r12), is usually of
Slater-type11,67�70 and approximated as a sum a Gaussian
geminals:

Fðr12Þ ¼ expð � γr12Þ � ∑
n
cnexpð � Rnr

2
12Þ ð20Þ

The projection operator, Q̂ 12, is included to ensure the explicit
geminals are orthogonal to the reference function, ô, and virtual
pairs, v̂

Q̂ 12 ¼ ð1� ô1Þð1� ô2Þð1� v̂1v̂2Þ ð21Þ
We enforce in the current work that the R12 terms contribute to
the manifold of doubly excited configurations only and do not
directly contribute to the singles correlation energy. Schemes
have been developed for including R12 terms to correct the one-
particle contribution, and we refer the reader to refs 71�73. The
standard MP2 expression is augmented by the coupling matrix
between conventional and R12 terms:

Cxy
ab ¼ Æabjðf̂ 1 + f̂ 2ÞQ̂ 12Fðr12Þjxyæ ð22Þ

For the explicit amplitudes, we must solve

Rij
xy ¼ Vij

xy + B
wz
xy T

ij
wz � Xwz

xy ðf ikTkj
wz + f

j
kT

ik
wzÞ + Cab

xyT
ij
ab ð23Þ

Here Vxy
ij is the R12 generalization of the electron repulsion

integral:

Vij
xy ¼ xy

�����Fðr12ÞQ̂ 12
1
r12

�����ij
+*

ð24Þ

where the conventional pair correlation function is replaced by
the R12 geminal. Bxy

wz is the generalization of the energy
denominator:

Bwzxy ¼ ÆxyjFðr12ÞQ̂ 12ðf̂ 1 + f̂ 2ÞQ̂ 12Fðr12Þjwzæ ð25Þ
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and Xxy
wz is the geminal overlap matrix:

Xwz
xy ¼ ÆxyjFðr12ÞQ̂ 12Fðr12Þjwzæ ð26Þ

For further details, we refer the reader to refs 26, 64, or 65.
Rigorous development of the CCSD-R1274�77 model with RI

approximations leads to new, difficult R12 intermediates with a
severe auxiliary basis set dependence78 which are absent in MP2.
The CCSD(2)R12

52�54 approach formulates the R12 terms as a
perturbative correction to the conventional CCSD wave func-
tion. Performing a L€owdin partitioning of the similarity trans-
formed Hamiltonian:

H̅ ¼ H̅PP H̅PQ

H̅QP H̅QQ

 !
ð27Þ

The R12 geminal excitations are given as an external space, Q,
while the conventional CCSD determinants comprise the re-
ference space, P. The Hamiltonian is partitioned into zeroth- and
first-order parts as

H̅ð0Þ ¼ H̅PP 0
0 H̅ð0Þ

QQ

 !
ð28Þ

H̅ð1Þ ¼
0 H̅PQ

H̅QP H̅ð1Þ
QQ

0
@

1
A ð29Þ

Similar approximations are followed in CCSD(F12)79�82 and
CCSD-F12a,b approaches which4,83 directly include R12 gem-
inal excitations:

T̂
0
2 ¼ Tij

xyF
xy
Rβa

Rβ
ij ð30Þ

FxyRβ ¼ ÆRβjQ̂ 12Fðr12Þjxyæ ð31Þ
in the cluster operator but approximate R12 commutators as

½Ĥ, T̂
0
2� � ½̂f , T̂ 0

2� ð32Þ
neglecting contractions between T̂2

0 and the fluctuation potential.
By partitioning the Hamiltonian for R12 terms, the basis set
dependence of R12 matrix elements is drastically reduced, and
MP2-R12 codes can be straightforwardly generalized for CCSD.
Although all CCSD-R12 approaches are essentially equivalent in
cost to a conventional CCSD computation, the approach of
Valeev has the extra theoretical appeal of being noniterative and
generated automatically by the underlying CCSD wave function.
In this regard, the CCSD(2)R12 correction is more easily general-
ized to spin-restricted open-shell techniques or multireference
coupled cluster ans€atze and has therefore been called an “uni-
versal explicitly correlated coupled cluster.”84

While the zeroth-order HQQ
(0) is trivially selected as the Fock

operator for closed-shell molecules, the exact definition of Ĥ0 is
greatly complicated for ROHF references by the nonzero
occupied virtual block fia of the Fock operator. The ROHF
reference function is not an eigenfunction of the Fock operator,
requiring a new partition of the Hamiltonian. Numerous ROHF-
based perturbation theories have therefore been develo-
ped,49,85,86 including open-shell perturbation theory (OPT1
and OPT2),86�88 invariant open-shell perturbation theory
(IOPT),89 restricted open-shell Møller-Plesset (ROMP),90 re-
stricted Møller-Plesset (RMP),37,91 and Z-averaged perturbation

theory (ZAPT).48�51 The most straightforward perturbation
theory, RMP, currently forms the basis for the CCSD(F12),
CCSD-F12a,b, and CCSD(2)R12 methods. Projection operators
eliminate the undesired fia terms:

Ĥ0 ¼ ôf̂ ô + v̂f̂ v̂ ð33Þ
Asymmetric exchange in f̂ , however, breaks the spin restriction
for R and β orbitals and is therefore not appropriate for the spin-
restricted CCSD methods developed here. In ZA-CCSD we
choose for DOCC and VIR orbitals:

Ĥ0 ¼ ĥ + Ĵ � K̂c � 1
2
K̂o ð34Þ

which Z-averages the open-shell exchange

Kpq
o ¼ ∑

s ∈ SOCC
Æspjqsæ ð35Þ

Here ĥ is the core Hamiltonian, Ĵ is the Coulomb operator, and
K̂c is the closed-shell exchange:

Kpq
c ¼ ∑

i ∈ DOCC
Æipjqiæ ð36Þ

This is conceptually equivalent to using σ+ and σ� orbitals within
the SOCC space. For occupied SOCC orbitals:

Ĥ0 ¼ ĥ + Ĵ � K̂c � K̂o ð37Þ
and for unoccupied SOCC orbitals:

Ĥ0 ¼ ĥ + Ĵ � K̂c ð38Þ
The partition enforces R, β symmetry in the DOCC space.
However, in contrast to other ROHF-based partitions,86�89 an
eigenvalue splitting is introduced between σ+ and σ� orbitals.
Compared to other choices of partition,37,88,91 the Z-averaged
Fock operator here is therefore unique in maintaining R, β spin-
restriction without unphysically treating occupied and virtual
orbitals within the SOCC space equivalently. We emphasize
again that the difference choices of Ĥ0 are only relevant for open-
shell molecules. For closed shell, the ZA-CCSD(2)R12 method
becomes equivalent to the original CCSD(2)R12 method of
Valeev.52

Applying Rayleigh�Schr€odinger perturbation theory through
second order, the energy correction is given as

E2 ¼ H̅PQ ðH̅ð0Þ
QQ � SQQE0Þ�1H̅QP ð39Þ

For the R12 correction in CCSD, the P space can be partitioned
into the reference determinant Φ0 and the set of excited
determinants {Φi

a} and {Φij
ab}. The external space Q is the set

of R12 configurations:

jΦxy
ij æ ¼ ΦRβ

ij FxyRβ ð40Þ
This leads to the matrix elements:

ÆΦ0jH̅jΦxy
ij æ ¼ Vxy

ij ð41Þ

Ta
k ÆΦ

k
ajH̅jΦxy

ij æ ¼ Ta
i V

xy
aj ð42Þ

Tab
kl ÆΦ

kl
abjH̅jΦxy

ij æ ¼ Vxy
ij + PðijÞVxy

aj T
a
i +

1
2
Vxy
abτ

ab
ij

+ PðijÞFxyap0gp
0k

jb Tab
ik + ... ð43Þ
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where RI indices have been substituted for CBS indices and

τabij ¼ Tab
ij + Ta

i T
b
j � Tb

i T
a
j ð44Þ

Following Valeev,54 two important approximations are made.
First, to be consistent with our perturbative approach, cluster
products, such as T̂1

2, are neglected as higher order, resulting in
the replacement of Tij

ab for τij
ab. For closed shell, T̂1 terms could

also be neglected. However, for consistency with ROHF
references, in contrast to the original formulation of Valeev,52

we include these terms even for closed-shell molecules follow-
ing the spirit of the CCSD(T) correction.92,93 The more
important approximation is the neglect of the term:

Fxyap0g
p0k
jb Tab

ik ð45Þ
Under the original R12 standard approximation,16 the projec-
tion operator annihilates a, p00 virtual-CABS pairs. Although the
favored projection operator for MP2 applications would not
annihilate this term, the current work and the work of
Valeev53,54 demonstrate that neglecting this term still yields
excellent results. Following similar arguments, we find

ÆΦij
xyjH̅jΦ0æ � Vij

xy + T
i
aV

aj
xy +

1
2
Vab
xy T

ij
ab ð46Þ

The final amplitudes are solved from the residuals equation:

Rij
xy ¼ Bwzxy T

ij
wz � Tij

wzX
wz
xy ðf ikTkj

xy + f
j
kT

ik
xyÞ + ~Vij

xy ð47Þ
where the MP2 matrix element Vxy

ij is replaced by the inter-
mediate:

~Vxy
ij ¼ Vxy

ij + PðijÞVxy
aj T

a
i +

1
2
Vab
xy T

ij
ab ð48Þ

which incorporates the first interference terms between con-
ventional CCSD terms and the R12 geminals. Details of
computing ZAPT matrix elements have been given
previously.65

Only the diagonal R12 amplitudes Tij
ij are necessary to satisfy

the cusp condition and may be fixed at their asymptotic cusp
values of 1/2 and 1/4 for singlet and triplet pairs, respectively.94�98

Using the rational generator of Ten-no,99�101 a pair correlation
can be asymptotically represented in spin�orbital form:

jijæ f 3
8
jijæ + 1

8
pð12Þjijæ ð49Þ

where p(12) is a permutation operator that permutes the spatial
orbitals but not the spins. For closed shells, this leads, for
example, to the pair correlation:

jiRjβæ f 3
8
jiRjβæ + 18jjRiβæ ð50Þ

while for the case of ZAPT in the symmetric spin basis we have65

jiRs+æ f 3
8
jiRs+æ + 18 jsRi+æ ð51Þ

The fixed amplitude ansatz leads to a severe dependence of the
energy on the geminal exponent, γ.82,83 It is therefore necessary
to define a second-order Lagrangian (Hylleraas functional in the
case of MP2), to soften the dependence of the correlation energy
on the “error” associated with fixed amplitudes. Following
approximations similar to those adopted by Tew in CCSD-
(F12),82 a Lagrangian energy functional can be constructed for

the CCSD(2)R12 approach:
54

ER122 ¼ 2~Vxy
ij T

ij
xy + T

wz
ij B

xy
wzT

ij
xy � Twz

ij X
xy
wzðf ikTkj

xy + f
j
kT

ik
xyÞ ð52Þ

A similar approach is followed byWerner and Adler,4,83 although
the explicit residual is approximated by the MP2 residual
(CCSD-F12a) or additional terms from CEPA-0 (CCSD-
F12b). Superior results are usually obtained within the diagonal
approximation due to the absence of geminal basis set super-
position errors.17,66

Some comment is necessary on the nature of spin�exchange
terms, such as ViRjβ

xR yR.65 Such terms will be nonzero by virtue of
contraction with spin�exchange amplitudes tiR

aβ. Clearly, the R12
correction should not be generating correlations of the form

jiRjβæ f jaRbRæ ð53Þ
as our chosen ZA-CCSD model enforces these to be zero in the
basis set limit. As has been discussed previously,65 the correlation
factor is spinless and cannot produce spin�exchange configura-
tions. We can consider the projection of the pair correlation
function onto a formally complete virtual space:

ð1� ô1Þð1� ô2ÞFðr12Þjxyæ ¼ ∑
kν
jkνæÆkνjFðr12Þjxyæ ð54Þ

where the sum runs over all virtual orbitals k, v. Clearly,
projections of the form:

ÆkRvRjFðr12ÞjxRyβæ ð55Þ
are zero so that R, β spin exchanges are not generated by the
correlation factor. However, virtual pairs of the form:

ÆkRs�jFðr12ÞjxRyβæ ð56Þ

Æs�t�jFðr12ÞjxRyβæ ð57Þ
are nonzero due to the symmetric spin basis, allowing nonzero
spin�exchange terms ViRjβ

xR yR from the contraction:

VxRyR
iR jβ r gkRs�iR jβ

FxRyRkRs� ð58Þ
No true R, β spin exchanges are included, and the correlation
factor is actually generating SOCCpairs. These terms are actually
not included in the context of the diagonal ansatz anyway but will
be important for other ans€atze, such as those employed in
response theory.12 For the diagonal terms, by virtue of the
amplitude symmetries in the conventional CCSD amplitudes,
the spin-restriction symmetry, viz.:

~ViR jR
iR jR ¼ ~V

iR jβ
iR jβ � ~V

iRjβ
jR iβ ð59Þ

therefore automatically extends to R12 matrix elements.
2.5. Spin Contamination.To assess spin contamination,55 we

compute expectation values as energy derivatives:

ĤðλÞ ¼ Ĥ + λŜ2 ð60Þ

ÆŜ2æ ¼ dEðλÞ
dλ

jλ¼ 0 ð61Þ

The CCSD energy functional must therefore be replaced by the
Lagrangian:

L ¼ Æ0jð1 + Λ̂ÞH̅j0æ ð62Þ
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Æ0jΛ̂ ¼ λai ÆΦ
i
aj + λabij ÆΦij

abj ð63Þ
where the λi

a and λij
ab are the Lagrange multipliers. In ZA-CCSD,

individual Lagrange multipliers are associated with projection by
the CSFs given in Table 3. The λij

ab amplitudes therefore have the
same Z-averaged symmetries as the Tij

ab amplitudes. Defining
density matrix elements as

γpr ¼ Æ0jð1 + Λ̂Þ expð � T̂Þapr expðT̂Þj0æ ð64Þ

γpqrs ¼ Æ0jð1 + Λ̂Þ expð � T̂Þapqrs expðT̂Þj0æ ð65Þ
the spin expectation value can be computed. The density
matrices are not Hermitian and are therefore symmetrized in
the actual implementation. Further details can be found in refs 55
and 102.

3. THEORETICAL METHODS

The ZA-CCSD-R12 method was implemented within the
MPQC103,104 and the PSI3105 packages for a Slater-type correla-
tion factor with exponent 1.4 approximated as a sum of 6
Gaussian geminals.67 Only valence electrons were correlated.
R12 intermediates were computed within approximation C so
that kinetic energy commutator integrals were not necessary.106

All R12 results are computed with fixed amplitudes, extended
Brillouin condition (EBC), and hybrid RI approximation as
described in greater detail in ref 65. Integrals were implemented
in the CINTS/LIBINT107 package within MPQC through a
modification of the Obara�Saika scheme.69,108�110 Conven-
tional ZA-CCSD computations were performed with the Dun-
ning aug-cc-pVnZ20,111 family of basis sets (denoted aVnZ). The
basis set limit is estimated from an aV5Z-aV6Z extrapolation
using an n�3 extrapolation.19 All R12 computations use the
Peterson F12112 and F12-RI basis sets113 (herefater denoted
R12-XZ). All molecules in the current work were optimized at
the CCSD(T)/cc-pVQZ level using the ACESII package.114�118

All ROHF-CCSD and PSA-CCSD results were computed using
the Molpro2006.1 package.119 Spin contamination values were
computed by modification of the λ equation and the CCSD two-
particle density codes within PSI3. See Supporting Information
for a complete list of geometries, total energies, and ZA-CCSD
correlation energies for all computed molecules.

4. RESULTS AND DISCUSSION

4.1. Comparison of CCSD Methodologies. Of primary
concern is the performance of the newly proposed ZA-CCSD
method with respect to previously established high-spin open-
shell CCSDmethodologies. For a series of atomic and molecular
energies, the difference between the ZA-CCSD correlation
energy from spin�orbital ROHF-CCSD is shown in Figure 1 .
Because the energy differences between the various CCSD
methodologies are so small (less than 1 kcal mol�1), it is not
possible to identify one as intrinsically more accurate. We
therefore only assert that the ZA-CCSD method should perform
similar to ROHF-CCSD, and the primary benefit for ZA-CCSD
will therefore be a minimum number ofN6 contractions. For the
hydrocarbon radicals CH and CH3, the difference is only 0.1 kcal
mol�1 . However, for CN, NO2, and NO with much greater spin
contamination, deviations are as large as 0.7 kcal mol�1, which is

Table 3. Doublet CSFs Used in ZA-CCSD
D ~Φa

i ð1Þ ¼ ΦaR
iR ,Φ

aβ
iβ

D ~Φa
i ð2Þ ¼ Φ

aβ
iR ,Φ

aR
iβ

D ~Φa
s ð1Þ ¼ ΦaR

t + ,Φ
aβ
s +

D ~Φs
i ð1Þ ¼ Φt�

iR ,Φ
s�
iβ

D ~Φab
ij ð1Þ ¼ 1

2
ffiffiffi
3

p ð2ΦaRbR
iR jR + 2Φ

aβbβ
iβ jβ +Φ

aRbβ
iR jβ �Φ

aRbβ
jR iβ +Φ

aβbR
iβ jR �Φ

aβbR
jβ iR Þ

D ~Φab
ij ð2Þ ¼ 1

2
ðΦaRbβ

iR jβ +Φ
aRbβ
jR iβ +Φ

aβbR
iβ jR +Φ

aβbR
jβ iR Þ

D ~Φab
si ð1Þ ¼ 1

2
ffiffiffi
3

p ð2ΦaRbR
s + iR + 2Φ

aβbβ
s + iβ +Φ

aRbβ
s + iβ �Φ

bRaβ
s + iβ +Φ

aβbR
s + iR �Φ

bβaR
s + iR Þ

D ~Φab
si ð2Þ ¼ 1

2
ðΦaRbβ

s + iβ +Φ
bRaβ
s + iβ +Φ

aβbR
s + iR +Φ

bβaR
s + iR Þ

D ~Φas
ij ð1Þ ¼ 1

2
ffiffiffi
3

p ð2ΦaR s�
iR jR � 2Φ

aβs�
iβ jβ +Φ

aβ s�
iβ jR �Φ

aβ s�
jβ iR �ΦaRs�

iR jβ
+ΦaR s�

jR iβ
Þ

D ~Φas
ij ð2Þ ¼ 1

2
ðΦaβs�

iβ jR +Φ
aβ s�
jβ iR �ΦaRs�

iR jβ
�ΦaR s�

jR iβ
Þ

D ~Φat
si ð1Þ ¼ ΦaR t�

s + iR ,Φ
aβ t�
s + iR ,Φ

aβ t�
s + iR ,Φ

aβ t�
s + iβ

Table 4. Comparison of Total Energy (Hartree)a and Ŝ2

Values for Open-Shell CCSD Methods Computed with
cc-pVTZ Basis

Method Energy ÆŜ2æ

CH (2Π)

ROHF-CCSD �38.41802 0.750111

PSA-CCSD b �38.41788 0.750000

SR-CCSD b �38.41788 0.750000

ZA-CCSD �38.41789 0.750006

CN (2Σ+)

ROHF-CCSD �92.57190 0.754327

PSA-CCSD �92.57115 0.750004

SR-CCSD �92.57147 0.750000

ZA-CCSD �92.57116 0.750038

NO (2Π)

ROHF-CCSD �129.72282 0.750371

PSA-CCSD �129.72232 0.750001

SR-CCSD �129.72234 0.750000

ZA-CCSD �129.72232 0.750010

NO2 (
2A2)

ROHF-CCSD �204.72711 0.768465

PSA-CCSD �204.72447 0.750000

SR-CCSD �204.72440 0.750000

ZA-CCSD �204.72467 0.751310

HCCO (2Π)

ROHF-CCSD �151.69353 0.751820

PSA-CCSD �151.69257 0.750020

SR-CCSD �151.69274 0.750000

ZA-CCSD �151.69262 0.750145
aGeometries from ref 34. b PSA-CCSD and SR-CCSD values from ref
34.
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consistent with the partial spin-restrictions imposed. The differ-
ence is similar to that observed previously for PSA-CCSD and
SR-CCSD.34 A more subtle effect is observed for higher spin
multiplicities, which generally show greater deviations than
doublets as seen for nitrogen, oxygen, SO, and O2. The R, β
spin�exchange amplitudes occur through contractions involving
symmetric spin orbitals. Since these spin�exchange terms are
neglected in the current treatment, larger deviations from
ROHF-CCSD will occur as the number of singly occupied
orbitals is increased.
For a series of model systems considered in previous work,34

we have also computed ÆŜ2æ. For CH, CN, NO, and HCCO, the
ZA-CCSD results are essentially equivalent to PSA-CCSD, both
of which demonstrate significant reductions in spin contamina-
tion relative to ROHF-CCSD. Energies match PSA-CCSD
within 0.1 mH and even SR-CCSD within 0.3 mH. The ZA-
CCSD spin contamination is slightly greater than PSA-CCSD,
consistent with ZA-CCSD imposing fewer spin constraints. For
the severe case of NO2, ZA-CCSD deviates from SR-CCSD and
PSA-CCSD but still exhibits a drastic reduction in spin contam-
ination relative to ROHF-CCSD.
There is some ambiguity in separate trade-offs between the

spin-restricted and unrestricted approaches. It has long been
known that perturbation theories based on restricted reference
functions converge much more quickly with respect to perturba-
tion order than those based on unrestricted references.120�124

One therefore anticipates that reduced spin contamination will
accelerate convergence with respect to the coupled cluster
CCSD, CCSDT, and CCSDTQ hierarchy. Conversely, for
certain symmetry breaking problems, UHF or Brueckner solu-
tions which break orbital symmetries may provide more accurate
results at the truncated CCSD level.43,47,125,126 Given the small
energy differences observed here between the different meth-
odologies, a discussion of which method is intrinsically more
accurate by comparison to experiment would not be meaningful
at the CCSD level. We therefore emphasize instead that the
approximations made in the Z-averaged ansatz will not degrade
the accuracy relative to other CCSD methods (indeed, spin-
contamination is reduced!), but a great deal of efficiency is gained
by minimizing the number of independent amplitudes and
residuals. The theoretical three-fold speedup is intrinsic to the
ZA-CCSDmethod regardless of the inclusion of R12 corrections.
4.2. Size Consistency of Spin-Adapted Approaches. The

introduction of amplitude constraints in PSA-CCSD can actually
introduce size-consistency errors when the cluster operator T̂ is
truncated at double excitations. For example, the computed

energy of two fluorine atoms at infinite separation coupled to a
triplet will not be exactly twice the energy of an isolated fluorine
atom in its doublet ground state. The imposed spin constraints
effectively introduce an infinite-range interaction between the
monomers. For multiplicities of triplet or higher, PSA-CCSD
employs the “semi-internal” triplet CSF:

T ~Φas
is ¼ ΦaR

iR
�Φ

aβ
iβ �m + 1

m + 2
Φ

aRsβ
sR iβ +

1
m + 2 ∑t 6¼s

Φ
aRtβ
tR iβ ð66Þ

along with the spin-symmetric single excitation

T ~Φa
i ¼ ΦaR

iR +Φ
aβ
iβ ð67Þ

In this regard, semi-internal doubly excited determinants are
coupled by spin constraints to singly excited determinants.
Assuming localized orbitals for centers A and B, suppose we
have orbitals i, a, s on center A and singly occupied orbital t on
center B. Upon convergence, we will have nonzero spin�orbital
amplitudes TiR

aR and Tiβ
aβ which by virtue of asymmetric exchange

will be spin-polarized such that TiR
aR 6¼ Tiβ

aβ. To introduce spin
polarization of the single amplitudes, wemust have a nonzero Tsi

as

for the CSF in eq 66. By virtue of the spin constraints, we must
have a nonzero amplitude TtRiβ

aRtβwhere the connected T2 amplitude
now contains mixed indices for centers A and B, leading to the
size consistency error. The Z-averaged formalism only ensures
TiR
aR = Tiβ

aβ and does not constrain the T1 amplitudes in any way
relative to semi-internal doubly excited configurations. The
numerical importance of this size-consistency error is probably
negligible in many systems. For triplet fluorine dissociation the
size consistency error is only 0.043 mH. Still, ZA-CCSD has the
additional theoretical appeal of being rigorously size consistent at
all levels of truncation in the cluster operator.
4.3. R12 Corrections. For simplicity, we here focus only on

the correlation increment for the energy difference A f B

δ½CCSD� ¼ EcorrCCSDðBÞ � EcorrCCSDðAÞ ð68Þ
and neglect the basis set error associated with the Hartree�Fock
reference. The accelerated basis set convergence of the CCSD-
R12 corrections is demonstrated for a series of atomization
energies with the CBS limit taken as an aV5Z-aV6Z extrapola-
tion. Figure 2 clearly demonstrates that even with the cc-pVTZ-
F12 basis, the method even outperforms the conventional aV5Z

Figure 2. Error of correlation energy increments (δ[CCSD], see text)
to atomization energies for Z-averaged CCSD with aug-cc-pV5Z
(ZA-CCSD/aV5Z) and ZA-CCSD(2)R12 with cc-pVTZ-F12 (R12/
TZ) basis set with respect to aV5Z/aV6Z extrapolation benchmark.

Figure 1. Correlation energy difference of Z-averaged CCSD from
spin�orbital ROHF-CCSD for aug-cc-pVXZ (aVXZ) basis sets.
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basis. In Figure 3, the conventional aV6Z results are nearly
equivalent to the TZ-R12 method but have a dramatically higher
computational cost. The aV6Z basis is four times larger! The R12
results could be further improved by extending to the cc-pVQZ-
F12 basis and performing a n�4 T�Q extrapolation,112,127 which
has been demonstrated previously to yield excellent results for
atomization energies.65 The total correlation energies of indivi-
dual molecules for the cc-pVTZ-F12 basis themselves should be
converged to be better than 0.1 mH per valence electron. For
example, for oxygen atom, the correlation energy difference
between TZ-R12 and QZ-R12 computations is only 0.5 mH
(see Supporting Information). Although cancellation of errors
likely contributes in some fashion for the R12 corrections (as it
does for the conventional methods), the observed basis set
convergence results primarily from the intrinsic accuracy of the
individual correlation energies.
The accuracy and precision of the results are summarized in

Figure 4 . The observed basis set convergence of the Z-averaged
scheme closely parallels atomization energy results observed for

the RMP formulation of R12 matrix elements.66 Although not
explicitly used for atomization energies, formulations based on
UHF have demonstrated excellent basis set convergence as
well.100 In this regard, the basis set convergence properties do
not seem sensitive to the particular choice of Ĥ0 used in
computing R12 matrix elements. We therefore again emphasize
that the primary advantage of the ZA-CCSD(2)R12 approach is
greatly increased computational efficiency and reduced spin
contamination from spin restriction in the wave function.
The success of the cc-pVTZ-F12 results is quite dramatic

when all of the approximations involved are considered. For the
R12 matrix elements, the EBC assumes the virtual space is closed
under the action of the Fock operator. The virtual space is
relatively more complete in describing the mean field correlation
of the Fock operator than the cusp region, and the EBC is
therefore nearly exact for basis sets of at least triple-ζ quality.24

The R12 amplitudes themselves are also not optimized, being
fixed at their asymptotic value. However, this fixed amplitude
approach yields precise results provided a residuals correction is
included via a Lagrangian functional. AHermiticity simplification
is further made on the left- and right-hand eigenvectors. How-
ever, to a first approximation (linearized coupled cluster), the left
and right amplitudes are equal so that the symmetric amplitude
assumption appears justified. All of the above approximations
therefore seem appropriate for the desired level of accuracy.

5. CONCLUSION

The broad range of thermochemical and spectroscopic pro-
blems associated with high-spin, open-shell radicals clearly
motivates maximizing the efficiency of current CCSD methods.
The ZA-CCSD(2)R12 approach provides results competitive
with CCSD/aV6Z with only a triple-ζ quality basis. For rigorous
thermochemistry, a T�Q R12 extrapolation should therefore
provide unrivaled accuracy in computing energies at the basis set
limit. We have employed the Z-averaged ansatz to make two
important simplifications. Z-averaged symmetries are exploited
in the conventional CCSD equations to give spin-restricted
amplitudes, yielding a theoretical 3-fold speedup over current
open-shell R12 methods. The Z-averaged partitioning of the
Hamiltonian is also employed in formulating perturbative R12
corrections, leading to greatly simplified, spin-restricted R12
intermediates. Beyond conventional singles and doubles, the
Z-averaged approach also provides the basis for an improved
Brueckner theory and a perturbative triples correction based on
spin-restricted amplitudes. While some complications arise asso-
ciated with R, β-exchange excitations, ZA-CCSD remains in-
herently simple in its spin�orbital form. Results are similar to
existing CCSD methods, and ZA-CCSD therefore improves
computational efficiency without any reduction in accuracy.
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ABSTRACT:With numerous new quantum chemistry methods being developed in recent years and the promise of even more new
methods to be developed in the near future, it is clearly critical that highly accurate, well-balanced, reference data for many different
atomic and molecular properties be available for the parametrization and validation of these methods. One area of research that is of
particular importance in many areas of chemistry, biology, and material science is the study of noncovalent interactions. Because
these interactions are often strongly influenced by correlation effects, it is necessary to use computationally expensive high-order
wave functionmethods to describe them accurately. Here, we present a large new database of interaction energies calculated using an
accurate CCSD(T)/CBS scheme. Data are presented for 66molecular complexes, at their reference equilibrium geometries and at 8
points systematically exploring their dissociation curves; in total, the database contains 594 points: 66 at equilibrium geometries, and
528 in dissociation curves. The data set is designed to cover the most common types of noncovalent interactions in biomolecules,
while keeping a balanced representation of dispersion and electrostatic contributions. The data set is therefore well suited for testing
and development of methods applicable to bioorganic systems. In addition to the benchmark CCSD(T) results, we also provide
decompositions of the interaction energies bymeans of DFT-SAPT calculations. The data set was used to test several correlated QM
methods, including those parametrized specifically for noncovalent interactions. Among these, the SCS-MI-CCSD method
outperforms all other tested methods, with a root-mean-square error of 0.08 kcal/mol for the S66 data set.

’ INTRODUCTION

In the past decade, we have seen a great acceleration in the
development of new quantum chemical methods, resulting in
dozens of new computational techniques that potentially im-
prove the accuracy of results and/or computational efficiency.1�3

Among these methods, many contain at least one empirical
parameter fitted to reference data. As the value of all scientific
models must ultimately be determined by comparison with
experimental observations, it would be ideal if the empirical
models were based on experimental data. Unfortunately, in many
cases, the computed quantity cannot be isolated in an experi-
ment, and direct comparison is thus not possible.4 In such cases,
it is necessary to establish a set of very accurate, well-character-
ized computational data that can be used to parametrize and
validate empirical models. These benchmark data also serve as a
valuable tool for the assessment of the accuracy of nonempirical,
but more approximate, methods.

One area of intensive development of computational methods
in the past decade is in the proper treatment of noncovalent
interactions. As these types of interactions occur throughout
nature, designing accurate, computationally efficient, quantum
chemical techniques that give accurate interaction energies and
geometries for intermolecular interactions is critical in the
treatment of a vast number of systems relevant in areas of
chemistry, biodisciplines, and material science.

As it has become increasingly clear in the past several years that
there are many possibilities for developing new computational

methods that give improved accuracy at lower computational
costs, it has also become clear that there should exist standard
databases of high-quality data against which new methods can be
parametrized and validated. Many such databases have recently
been developed for several different molecular properties, in-
cluding heats of formation, ionization potentials, electron affi-
nities, and intermolecular interaction energies. The existence of re-
liable data for the latter of these properties has historically been very
limited because of the large computational expense associated
with the calculation of accurate interaction energies for all but the
smallest molecular complexes. Only recently has it become
possible to compute interaction energies for medium-sized
complexes (up to approximately 40 atoms) with accuracy that
is sufficient for benchmark data. There are two main reasons that
it has now become possible to get these types of data. The first of
these is the development of new computer hardware (including
computer parallelization) that allows for much more efficient
computations on molecules and molecular clusters. The second
reason is the development of a hybrid estimated CCSD(T)/CBS
method, which requires only computation of the extrapolated
MP2/CBS result as well as the CCSD(T) interaction energy
with a small/medium basis set.5�8 This method is the most
computationally inexpensive technique that has been shown to
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give accurate interaction energies for many different types of
molecular complexes.

Our main goal in this work is to create a well-balanced
database of benchmark interaction energies for noncovalent
interactions relevant to biological chemistry. Noncovalent inter-
actions are extremely important in biomolecules, as they play
large roles in determining their structure and dynamics, and are
also responsible for recognition processes in biological systems.
Thus, the development of new computational tools that accu-
rately describe noncovalent interactions within biomolecules in
an efficient way is crucial if significant advances are to be made in
computational biophysical chemistry. The development of such
methods, which generally contain several empirical parameters,
critically depends on the availability of high-quality reference data.

There are several interaction energy databases that have been
developed in the past 5�10 years, each with distinct strengths
and weaknesses.9�16 The most important of these databases are
the ones that use the estimated CCSD(T)/CBS method, or
other similar (CCSD(T)-based) methods for the reference
values. Below we will describe some of the most notable of these
data sets.

The S22 reference set,9 which was developed in this laboratory
in 2006, has become the most popular interaction energy
database and has been used extensively in the parametrization
and validation of many different computational techniques
(more in discussion below). At the time of its creation, this
database represented the state-of-the-art in terms of the level of
accuracy that could be attained for relatively large complexes (the
largest complex contains 30 atoms). The interaction energies in
this test set were computed using the estimated CCSD(T)/CBS
procedure, which had recently been developed.

Despite the fact that S22 is extremely useful and has served as a
model in the development of newer databases, there are some
problems associated with this data set. Although the interaction
energies published in the original S22 paper were very accurate
relative to the standard methods of the time, it has been shown
that, using more modern computers, it is possible to improve the
accuracies of these values by using larger basis sets. Thus, S22
interaction energies were recalculated by Sherrill and co-workers17

and by Szalewicz and co-workers18 using larger basis sets con-
sistently for all of the complexes. Another potential problem with
the S22 set is that it is heavily weighted toward nucleic acid-like
structures, containing many base pair-like (cyclic) hydrogen bonds
and many examples of stacked aromatic (especially heterocyclic
aromatic) species. There are several interaction motifs that are
strongly under-represented, such as single hydrogen bonds and
aromatic�aliphatic dispersion interactions, or practically missing,
such as aliphatic�aliphatic dispersion interactions.

Several years after the development of S22, dissociation curves
of the 22 complexes were calculated by Merz and co-workers19

and in this laboratory.10 In our approach, the resulting data set
(named S22 � 5) contains five examples of each of the S22
complexes, with relative displacements of 0.9, 1.0 (ie the
equilibrium geometry), 1.2, 1.5, and 2.0. In this study, DFT-
SAPT analyses were employed, principally to determine the
relative contributions of electrostatic and dispersion terms to the
total interaction energy of each complex.

Recently, Grimme and co-workers published the GMTKN30
(General Main Group Thermochemistry, Kinetics, and Nonco-
valent Interactions) data set, which might actually be classified as
a superdatabase containing 30 distinct data sets collected from
the literature.11,12 As indicated by the title, the GMTKN30 set

contains data sets for several different molecular properties,
including barrier heights, reaction energies, and properties for
noncovalent interactions. Among the 30 data sets, there are 10
that deal explicitly with noncovalent interactions, with five
interaction energy databases (containing a total of 89 complexes)
and five databases of relative energies for molecules containing
intramolecular noncovalent interactions (58 molecules). It should
be noted that S22 is one of the five interaction energy data sets
contained within the GMTKN30 database.

Zhao and Truhlar have also developed a superdatabase of
atomic and molecular properties that is divided into six cate-
gories: thermochemistry, barrier heights, electronic spectroscopy,
transition metal reaction energies, structural data, and noncova-
lent interactions.3 The noncovalent interaction category
(NCIE53) contains eight separate subsets with a total of 53
complexes.20�22 As in the case of the GMTKN30 database, the
S22 set is contained within the NCIE53 set. The additional
subsets contain hydrogen bonds, charge-transfer complexes, dipole
interactions, weak (dispersion dominated) interactions, and
π�π stacking complexes. The NCIE53 database can be said to
be better balanced than the S22 set, mainly because of its
inclusion of single hydrogen-bonding complexes, dipole interac-
tions, and charge transfer complexes. In terms of dispersion-
dominated interactions, this data set, like the S22, heavily favors
aromatic complexes. This is true because the weak interactions
subset contains mainly noble gas dimers, which have extremely
low interaction energies (often less than 0.1 kcal/mol); thus, the
S22 dispersion complexes dominate this category.

In an ambitious project, Friesner and co-workers constructed
an extremely large database of interaction energies containing
2027 complexes.15 This set was constructed by collecting almost
all of the interaction energy data that had been produced at
(at least) the estimated CCSD(T)/CBS level at the time
(December 2010). Also included within this test set are several
potential energy curves for various complexes. This collection is,
of course, very valuable, as it represents the largest single repository
of interaction energy data. There are, however, several reasons
that this database is not well suited to certain applications.
Because of the data set’s enormous size, it is not practical to
routinely use it for the parametrization of new methods; this is
especially true when the method is computationally demanding.
Another issue is that the database is not very well balanced in
terms of inclusion of different interaction motifs. For example,
among the 2027 complexes contained in the set, 1892 of them
include at least one aromatic molecule (93.3%, 59.8% contain
benzene), while there are only 66 examples of aliphatic�aliphatic
interactions (3.3%). Finally, the data collected from various
sources were calculated using different setups; this may have a
non-negligible impact on the quality of the data found in the set.
Most importantly, deficiencies in the size of the basis set might
lead to inconsistencies of the order of magnitude of the accuracy
of the methods parametrized on these data.

Here, we present a database of accurate interaction energies for
66 molecular complexes, which we refer to as the S66 database,
computed at the estimated CCSD(T)/CBS level of theory.
The complexes contained within the database represent a wide
distribution of interactionmotifs, including electrostatic dominated
(hydrogen bonding), dispersion dominated, as well as mixed
(electrostatic/dispersion) interactions. Several variations of
each interaction type are also taken into account; for example,
both single and double (cyclic) hydrogen bonds are included.
Among the dispersion dominated interactions, examples of
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aromatic�aromatic (stacking), aromatic�aliphatic, and aliphatic�
aliphatic interactions are incorporated into the set. We include
molecules containing only carbon, oxygen, nitrogen, and hydrogen,
as these are the most commonly encountered elements in
biochemistry. One valuable property of this database is that it is
easily expandable and the addition of complexes containing addi-
tional elements should be straightforward.

We include not only accurate interaction energies at the
potential energy minima, but also a set of 8 points along the
dissociation curve, referred to as the S66 � 8 data set. The
accurate description of the entire potential energy surface is of
great importance for any method that is applied to calculations
on nonequilibrium geometries, or that is used for geometry
minimizations, vibration analyses, or molecular dynamics simu-
lations. The former is especially important in the case of large
systems where a given moiety may interact with a great number
of other chemical groups, with the number of interactions quickly
increasing as a function of distance.

’DESCRIPTION OF THE S66 DATA SET

S66 Data Set Construction. Our goal is to design a new,
larger, data set that covers noncovalent interactions in bioorganic
molecules in a balanced way. The data set consists of 66
complexes formed by combining 14 monomers in various
configurations. The monomers were chosen so that they repre-
sent the motifs and functional groups most commonly found in
biomolecules (see Table 1). The smaller molecules considered
are generally carriers of the functional group of interest (i.e.,
methanol, methylamine, etc.), while the larger ones are actual
biomolecular building blocks (uracil, N-methylacetamide as a
peptide bond model). A more detailed list of the interactions
obtained by combining these is given below; the complexes are
depicted in Figure S1 in the Supporting Information. The size of
the data set was chosen so that various types of interactions are
well represented, yet it is small enough to make more demanding
calculations on it practical. Only complexes with interactions
stronger than approximately 1.5 kcal/mol were included in the
set to minimize the number of systems that contribute negligibly

to the statistical analysis of the errors (when an absolute error
measure is used). Also, duplicate entries for the same interaction
(i.e., hydrogen-bond donor/acceptor group combination) were
removed from the set, usually keeping the smaller complex.
In this work, we do not consider charged species, for which

interaction energies calculated in small gas-phase models are not
directly applicable to real system in the condensed phase. Also,
such interactions are an order of magnitude stronger than the
ones in neutral complexes, which would distort the even dis-
tribution of interaction energies desired in the data set.Moreover,
most computational methods can describe ionic interactions well.
This topic may be addressed by a separate data set.
One of the main goals of this work is to produce a interaction

energy data set that is very well balanced. Toward that end, it is
our goal to include roughly equal amounts of electrostatic-rich,
dispersion-rich, and mixed (electrostatic/dispersion) interac-
tions in the set. The S66 set is divided into three categories:
hydrogen bonding (23 complexes), dispersion-dominated (23),
and “other” (20). This classification is somewhat arbitrary but is
consistent with previous works in the field. In addition, we
provide interaction energy decompositions from DFT-SAPT
calculations that allow quantifying the ratio between electrostatics
and dispersion when more accurate characterization of an
interaction is desired. Each interaction is assigned a category,
SAPT-electrostatic (23 complexes), SAPT-dispersion (27), or
SAPT-mixed (16), based on the relative contributions of electro-
static and dispersion forces. The heuristic categorization and the
actual calculations are in good agreement.
In the first group, there are 23 hydrogen-bonded complexes.

The single hydrogen bonds cover all possible combinations of
donors and acceptors in the water molecule, hydroxyl group,
amine group, and carbonyl group, plus some other hydrogen
bonds possible within our set of monomers. Our selection of
complexes therefore allows detailed examination of how a given
method performs for different types of hydrogen bonds. Five
cyclic hydrogen bonds, represented by both small models (acetic
acid and acetamide) and the uracil dimer, are included to cover
hydrogen bonding in nucleic acid base pairs. This category
contains only strong X�H 3 3 3Y (X = O,N; Y = O,N) hydrogen
bonds; there are several electrostatic interactions that can also be
classified as hydrogen bonds, such as in ethyne 3 3 3water, in-
cluded in the “others” category.
The group of dispersion-dominated complexes (23 systems) is

built from two types of monomers with different properties:
planar, often aromatic molecules and aliphatic hydrocarbons,
which results in three possible interaction classes: π�π stacking
(10 systems), aliphatic�aliphatic (5 systems), and π�aliphatic
(8 systems) interactions. These interactions are often described
differently by approximate computational methods; it is there-
fore very important to include all of them in the data set. The
aliphatic hydrocarbons are represented by three different isomers
of pentane to cover linear, branched, and cyclic hydrocarbon
chains.
The last group, named “others”, contains 20 complexes that do

not fit to the two categories above. Generally, an interaction in
this category contains a combination of dispersion and electro-
statics. This group includes X�H 3 3 3π (X = C,O,N) interac-
tions, T-shaped aromatic ring complexes, nonspecific interactions
of polar molecules, and others.
Data Set Properties. In a well-designed data set, the interac-

tion energy should be equally distributed among all of the
systems. The histogram of interaction energies in the S66 data

Table 1. Monomers Used To Construct the Complexes in the
S66 Data Set

molecule model for

acetic acid cyclic hydrogen bonds with OH donor,

electrostatic interactions

acetamide cyclic hydrogen bonds with NH donor,

electrostatic interactions

benzene π�π and X�π interactions � aromatic

cyclopentane aliphatic dispersion � cyclic hydrocarbons

ethene π�π and X�π interactions � nonaromatic

ethyne π�π and X�π interactions of triple bond

neopentane aliphatic dispersion � branched hydrocarbons

n-pentane aliphatic dispersion � linear hydrocarbons

methylamine hydrogen bonding � NH group

methanol hydrogen bonding � OH group

N-methylacetamide peptide bond model, carbonyl hydrogen bonds

pyridine π�π and X�π interactions in heterocycles

uracil π�π and X�π interactions, base pairing

water hydrogen bonds and other interactions with water
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set is shown in Figure 1. The majority of complexes have
interaction energies that are around�4 kcal/mol, approximately
following a normal distribution. The only outlying points are the
double hydrogen bonds with interaction energies between �15
and �20 kcal/mol; these cannot be eliminated because we want
to include this type of interaction in the set.
All of the groups of complexes should ideally have equal

interaction energy sums if the data set is used to parametrize or
test methods that should describe all types of interaction equally.
This is hard to achieve in a set of this size when we also would like
to include all of the most important interactions. In S66, the sum
of interaction energies in hydrogen-bonded complexes (�205
kcal/mol) is more than twice as large as that in dispersion-
dominated (�80 kcal/mol) or “other” (�70 kcal/mol) com-
plexes. Although the hydrogen bonds dominate in such a
summation, there are other arguments to consider: In the group
“other”, dispersion still makes a very important contribution, and
it cannot be neglected even in the H-bonded complexes. Overall,
the DFT-SAPT decomposition shows that the dispersion to
electrostatics ratio for the entire set is 0.86:1, which is not far
from being an even representation of both interaction types.
Therefore, we consider the S66 to be well balanced for general
use. In cases where more control over the separate components is
needed, the desired weighting can be applied.
S66 � 8 Data Set. In addition to equilibrium geometries, we

also provide data for eight points along the dissociation curve of
each complex. The resulting set, named S66 � 8, contains 528
points. The displaced complexes are created by scaling the
intermolecular distance in the optimized structure; details are
given in the Methods. Using eight points for each complex
enables an accurate reconstruction of the dissociation curve by
interpolation. The sampling of the region around equilibrium
was improved to allow accurate determination of the minimum
of the dissociation curve. This information is very important for
parametrization of newmethods where fitting to the extended set
should lead to better reproduction of the geometries of non-
covalent complexes. The possibility to interpolate the optimal
distance accurately allows for assessment of the performance of a
method based on comparison of equilibrium intermolecular
distances with benchmark data, the minimum at the CCSD-
(T)/CBS level obtained from the S66 � 8 set. The interaction
energies in this set are all calculated at the CCSD(T)/CBS level.

The S66 and S66� 8 data sets do not overlap exactly, but the
S66 geometries are always close to one of the S66 � 8 points.
Therefore, they should be used separately, S66� 8 to explore the
entire dissociation curve and S66 when a more accurate descrip-
tion of the minima is needed.
Comparison to the S22 Data Set. In the past 6 years, the S22

database9 developed in our laboratory has been widely adopted
as a standard data set used to test and develop methods focused
on noncovalent interactions. Other databases of benchmark data
covering interaction energies often include the S22 set, as
described above. Therefore, a detailed comparison of the S22
and S66 data sets clearly highlights all of the issues S66 attempts
to correct, and this comparison also partially applies to other data
sets based on S22.
(1) The S66 set contains 3 times more complexes than S22.

This becomes important when one focuses on some
particular type of interaction, for example, hydrogen
bonds. In such a case, the S22 set does not contain
enough complexes of a given type for reliable statistical
processing of the data.

(2) The S22 set is focused mainly on interactions of nucleic
acid bases and does not include other types of interactions
with comparable weights. Regarding hydrogen bonds,
most of the complexes, and an even larger fraction of
the total H-bonding energy, feature double hydrogen
bonds that are stronger than the single ones. This has
been improved by extending the set by four more com-
plexes, forming the S26 set.23 In dispersion-dominated
complexes, the S22 set contains only stacked aromatic
molecules, with the only exception being the methane
dimer, for which the magnitude of the interaction energy
is very small, making its contribution to the entire set
negligible. This is, in our opinion, the most important
drawback of the S22 set, because many methods para-
metrized on S22, or performing well on it, fail to describe
dispersion interactions between aliphatic hydrocarbon
groups (see the discussion of the results below). This
has been noted previously but has not been solved
systematically.24

(3) In contrast to S22, the same basis sets are used for
benchmark calculations on all of the complexes in the S66
data set, regardless of the size of the system. Although
more accurate calculations are possible for the smaller
complexes, our approach eliminates possible method-
dependent errors.

(4) The same applies to the geometries; all complexes in the
S66 data set were optimized using the same protocol. With
the intermolecular distance interpolated from CCSD(T)/
CBS calculations, the geometries of the larger complexes
should be more accurate than the ones used previously.

(5) The DFT-SAPT interaction energy decomposition pro-
vided for the S66 data set allows unbiased categorization
of the nature of the interactions and more detailed
analysis of the results, that is, correlating the errors in a
testedmethodwith a numerical descriptor of the nature of
the interaction. This decomposition is available for the
S22 set, but it has been published only very recently.25

(6) The S66� 8 data set provides a better description of the
dissociation curve than our extension of the S22 data set,
the S22 � 5 set.10 Better sampling around the minimum
allows accurate interpolation of the potential energy
surface.

Figure 1. Distribution of interaction energies in the 66 complexes of the
S66 data set.
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Planned Extensions. Despite the size of the data set, we do
not consider it complete. Now, it covers the most common
interactions in biomolecules containing only H, C, N, and O
elements. We are working on extension of the data set to other
elements and functional groups often present in bioorganic
systems. The same methodology is being applied so that the
new data will be perfectly compatible with the S66 set. These
extensions are another important reason for our choice of a
reference method that can routinely be applied to a large number
of systems. Another extension we are working on is a better
coverage of the potential energy surface of the S66 complexes. In
addition to the dissociation curves presented in the S66 data set,
we will also sample other intermolecular degrees of freedom.

’METHODS

Interaction Energy Calculations. Interaction energies for all
of the complexes considered here were computed using fixed
monomer geometries, meaning that deformation energies of
monomers are not included. The structures of the monomers
were taken directly from the dimer optimizations (described
below), and no further geometry optimizations were performed
on them. The counterpoise correction was employed in all
interaction energy calculations to minimize the effects of the
basis set superposition error (BSSE).
Basis Sets. Dunning’s correlation-consistent series of basis

sets26 with diffuse functions27 are used throughout this study.
The use of diffuse functions is crucial for the accurate description
of noncovalent interactions. In the following text, we use an
abbreviated form aXZ (X = D,T,Q) instead of the full names
(aug-cc-pVXZ). The cc-pVTZ basis set (abbreviated TZ) is used
in specific cases discussed below.
CCSD(T)/CBS.To calculate interaction energies in the S66 and

S66 � 8 data sets (66 and 528 entries, respectively), we had to
choose a method that balances accuracy and available computa-
tional resources. We use the method of estimating the CCSD-
(T)/CBS limit described in refs 5�8. The Hartree�Fock, MP2,
and ΔCCSD(T) = CCSD(T) � MP2 terms are calculated
separately in suitable basis sets, and the total energy is composed
as follows:

EðCCSDðTÞ=CBSÞ ¼ EðHFÞ þ EcorrðMP2=CBSÞ
þ ΔCCSDðTÞ ð1Þ

The HF energy converges with the basis set faster than the
correlation energy, and one calculation using a large basis set is
adequate.28 Here, we use the aQZ basis set. TheMP2 correlation
energy is extrapolated to the CBS limit using Helgaker’s
formula29 from the aTZ and aQZ basis sets. We have tested
other extrapolation schemes,30,31 but none produced smaller
errors when interaction energies were compared to accurate CBS
limit estimates in a set of small complexes. Therefore, we con-
servatively choose the Helgaker scheme, which is robust and free
of empirical parameters. The most important part of the CCSD-
(T)/CBS scheme is the choice of basis set for the CCSD(T)
calculation, for which we are much more limited by the steep
scaling of the calculation with system size. In contrast to some
other works that use customized basis sets, we wanted to use a
standard basis so that our protocol can be easily reproduced. In
the series of correlation-consistent basis sets, the largest basis sets
suitable for these calculations are TZ and aDZ; the latter has a
lower maximum quantum number, but includes diffuse functions.

We tested both basis sets against more accurate calculations on a
set of small complexes, and aDZ performed noticeably better. It
has been previously noted that aDZ is the smallest basis set that
can be used for the ΔCCSD(T) correction that gives errors of
less than 0.1 kcal/mol.32,33 For these reasons, we have chosen to
use this basis throughout this work.
Geometries. We have followed a multistep protocol to

prepare high-quality geometries for complexes of this size.
(1) Complex preparation: For complexes for which the

minimum geometry was not known beforehand, we per-
formed a search along the most important degrees of
freedom at the SCC-DFTB-D34 level to identify possible
conformations. If multiple minima close in energy were
found, we applied the following steps to all of them until
we were able to select the one with the lowest energy
using a method with accuracy better than the energy
difference between them.

(2) Preliminary optimization of the geometry has been
performed using density functional theory with an em-
pirical dispersion correction35 (DFT-D), using the TPSS
functional36 and the TZVP basis set37 along with a
dispersion correction optimized for this combination of
functional and basis set. No symmetry was assumed in any
calculation, and the starting structures were perturbed
randomly to remove any possible symmetry. This proce-
dure is used to avoid possible optimization to a saddle
point instead of a minimum.

(3) Final optimization of the complexes was carried out at the
counterpoise-corrected MP2/TZ level. The resolution of
the identity (RI-MP2 method) was used to accelerate the
calculations. This setup has been shown to yield geome-
tries close to those obtained at the coupled clusters
level.24,38 Tight optimization limits (energy change 3 �
10�4 kcal/mol (5 � 10�7 au), max. gradient component
0.06 kcal/mol/Å (5 � 10�5 au), root-mean-square(RMS)
gradient 0.03 kcal/mol/Å (2.5� 10�5 au)) were used to
ensure good convergence, even in the intermolecular
degrees of freedom. Such an optimization requires well
converged energy calculations, so an SCF convergence
threshold of 10�9 au was used.

(4) From these geometries, the S66� 8 set was prepared by
scaling the closest intermolecular distance in the complex
along an intermolecular axis. The definition of the axis is
different for different types of complexes. For hydrogen
bonds, it is defined by the hydrogen and the acceptor
atom. For cyclic hydrogen bonds, the average of both
hydrogen bonds is used. For most other complexes,
the centers of mass of the monomers are used, with
some exceptions in, for example, T-shaped complexes,
where only some atoms have been arbitrarily chosen as
the centers to conserve the original arrangement in the
displaced geometries. Details on the displacement coor-
dinate are provided in the Supporting Information, Table
S3. One of the monomers is moved along the axis so that
the minimum distance between them is 0.9, 0.95, 1.05,
1.1, 1.25, 1.5, and 2.0 times the equilibrium value. These
seven extensions, along with the MP2 equilibrium geo-
metry, form the S66 � 8 data set.

(5) Once the CCSD(T)/CBS interaction energies for the
S66� 8 set were calculated, we used the first five points of
each dissociation curve (factors of 0.9�1.1 multiplying
the equilibrium distance) to obtain a newminimum in the
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distance coordinate at the coupled clusters level. The
selected points were interpolated with a fourth-order
polynomial, and the position of the minimum of this
function was used to construct a new geometry. These
geometries form the S66 data set.

DFT-SAPT. The DFT-SAPT39�42 interaction energy decom-
position has been performed with the aDZ basis set to make
calculations on larger complexes practical. It is known that the
dispersion is slightly underestimated in this setup. We have
shown that this can be addressed by scaling of the dispersion
component;43 in this work, we apply the scaling factor of 1.193
recommended for this basis set (all DFT-SAPT dispersion
energies listed in this Article are already scaled). Such a scaling
has been shown to improve the results consistently; the accuracy
that can be reached is sufficient for our analysis, which accom-
panies more accurate CCSD(T)/CBS calculations. The PBE0AC
functional recommended by the authors of the method was used
for the DFT-SAPT calculations;44 the calculations of the mono-
mers have been performed in the basis set of the dimer. The shift
needed to correct the asymptotic behavior of the functional was
calculated as the difference between the HOMO energy of each
monomer and the true ionization potential obtained from the
calculation of its neutral and ionized form, using the same
functional and basis set. Density fitting was used to speed up
these calculations.45

The interactions of each of the complexes in the S66 set were
characterized as being electrostatics dominated, dispersion domi-
nated, or mixed (electrostatic/dispersion). The complexes with
dispersion/electrostatics ratios lower than 0.59 are categorized as
electrostatic, those with D/E ratios higher than 1.7 (1/0.59) are
categorized as dispersion bound, and complexes with D/E ratios
between 0.59 and 1.7 are categorized as mixed. The threshold of
0.59 generates groups that agree well with empirical categorization.
Other Methods Tested in This Study. We have used the

newly obtained benchmark data to analyze the performance of
several advanced wave function methods that are supposed to
closely reproduce CCSD(T)/CBS data. The complete basis set
limit for these methods has been calculated analogously as in the
CCSD(T)/CBS scheme by combining the MP2/CBS term
extrapolated from aTZ and aQZ basis set and the higher order
correction calculated in aDZ basis set. In addition to plain MP2,
MP3, and CCSD calculations, we have focused on correlated WFT
methods that use empirical parameters, MP2.546 SCS-MP2,47

SCS-MI-MP2,48 SCS-CCSD,49 SCS-MI-CCSD,50 dispersion-
weighted MP251 (DW-MP2), and nonempirically corrected
MP2C.52,53 All of the spin-component-scaled results have been
derived from the calculations already performed to obtain the
benchmark data.MP2with a time-dependentDFTbased dispersion
correction (MP2C) represents another approach to improve the
performance of the relatively efficient MP2 method.
In the spin component scaled methods, we used the following

scaling coefficients for the other-spin (singlet) and same-spin
(triplet) terms: The SCS-MP2method uses cos = 6/5 and css = 1/3
regardless of the basis set used. The SCS-MI-MP2 was optimized
to reproduce interaction energies in the S22 set. We use
coefficients published for extrapolation from the TZ to QZ basis
sets48 (cos = 0.4, css = 1.29). We extrapolate from the equivalent,
but augmented, basis sets; the difference in the CBS value is
negligible. The SCS-CCSD method (cos = 1.27, css = 1.13) was
developed using the QZ basis set, while we use extrapolation to
the CBS limit; we expect the parameters to be transferable

because the quadruple-ζ basis should not be far from the CBS
limit. The SCS-MI-CCSD coefficients (cos = 1.11, css = 1.28)
were optimized on the S22 data set, which uses different basis sets
for complexes of varying size; here, the transferability of the
parameters is an open question.
The DW-MP2 method was originally based on explicitly

correlatedMP2 (MP2-F12) calculations; this approach improves
the convergence of the MP2 energy with basis set size and allows
the use of a smaller basis set (aDZ). In this work, we have
replaced it with the extrapolatedMP2 results as another means to
approach the complete basis set limit. Therefore, minor differ-
ences in our DW-MP2 results can be expected as compared to ref 51.
Computational Details. All DFT and RI-MP2 optimizations

have been carried out in Turbomole 6.2.54 Interaction energies at
the MP2, MP3, MP2C, CCSD, and CCSD(T) levels and DFT-
SAPT interaction energy decompositions have been calculated
using the MOLPRO program55 in versions 2009 and 2010. A
threshold for SCF convergence of at least 10�8 au was used for all
of the calculations. Density fitting was used for the MP2
calculations used to obtain the MP2/CBS correlation energy
term. For the SCC-DFTB-D calculations, the DFTB+ program56

was used.
Error Analysis.The performance of the studied methods, with

respect to the benchmark calculations, can be described by
multiple statistical tools. For the S66 data set, we provide
multiple error measures that often carry different information.
We consider the root-mean-square error (RMSE) as the most
important one, because it reflects the overall quality of the tested
method well and is widely used in the field. It is also the variable
optimized in parametrization of a method using the least-squares
algorithm. Additionally, we list the mean unsigned error, the
average (signed) error, which indicates the systematic compo-
nent of the error, and the largest (maximum unsigned) error,
expressed as a percentage, representing the worst case scenario.
We also provide the error separately for different groups of

complexes of the data set. Because the average interaction energy
in these groups differs, an error in the units of energy does not
allow comparison between these groups. Therefore, we use
relative errors, calculated as an RMSE divided by the average
interaction energy in the group, expressed as percentages.

’RESULTS AND DISCUSSION

Geometries. Construction of the S66 � 8 set allowed us to
interpolate the CCSD(T)/CBS energies around the MP2 mini-
mum to obtain an accurate estimate of the equilibrium distance at
the CCSD(T)/CBS level (see Methods for description of the
procedure).
Comparing the energy predicted by the interpolation with the

actual calculation on the new geometry can be used to assess the
quality of the fit. Even the largest difference in the set is only
0.002 kcal/mol (0.05% of the interaction energy), which indi-
cates that our polynomial fit accurately represents the potential
energy surface and that the obtained geometry can be safely
considered a minimum in this coordinate.
Comparison of the MP2 and CCSD(T) minima, in terms of

distance and CCSD(T)/CBS interaction energies, allows us to
measure the quality of the (counterpoise corrected) MP2/TZ
geometries. The relative difference in geometries, measured as
the change of the closest distance, is on average 0.03 Å. In the
worst case, for the stacked benzene dimer, it is 0.11 Å or 3% of the
distance.
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Of course, the changes in geometry affect the interaction
energies. Because the intermolecular potentials are rather flat,
such small changes in geometry translate into comparably small
improvements in the interaction energies. Over the entire set, we
measured an RMSE of 0.020, and a maximum of 0.086 kcal/mol
(3% of Eint). This is comparable to the estimated accuracy of
the method used for the interaction energy calculation; therefore,
the MP2 optimization can be safely used in cases when we
are interested only in the interaction energy at higher levels.
These results confirm previous studies that recommend the TZ
basis set for MP2 optimizations.38

The interaction remains attractive even in the geometries with
shortest distance (displacement factor 0.9). In all but the π�π
stacked systems, the interaction remains very strong; on average,
it amounts to 83% of the interaction energy in equilibrium. In the
stacked complexes, the repulsion is steeper due to the large
contact area and short equilibrium distance, and the interaction
energy becomes as low as 10% of the equilibrium value.
Benchmark Calculations. The final CCSD(T)/CBS interac-

tion energies are provided in Table 2. To estimate the accuracy of
our benchmark data, we compare the scheme used in the S66 data
set withmore accurate estimates of CCSD(T)/CBS. This has been
done on a set of ten small complexes introduced in our previous
work.43 For these, we extrapolated the CCSD(T) correlation
energy to the complete basis set limit from calculations using the
aTZ and aQZ basis sets. Table S4 in the Supporting Information
gives the results of the comparison of the current benchmark
technique with the extrapolated CCSD(T)/CBS(aTZfaQZ)
method. For this small test set, the S66 benchmark method gives
an average error value of 1.2% with the largest error being 2.5%.
These results indicate that the errors associated with the current
benchmark method should be reasonably small; for the S66 test
set, we expect that the errors should generally be below 3%.
We are aware of the fact that the errors present in our

benchmark data are close to the errors of some of the studied
methods to which they are compared. However, in the compar-
ison of similar methods, using the same extrapolation scheme and
basis sets, the major part of the error coming from the

Table 2. List of the Benchmark CCSD(T)/CBS Interaction
Energies (in kcal/mol), the Dispersion/Electrostatics Ratio
from the DFT-SAPT Decomposition, and the Interaction
Type (E, Electrostatics-Dominated; D, Dispersion-Domi-
nated; and M, Mixed) Based on It for the S66 Data Set

hydrogen bonds ΔE disp/elec category

1 water 3 3 3water �4.92 0.29 E

2 water 3 3 3MeOH �5.59 0.35 E

3 water 3 3 3MeNH2 �6.91 0.30 E

4 water 3 3 3 peptide �8.10 0.37 E

5 MeOH 3 3 3MeOH �5.76 0.40 E

6 MeOH 3 3 3MeNH2 �7.55 0.38 E

7 MeOH 3 3 3 peptide �8.23 0.42 E

8 MeOH 3 3 3water �5.01 0.34 E

9 MeNH2 3 3 3MeOH �3.06 0.71 M

10 MeNH2 3 3 3MeNH2 �4.16 0.71 M

11 MeNH2 3 3 3 peptide �5.42 0.79 M

12 MeNH2 3 3 3water �7.27 0.33 E

13 peptide 3 3 3MeOH �6.19 0.56 E

14 peptide 3 3 3MeNH2 �7.45 0.50 E

15 peptide 3 3 3 peptide �8.63 0.56 E

16 peptide 3 3 3water �5.12 0.42 E

17 uracil 3 3 3 uracil (BP) �17.18 0.35 E

18 water 3 3 3 pyridine �6.86 0.34 E

19 MeOH 3 3 3 pyridine �7.41 0.40 E

20 AcOH 3 3 3AcOH �19.09 0.30 E

21 AcNH2 3 3 3AcNH2 �16.26 0.32 E

22 AcOH 3 3 3 uracil �19.49 0.31 E

23 AcNH2 3 3 3 uracil �19.19 0.31 E

dispersion ΔE disp/elec category

24 benzene 3 3 3 benzene (π�π) �2.82 3.83 D

25 pyridine 3 3 3 pyridine (π�π) �3.90 2.41 D

26 uracil 3 3 3 uracil (π�π) �9.83 1.35 M

27 benzene 3 3 3 pyridine (π�π) �3.44 2.86 D

28 benzene 3 3 3 uracil (π�π) �5.71 2.16 D

29 pyridine 3 3 3 uracil (π�π) �6.82 1.75 M

30 benzene 3 3 3 ethene �1.43 4.57 D

31 uracil 3 3 3 ethene �3.38 1.86 D

32 uracil 3 3 3 ethyne �3.74 1.33 M

33 pyridine 3 3 3 ethene �1.87 3.00 D

34 pentane 3 3 3 pentane �3.78 4.46 D

35 neopentane 3 3 3 pentane �2.61 5.42 D

36 neopentane 3 3 3 neopentane �1.78 4.28 D

37 cyclopentane 3 3 3 neopentane �2.40 4.33 D

38 cyclopentane 3 3 3 cyclopentane �3.00 3.98 D

39 benzene 3 3 3 cyclopentane �3.58 3.10 D

40 benzene 3 3 3 neopentane �2.90 3.17 D

41 uracil 3 3 3 pentane �4.85 3.44 D

42 uracil 3 3 3 cyclopentane �4.14 3.72 D

43 uracil 3 3 3 neopentane �3.71 2.80 D

44 ethene 3 3 3 pentane �2.01 4.46 D

45 ethyne 3 3 3 pentane �1.75 3.11 D

46 peptide 3 3 3 pentane �4.26 3.32 D

others ΔE disp/elec category

47 benzene 3 3 3 benzene (TS) �2.88 2.60 D

48 pyridine 3 3 3 pyridine (TS) �3.54 1.83 D

Table 2. Continued
others ΔE disp/elec category

49 benzene 3 3 3 pyridine (TS) �3.33 2.13 D

50 benzene 3 3 3 ethyne (CH 3 3 3π) �2.87 1.60 M

51 ethyne 3 3 3 ethyne (TS) �1.52 0.79 M

52 benzene 3 3 3AcOH (OH 3 3 3π) �4.71 1.25 M

53 benzene 3 3 3AcNH2 (NH 3 3 3π) �4.36 0.98 M

54 benzene 3 3 3w ater (OH 3 3 3π) �3.28 1.08 M

55 benzene 3 3 3MeOH (OH 3 3 3π) �4.19 1.54 M

56 benzene 3 3 3MeNH2 (NH 3 3 3π) �3.23 2.07 D

57 benzene 3 3 3 peptide (NH 3 3 3π) �5.28 1.74 M

58 pyridine 3 3 3 pyridine (CH 3 3 3N) �4.15 0.88 M

59 ethyne 3 3 3water (CH 3 3 3O) �2.85 0.40 E

60 ethyne 3 3 3AcOH (OH 3 3 3π) �4.87 0.54 E

61 pentane 3 3 3AcOH �2.91 3.60 D

62 pentane 3 3 3AcNH2 �3.53 3.09 D

63 benzene 3 3 3AcOH �3.80 1.97 D

64 peptide 3 3 3 ethene �3.00 1.70 M

65 pyridine 3 3 3 ethyne �3.99 0.46 E

66 MeNH2 3 3 3 pyridine �3.97 1.21 M
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contributions shared by both methods is canceled. For example,
the CCSD(T)/CBS approach is consistent with all of the CCSD-
based methods where the MP2 and ΔCCSD terms are the same
and the protocol differs only in omitting the triples.
DFT-SAPT. Table 2 gives the DFT-SAPT dispersion/electro-

static ratios and the SAPT-electrostatic/dispersion/mixed
(SAPT-E/D/M) category for all of the complexes in the S66 set.
It can be seen in this table that among the interactions in the

hydrogen-bonding category, 20 are clasified as SAPT-electro-
static, while three are classified as SAPT-mixed. The complexes
containing cyclic hydrogen bonds or water exhibit the smallest
D/E ratios. The range of D/E ratios for single H-bonds involving
NH2 or NH donors is 0.33�0.79, while the corresponding ratios
for single H-bonds involving OH donors are 0.29�0.42. The
three SAPT-mixed complexes in this group, MeNH2 3 3 3MeOH,
MeNH2 3 3 3MeNH2, and MeNH2 3 3 3 peptide, represent three of
the four complexes that have MeNH2 as the hydrogen-bond
donor.Here, the hydrogen bond itself is weaker, while the secondary
(dispersion) interactions in the systems are not negligible.
The D/E values for the interactions in the dispersion category

are in the range from 1.33 to 5.42. Within this group, there are 20
SAPT-dispersion interactions and three SAPT-mixed interac-
tions, which are for the uracil 3 3 3 ethyne, uracil 3 3 3 uracil, and
pyridine 3 3 3 uracil complexes. Generally the interactions that are
most electrostatic in nature are π�π interactions involving the
two heterocyclic aromatic molecules (uracil and pyridine). This
trend stands to reason as the uracil and pyridine heteroatoms give
these molecules large charge separations. As would be expected,
the aliphatic�aliphatic interactions exhibit the least amount of
electrostatic character.
There are three SAPT-electrostatic, 10 SAPT-mixed, and

seven SAPT-dispersion complexes within the mixed category.
Here, it can be seen that interactions involving ethyne are
generally electrostatic in nature, with three of these, ethyne 3 3 3
water, ethyne 3 3 3AcOH, and pyridine 3 3 3 ethyne, being categor-
ized as SAPT-electrostatic.
Methods Tested. Selected error measures of the tested

methods for the S66 test set are listed in Table 3 and plotted
in Figure 2. Relative errors for different interaction categories are
plotted in Figure 3; the dispersion category is further divided to

π�π, aliphatic�aliphatic, and π�aliphatic interactions, for
which the relative errors are plotted in Figure 4. The full listing
of the errors for these groups is provided in Table S1 in the
Supporting Information. The performance of the individual
methods is discussed in the following text.
1. MP2. The MP2 method has long served as the workhorse in

calculations on molecular complexes. This method is generally
regarded as yielding qualitatively, or semiquantitatively, accurate
results (when used with the counterpoise correction), with the
quality of its interaction energy values depending strongly on the
basis set with which it is used. In a previous study in this
laboratory, we have shown that MP2 generally yields its best
results when it is paired with either the aDZ or the TZ basis.57

Here, we investigate the performance of this method with the
aDZ and TZ bases, as well as at the CBS limit.
It can be seen in Figure 2 that similar errors are produced by

the MP2/aDZ (0.79 kcal/mol), MP2/CBS (0.69 kcal/mol), and
MP2/TZ (0.70 kcal/mol) methods. These errors are rather high,
as compared to those of many of the other methods considered
here. However, it should be kept in mind that MP2/aDZ and
MP2/TZ are the least computationally expensive methods
included in the study and have much better scaling properties
than any method that includes any higher order terms (especially
when density fitting is used).
Inspection of Figure 3 reveals that, despite the fact that MP2

produces similar overall errors with TZ, aDZ, and at the CBS
limit,MP2/TZ gives themost balanced description of the various
interaction categories, giving its largest relative error for the
dispersion category (14%). MP2/CBS gives extremely accurate
results for hydrogen bonding complexes (2%), while producing
very large errors for interactions in the dispersion category
(29%).
2. SCS-MP2 and SCS-MI-MP2. The SCS-MP2 method makes

use of a separate scaling of the singlet and triplet MP2 correlation
and was originally developed for reaction energies. The SCS-MI-
MP2 method uses the same scaling scheme, but was parame-
trized for improved performance in the description of noncova-
lent interactions (using the S22 data set).
Results for SCS-MP2/CBS and SCS-MI-MP2/CBS are de-

picted in Figure 2. Not surprisingly, SCS-MP2/CBS gives
errors that are relatively high (RMSE 0.87 kcal/mol), as
the method is not parametrized for intermolecular interactions.

Table 3. Errors of the Studied Methods with Respect to the
BenchmarkCCSD(T)/CBSCalculations on the S66Data Seta

method

RMSE,

kcal/mol

MUE,

kcal/mol

AVG,

kcal/mol MAX %

MP2/TZ 0.70 0.56 0.43 29

MP2/aDZ 0.79 0.58 0.31 32

MP2/CBS 0.69 0.45 �0.44 40

MP2C/CBS 0.71 0.47 �0.01 174

SCS-MP2/CBS 0.87 0.74 0.73 79

SCS-MI-MP2/CBS 0.38 0.28 0.21 54

DW-MP2/CBS 0.40 0.27 0.09 58

MP3/CBS 0.62 0.45 0.44 64

MP2.5/CBS 0.16 0.12 0.00 16

CCSD/CBS 0.70 0.62 0.62 73

SCS-CCSD/CBS 0.25 0.15 0.12 6

SCS-MI-CCSD/CBS 0.08 0.06 �0.04 6
aThe errors are reported as RMSE, mean unsigned error (MUE),
average signed error (AVG), and largest error in the set relative to the
interaction energy (MAX).

Figure 2. The RMSE (kcal/mol) with respect to the CCSD(T)/CBS
benchmark. The symbol next to the bar is the sign of the average error.
Plus indicates that the method underestimates the strength of the
binding over the whole data set; minus indicates systematic overbinding.
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SCS-MI-MP2/CBS, on the other hand, yields an RMSE value
of 0.38 kcal/mol, which represents a significant improvement
over the unscaled MP2 method (for any of the basis sets tested
here). Comparing SCS-MI-MP2/CBS to MP2/TZ (the best
MP2 performer), it can be seen in Figure 3 that the scaled MP2
method gives improved results for hydrogen bonds and interac-
tions in the “other” category, with especially large improvements
for the hydrogen bonds (11% vs 3%). Dispersion interactions are
slightly better described by MP2/TZ (14% vs 15%).
3. MP3 and MP2.5. The most computationally expensive part

of the MP2.5 method (as utilized here) is the MP3/aDZ
calculation, meaning that this technique is only more computa-
tionally intensive than the MP2-based methods. MP3 is known
to strongly underestimate dispersion interactions, as opposed to
MP2/CBS, which is known to overbind dispersion bound com-
plexes. The basis for the MP2.5 method, which is constructed as
an average of MP2 and MP3, is a mutual cancellation of these
errors.
As might be expected, MP3/CBS yields relatively high

RMSEs (0.62 kcal/mol). On the other hand, MP2.5/CBS yields
surprisingly accurate results for this data set, considering its

relatively low cost, and the fact that it does not (technically)
contain any empirical parameters. Figure 2 reveals that the only
method producing RMSEs lower than MP2.5 (0.16 kcal/mol)
is SCS-MI-CCSD/CBS (0.08 kcal/mol). Considering the data
presented in Figure 3, it can be seen that MP2.5 gives a well-
balanced description of the three interaction categories, producing
relative errors of nomore than 7% for any particular interaction type.
The lowest errors occur for hydrogen bonds (1%), while the largest
errors occur for the dispersion complexes (7%). MP2.5 gives a very
well-balanced description of the dispersion-bound complexes, with
errors between 6% and 7% for all three dispersion subcategories.
4. CCSD, SCS-CCSD, and SCS-MI-CCSD. Like SCS-MP2, SCS-

CCSD was parametrized to improve CCSD’s description of
reaction energies. It has also been noted that this method gives
improved results for noncovalent interactions. As in the case of
SCS-MP2, SCS-CCSD has also been parametrized (against the
S22 set) to give improved results for molecular complexes; with
the new parameters the method is designated SCS-MI-CCSD.
This reparameterization leads to significant improvement of
the accuracy from RMSE of 0.25 kcal/mol in SCS-CCSD/CBS
to 0.08 kcal/mol in SCS-MI-CCSD/CBS.
It can be seen in Figure 2 that the RMSEs produced by both

SCS-CCSD/CBS and SCS-MI-CCSD/CBS are much lower
than that of CCSD/CBS (0.70 kcal/mol). To highlight the
accuracy that can be obtained with each of these techniques, it
will be noted that the maximum relative error produced by each
of these methods is 6%. Figure 3 shows that both SCS-CCSD/
CBS and SCS-MI-CCSD/CBS produce very small errors for all
interaction categories. The SCS-MI-CCSD technique gives
particularly low errors for all interaction categories, producing
its largest relative RMSE for the dispersion category (3%).
Both SCS-CCSD and SCS-MI-CCSD produce small relative
errors for the dispersion subcategories, with SCS-CCSD
giving its largest error for the π�π and aliphatic�aliphatic
categories (4%) and SCS-MI-CCSD giving its largest error for
the aliphatic�aliphatic category (6%).
The SCS-MI-CCSD/CBS is the most accurate method from

the studied set. The error with which it reproduces the CCSD-
(T)/CBS benchmark is smaller than the estimated accuracy of
the benchmark calculations. The method is also very robust, as
indicated by the narrow range between maximum and minimum
error. Therefore, it can be recommended as an alternative to
CCSD(T) calculations for larger systems or for any purpose
where the ultimate accuracy is not required.
5. Dispersion Weighted MP2. The DW-MP2 method, which

utilizes a (system dependent) weighted average of MP2/CBS
and SCS-MP2/CBS results to compute interaction energies, yields
results that are improvedwith respect to its parentmethods, both in
terms of overall errors (RMSE 0.40 kcal/mol) and in terms of errors
for the three interaction categories. This is somewhat surprising;
given the relatively poor performance of SCS-MP2 for dispersion
bound complexes, it would be expected that DW-MP2 should
give low errors for hydrogen-bonding complexes (as does MP2/
CBS) and higher errors for dispersion bound complexes (as does
SCS-MP2/CBS). However, it should be noted that the signs of
the errors given by MP2/CBS and SCS-MP2 for dispersion
bound complexes are generally opposite in sign; that is, MP2/
CBS tends to overbind, while SCS-MP2/CBS tends to under-
bind. Thus, any interaction energy constructed as a linear
combination of results from these two methods will exhibit some
inherent error cancellation, which is likely responsible for this
method’s relatively low errors.

Figure 3. Relative errors (%) for the three groups of complexes:
hydrogen bonds, dispersion-dominated, and others. The error is calcu-
lated as a RMSE relative to average interaction energy in the group so
that the errors can be compared between the groups.

Figure 4. Relative errors (%) for the three types of dispersion-domi-
nated complexes: π�π, aliphatic�aliphatic, and π�aliphatic interac-
tions. The error is calculated as a RMSE relative to average interaction
energy in the group so that the errors can be compared between the
groups.
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6. MP2C. The MP2C method, which incorporates a TD-DFT
description of dispersion, yields an RMSE (0.71 kcal/mol) that
is comparable to those of MP2/CBS (0.69 kcal/mol) and
MP2/TZ (0.70 kcal/mol). This technique gives very low errors
for hydrogen-bonding complexes (2%) but rather high errors for
both the dispersion (24%) and the “other” (25%) categories.
This is somewhat surprising because, from the theoretical point
of view, the MP2C offers a well justified improvement over MP2
itself. On the other hand, it is still only a second-order perturba-
tion treatment, which cannot describe higher order contributions.
DFT-SAPT Decomposition as a Tool for Method Assess-

ment.The availability of DFT-SAPT electrostatic and dispersion
data for all of the S66 complexes allows for the assessment of
various methods in terms of the errors they produce for varying
dispersion/electrostatic ratios. As an example, we have prepared
a plot depicting the (percentagewise) errors as a function of the
dispersion/electrostatic ratio for the MP2/CBS and MP2/TZ
methods (Figure 5). The results shown here are in good agreement
with the known properties of these two methods. MP2/CBS
gives a very good description of electrostatically driven interac-
tions while overbinding substantially for dispersion-bound com-
plexes. MP2/TZ, on the other hand, underestimates electrostatically
driven interactions and generally gives a better overall descrip-
tion of dispersion dominated and mixed interactions (although
the errors are still significant), yielding errors that indicate no
specific tendency to overbind or underbind. The type of plot
shown for MP2/CBS and MP2/TZ can be used for the assess-
ment and development of new methods and as a tool for better
determining their strengths and weaknesses.
Tests on S66 � 8 Set. Figure 6 shows the RMSEs produced

by the tested methods for the S66 � 8 data set. The MP2C
method was not applied to these sets because the improvement
as compared to MP2 itself is expected to be small, while the
computational demands are much larger. It will be noted here
that errors for the S66 � 8 data set are generally smaller than
those for the S66 set, which is attributable to the fact that
interaction energies for structures far from their equilibrium
geometries are generally very small, and the corresponding errors
for these structures will also tend to be small.
It can be seen in Figures 2 and 6 that, in terms of the relative

performance of each of the tested methods, the same general
trends are followed for the S66 and S66 � 8 data sets. Table S2
(Supporting Information) gives the S66 � 8 RMSEs for each
of the tested methods along with a description of the errors that
occur at long intermolecular separations (displacement factors
1.1�2.0) and short intermolecular separations (factor of 0.9).
Here, it can be seen that the relative errors at the shorter
intermolecular distances are always about 2�3 times larger than
those at the longer separations. This is not a surprising result, as it
would be expected that larger errors occur in regions where the
potential energy curves are the steepest.

’CONCLUSIONS

Here, we have presented a database of interaction energies for
66 intermolecular complexes, each in 9 distinct geometric
configurations. The data set was constructed to include a
balanced set of commonly encountered interaction motifs in-
volved in biomolecular structures containing C, O, N, and H.
This data set was designed to be expandable, meaning that
complexes containing additional binding motifs, or additional
elements, can easily be added. Reference data were obtained at a

high level of theory using the CCSD(T)/CBS scheme consis-
tently for all 594 points. Importantly, the reference method and
basis sets used for each of the complexes are identical to avoid the
introduction of additional random error.
Data Availability. Geometries of the complexes in S66 and

S66 � 8 data sets, the benchmark CCSD(T)/CBS interaction
energies, and results of all of themethods tested here are available
through the BEGDB Web site58 (www.begdb.com) for down-
load and interactive browsing.
Geometries.The geometries of the complexes in the S66 data

set have been carefully optimized, and the intermolecular dis-
tance is the minimum at the CCSD(T)/CBS level. This is an
important advantage over previous data sets where geometries of
all but very small complexes had been optimized at only the MP2
level. Accurate equilibrium geometries are a valuable tool for
parametrization of new methods that should yield not only
accurate energies, but also equilibrium geometries, and potential
energy surfaces in general.
S66 � 8 Geometries. The S66 � 8 data set contains eight

points on the dissociation curves of each of the S66 systems (528
in total). For a given complex, the region around the equilibrium
distance is sampled preferentially, which allows for accurate
interpolation of the true minimum of the curve.
S66 Benchmark Results. The S66 data set contains 66

CCSD(T)/CBS interaction energies obtained using aTZ and

Figure 5. Errors of selected methods plotted against the ratio of
dispersion to electrostatic term from the DFT-SAPT decomposition.

Figure 6. The RMSE (kcal/mol) in the S66� 8 (dissociation curves of
the 66 complexes).
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aQZ basis sets for the extrapolation of MP2 correlation energy
and aDZ for the ΔCCSD(T) term. These values have been
calculated on refined geometries where the intermolecular dis-
tance is a true minimum at this computational level.
S66 � 8 Benchmark Results. For the 528 nonequilibrium

geometries contained in these sets, we provide CCSD(T)/CBS
interaction energies obtained using the same setup.
Tested Methods. The enormous computational expense

associated with the CCSD(T) method, even with a relatively
small basis set such as aDZ, makes it necessary to seek less costly
methods that can produce comparable results. Of the 12 wave
function-based methods tested in this work, there are three that
stand out, in terms of their performance on the S66 and S66� 8
sets, as producing particularly low errors at a given computational
cost point; these are SCS-MI-CCSD/CBS, MP2.5/CBS, and
SCS-MI-MP2/CBS. Both of the SCS-MI- (MP2 and CCSD)
methods yield errors that are substantially lower than their parent
methods, with SCS-MI-CCSD/CBS giving errors that are ex-
tremely low for both data sets (RMSE 0.08 kcal/mol in the S66
set). MP2.5/CBS produces errors that are only slightly higher
than those of SCS-MI-CCSD/CBS (0.16 kcal/mol), at a much
lower computational cost.

’ASSOCIATED CONTENT

bS Supporting Information. A detailed error analysis of the
tested methods (Tables S1 and S2), pictures of all of the
complexes in the S66 set (Figure S1), definition of the displace-
ment coordinates used to construct the S66 � 8 set (Table S3),
and results of benchmark CCSD(T) calculations on model
complexes used to assess the accuracy of the methodology
applied to S66 and S66 � 8 data sets (Table S4). This material
is available free of charge via the Internet at http://pubs.acs.org.
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ABSTRACT:Wepresent a new class of noninteracting kinetic energy (KE) functionals, derived from the semiclassical-atom theory.
These functionals are constructed using the link between exchange and kinetic energies and employ a generalized gradient
approximation (GGA) for the enhancement factor, namely, the Perdew�Burke�Ernzerhof (PBE) one. Two of them, named
APBEK and revAPBEK, recover in the slowly varying density limit the modified second-order gradient (MGE2) expansion of the
KE, which is valid for a neutral atom with a large number of electrons. APBEK contains no empirical parameters, while revAPBEK
has one empirical parameter derived from exchange energies, which leads to a higher degree of nonlocality. The other two
functionals, APBEKint and revAPBEKint, modify the APBEK and revAPBEK enhancement factors, respectively, to recover the
second-order gradient expansion (GE2) of the homogeneous electron gas. We first benchmarked the total KE of atoms/ions and
jellium spheres/surfaces: we found that functionals based on theMGE2 are as accurate as the current state-of-the-art KE functionals,
containing several empirical parameters. Then, we verified the accuracy of these new functionals in the context of the frozen density
embedding (FDE) theory. We benchmarked 20 systems with nonbonded interactions, and we considered embedding errors in the
energy and density. We found that all of the PBE-like functionals give accurate and similar embedded densities, but the revAPBEK
and revAPBEKint functionals have a significant superior accuracy for the embedded energy, outperforming the current state-of-the-
art GGA approaches. While the revAPBEK functional is more accurate than revAPBEKint, APBEKint is better than APBEK. To
rationalize this performance, we introduce the reduced-gradient decomposition of the nonadditive kinetic energy, and we discuss
how systems with different interactions can be described with the same functional form.

1. INTRODUCTION

Density functional theory (DFT)1�3 is one of the most widely
used approaches for theoretical calculations in solid-state
physics4 and quantum-chemistry.5 In its original orbital-free
(OF) formulation,6,7 DFT allows one to describe the ground
state of a many-electron system as a function of the electron
density (F) alone, through the solution of the Euler equation:2

δTs½F�
δFðrÞ þ vextðrÞ þ vJðr; ½F�Þ þ δExc½F�

δFðrÞ ¼ μ ð1Þ

where Ts[F] is the noninteracting kinetic energy (KE) density
functional; vext(r) and vJ(r;[F]) are the external (i.e., nuclear)
and Coulomb potentials, respectively; Exc[F] is the exchange-
correlation (XC) energy functional; and the Lagrange multiplier
μ is the chemical potential, which takes into account that the
number of electrons is fixed.

Equation 1 is of limited practical utility, since only vJ(r;[F]) is
known as an explicit functional of the electron density, while the
exact functional forms of Ts[F] and Exc[F] are not known. For the
XC term, many different successful approximations have been
developed for different kinds of systems (molecules,8 solids,9,10

surfaces,10 interfaces,11,12 etc.), mainly taking advantage of the fact
that Exc is by far the smallest term in eq 1. For the noninteracting
kinetic energy functional, on the contrary, reliable approximations

are still lacking. For this reason, OF-DFT calculations have been so
far only performed for selected solid-state systems,7,13�20 and DFT
calculations are instead routinely performed within the Kohn�
Sham (KS) scheme.1 This requires, however, the introduction of
orthonormalized orbitals and implies a formal O (N3) scaling.

In recent years, further interest in the KE functionals and related
approximations has been motivated by the development of density-
based embedding methods21�33 and, in particular, the frozen density
embedding (FDE).25 In the FDE approach, a many-electron system
with electron density F is partitioned into two subsystems A and B,
such that the total electrondensity isF=FA+FB.TheKSequations of
subsystem A under the influence of subsystem B (or equivalently
those of subsystem B under the influence of A) can be solved exactly
within the FDE formalism if the embedding (local) potential

vembðr, ½FA; FB�Þ ¼ vBextðrÞ þ vJðr; ½FB�Þ

þ δEnaddxc ½FA; FB�
δFAðrÞ

þ δTnadd
s ½FA; FB�
δFAðrÞ

ð2Þ

is added to the standard KS equations. In eq 2, vext
B (r) and vJ(r;[FB])

are respectively the external (i.e., nuclear) and the Coulomb poten-
tials due to subsystem B, and the nonadditive XC and kinetic energy

Received: June 7, 2011
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terms are

Enaddxc ½FA, FB� ¼ Exc½FA þ FB� � Exc½FA� � Exc½FB�
Tnadd
s ½FA, FB� ¼ Ts½FA þ FB� � Ts½FA� � Ts½FB�

ð3Þ

For the nonadditive XC energy (and potential), generalized gradient
approximations (GGA) are often successfully employed. For the
nonadditive kinetic energy (and potential), accurate approximations
expressing Ts as a functional of the electron density are needed.
Actually, for molecular systems, GGA approximations of Ts only
provide good accuracy for FDE calculations for subsystems with
nonbonded interactions,34�38 while strongly interacting systems or
charge-transfer interactions cannot be properly described.37�39 De-
spite these shortcomings, GGA functionals are the method of choice
for, e.g., biological systems: in this context, weak interactions dom-
inate, and FDE can outperform current hybrid quantummechanics/
molecular mechanics (QM/MM) empirical models.40

Exact KE functionals are well-known for the homogeneous
electron gas, i.e., the Thomas�Fermi (TF) local functional,41,42

and for one- and two-electron systems, i.e., the vonWeizs€acker43

functional. In between these two extreme cases, different
semilocal44�53 or nonlocal14,17,18,54�58 approximations were
derived in recent years. Nonlocal KE functionals are rather
accurate, but they are derived mainly from the linear response
of the homogeneous electron gas (the Lindhard function3) and
are thus only suitable for solid-state simulations. Semilocal KE
functionals are instead usually developed on the basis of the
generalized gradient expansion or its resummation (for recent
reviews, see refs 38 and 59).

The development of GGA KE functionals was also guided by
the so-called conjointness conjecture, which expresses a hypothe-
tical link between exchange and kinetic energy functionals.60�62

Therefore, semilocal KE approximations were constructed with
the general form

Ts½F� ¼
Z

dr τHEGs ðFÞ FsðsÞ ð4Þ

with τs
HEG = 3/10(3π2)2/3F5/3 being the kinetic energy density

of the homogeneous electron gas (HEG),41,42 s = |3F|/{2(3π2)1/3-
F4/3} being the dimensionless gradient, and Fs being a suitable kinetic
enhancement factor resembling a corresponding exchange enhance-
ment factor. We note that, because of the spin scaling relations,63 the
exchange and kinetic energies for a spin-polarized system can be
evaluated from the spin-unpolarized versions, so in this paper, we
only use equations for spin-unpolarized systems. In addition, unless
otherwise stated, atomic units are used throughout, i.e., e2 = p =
me = 1.

Following the approach outlined above, Lembarki and
Chermette64 constructed a GGA kinetic energy functional
(named LC94 or PW91K) using for the enhancement factor
the same form as the Perdew�Wang (PW91)65 exchange
functional:

FLC94s ðsÞ ¼ 1 þ a1s arcsinhða2sÞ þ ða3 � a4 ea5s
2Þs2

1 þ a1s arcsinhða2sÞ þ a6s4
ð5Þ

where the parameters a1 = 0.093907, a2 = 76.32, a3 = 0.26608,
a4 = 0.0809615, a5 = �100, and a6 = 0.57767 � 10�4 were
refitted to kinetic energies of atoms. For a slowly varying density,
LC94 formally recovers the correct second-order gradient ex-
pansion (GE2)66 and is considered one of the most accurate

GGA functionals for FDE simulations of weakly bounded
molecular systems.27,34,38,67 Later, Tran and Wesolowski68 con-
structed a PBE-like functional (named TW02) for the kinetic
energy, with an enhancement factor of the form

FPBEs ðsÞ ¼ 1 þ ks � ks

1 þ μss
2

ks

ð6Þ

where ks = 0.8438 and μs = 0.2319 were fitted to the kinetic
energies of various noble gases. The TW02 functional also shows
very good performance for FDE calculations of weakly interact-
ing molecules.38 For a complete list of KE functionals based on
the conjointness conjecture, see refs 38, 59, and 69.

Recently,70 we proposed two different PBE-like approxima-
tions for the KE (APBEK and revAPBEK) based on the con-
jointness conjecture and the semiclassical atom reference system.71 In
these approximations, the value of μs = 0.23899 was not obtained
empirically from a fit but fixed by imposing exact constraints on the
KE. In APBEK, the value of ks = 0.804 was also fixed nonempirically,
by numerical analysis of the KE of heavy atoms, and it coincides with
the one used in the PBE exchange (fixed by the Lieb-Oxford
bound8,70). In revAPBEK, the value of ks was obtained in analogy
with the revised PBE exchange72 (ks = 1.245), and it was found that
this value leads to very accurate FDE energies for eight weakly
interacting systems, outperforming LC94.70

In this paper, we develop further the work of ref 70 and discuss
in detail the performance of the APBEK and revAPBEK func-
tionals for a larger set of systems within the FDE theory.
Moreover, we introduce new PBE-like KE approximations
(named revAPBEKint and APBEKint) which recover the correct
second-order gradient expansion coefficient μs

GE2 in the slowly
varying density regime. The APBEKint/revAPBEKint func-
tionals are developed in the spirit of the conjointness conjecture
following the approach used in the development of the PBEint
exchange functional11 (which solves the analogous problem for
the exchange and provides a link between the rapidly and slowly
varying density regimes). The APBEKint/revAPBEKint func-
tionals show, in general, performances close to the ones of
APBEK/revAPBEK. However, for various tests, differences are
significant. A direct comparison of these four PBE-like func-
tionals allows us to rationalize the importance of the enhance-
ment factor for small and large reduced gradients. To this end, we
introduce the reduced-gradient decomposition of the nonaddi-
tive kinetic energy (see section 3.3).

The paper is organized as follows: In section 2, we explain the
APBEK and revAPBEK constructions, and we present the
revAPBEKint and APBEKint KE functionals. Section 3 reports
computational details and the definition of the reduced-gradient
decomposition. In section 4.1, we test the performance of our
functionals to compute the total kinetic energy of 51 atoms and
ions, jellium spheres, and surfaces. In section 4.2, we apply them
to compute the nonadditive kinetic energy and potential in FDE
calculations of 20 molecular systems with different kinds of
nonbonded interactions: dispersion, dipole�dipole, and hydro-
gen bonds. Finally, in section 6, conclusions are drawn.

2. THEORY

2.1. The Large-Z Asymptotic Expansion of the Kinetic
Energy. For many-electron nonrelativistic neutral atoms, the
noninteracting kinetic energy has the following asymptotic
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expansion

Ts ¼ c0Z
7=3 þ c1Z

2 þ c2Z
5=3 þ ::: ð7Þ

where Z is the number of electrons, c0 = 0.768745 is given by the
Thomas�Fermi theory,41,42 c1 = �0.5 is the Scott correction,73

and c2 = 0.2699 was found in the semiclassical theory.74,75

Equation 7 is very accurate, even for a small Z, with a typical
error on the order of 0.2�0.5%76 for atoms of the periodic table
with Z > 6. The coefficients of the asymptotic expansion (eq 7)
cannot be recovered from GE2 with μs

GE2 = 5/27 = 0.18566

(c1
GE2 = �0.5362 and c2

GE2 = 0.3360 are obtained76), but the c1
coefficient is exactly recovered by the modified second-order
gradient expansion (MGE2)76

TMGE2
s ½F� ¼

Z
dr τHEGs ½F�ð1 þ μMGE2

s s2Þ ð8Þ

with μs
MGE2 = 0.23899.

For the c2 coefficient, gradient expansions are less useful,
76 and

c2 = 0.3217 is found from MGE2, slightly better than GE2. Since
MGE2 yields exactly the c1 coefficient of eq 7 and for most systems
the important energetic region is se 2,we can expect any reasonable
functional reducing toMGE2 in the small-s limit to reproduce fairly
well eq 7 and thus to be rather accurate for the KE of atoms.
2.2. The Conjointness Conjecture. In ref 70, we discussed

the relation between the kinetic and exchange enhancement factors.
In order to understand this link better, we report in Figure 1 the ratio
(Ex

exact/Ex
LDA)/(Ts

exact/Ts
LDA) for nonrelativistic noble gas atoms

with Z = 2 to Z = 2022. (Here, LDA is the popular acronym for the
local density approximation.1) We also extrapolate the curve to Z =
∞, using a parabolic fit (a1 + a2Z

�1/3 + a3Z
�2/3); see the red dashed

line in Figure 1. In this calculation, we used accurate Kohn�Sham
exact-exchange orbitals and densities.
The quantities Ex

exact/Ex
LDA and Ts

exact/Ts
LDA approximate the

integrated average values of exact enhancement factors for
exchange and kinetic energies, respectively. Thus, when their
ratio approaches 1, we have a clear indication that the exchange
and kinetic enhancement factors are very similar. Figure 1 thus
shows how well the conjointness conjecture works for all of the
noble gas atoms; for the He atom (Z�1/3 = 0.79), the ratio is in
fact below 1.04, and for larger Z values, it is very close to unity,
because quantum oscillations reduce for heavier atoms. AtZ=∞,
the extrapolated ratio is about 0.997, whereas the exact ratio is 1,

because LDA becomes exact in this limit for both exchange and
kinetic energies.77 These results indicate that the kinetic and
exchange enhancement factors must be very similar on average,
especially at small values of the reduced gradient s that dominate
the core of heavy atoms.
2.3. PBE-Like Kinetic Functionals. We recently proposed70

the APBEK (asymptotic PBE KE) GGA functional with the en-
hancement factor of eq 6 and μs = μs

MGE2 = 0.23889. The value
of ks

APBEK was fixed from a numerical analysis70 of atoms with largeZ
to 0.804, i.e., like the one for the PBE exchange, despite no
Lieb�Oxford bound holds for the KE. Thus, in APBEK, both μs
and ks are nonempirical parameters, and it turned out that they
are very close to that of the TW02 functional, which was fitted to noble gas
atoms.
We also introduced the revAPBEK functional,70 which is

similar to the APBEK but with ks
revAPBEK = kx

revPBE = 1.245. In
analogy with the revPBE exchange GGA functional, the revAP-
BEK functional takes advantage of the larger nonlocality granted
by a higher value of ks and yields very accurate FDE energies.70

The APBEK and revAPBEK functionals satisfy several exact
constraints of the KE but violate others.50,55,78�82 In particular,
they recover in the slowly varying density limit theMGE2 but not
the GE2 expansion: within a simple GGA scheme, it is not
possible to satisfy exactly both conditions. This situation resem-
bles that of the exchange PBE functional, which yields μx

PBE and
notμx

GE2 for sf 0. In this case, one possible solution was recently
proposed by introducing the PBEint functional,11 which cor-
rectly yields μx

GE2 for small s while reproducing μx
PBE for slightly

larger s (more important for atoms and molecules). Here, we
follow a similar path and propose new KE GGA approximations
(revAPBEKint and APBEKint) with the enhancement factor
given by eq 6 and μs defined by

μints ðsÞ ¼ μGE2s þ ðμMGE2
s � μGE2s Þ τWs

τHEGs þ τWs

¼ 3μGE2s þ 5s2μMGE2
s

3 þ 5s2
ð9Þ

Figure 1. Comparison between exchange and kinetic energies for
noble gases.

Figure 2. (Top panel) Kinetic energy enhancement factors and (lower
panel) their derivative with respect to s2. Note that dFs(s = 0)/ds2 = μs.
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where we used the von Weizs€acker kinetic energy density τs
W =

τs
HEG5s2/3, and ks

APBEKint = 0.804 (ks
revAPBEKint = 1.245). We

note that τs
HEG + τs

W is the correct limit for a uniform density
perturbed by a small-amplitude, short-wavelength density
wave.83

In the upper panel of Figure 2, we report the enhancement
factors of different KE functionals versus the reduced gradient s.
In the lower panel of Figure 2, the derivatives of the enhancement
factors with respect to s2 versus the reduced gradient s are
reported. Note that dFs(s = 0)/ds2 = μs.
For small s (s < 0.5), the APBEK and revAPBEK functionals

have the behavior dictated by eq 7 and Fs f 1 + μs
MGE2s2, thus

recovering the MGE2 (in analogy with the APBE exchange
functional70). On the other hand, by construction, both revAP-
BEKint and APBEKint KE functionals recover the correct GE2
for a slowly varying density. The LC94 functional recovers the
correct GE2, but only at very small values of s (s < 0.1), as we can
see in the lower panel of Figure 2. In the region s < 0.5, the
enhancement factor of APBEK, revAPBEK, and LC94 cannot be
distinguished; in a similar way, we have revAPBEKint ≈ APBE-
Kint ≈ GE2. Significant differences are instead present in the
lower panel of Figure 2. The LC94 functional displays a
pronounced unphysical peak at small values of s, whereas the
PBE-like functionals (APBEK and revAPBEK) have a smooth
monotonic behavior. Two small peaks around s = 0.5 and s = 0.4
are observed for revAPBEKint and APBEKint, respectively.
In the range 0.5 < s < 2, GE2 increases more rapidly than the

other functionals. GE2 crosses the APBEK, revAPBEK, and
LC94 curves at s ≈ 0.99, 1.23, and 0.94, respectively.
For large s (s > 2), revAPBEK has a much larger enhancement

factor than APBEK, as all the PBE-like functionals must approach
the asymptotic value 1 + ks. In this region, no differences can be
observed between revAPBEK and revAPBEKint and between
APBEK and APBEKint.
A totally different behavior is observed for LC94, which

increases very rapidly for s g 1 but then decays asymptotically
to zero as s f ∞ (not shown in the figure). We note that this
limit, where the density varies rapidly over a Fermi wavelength, is
usually present only in evanescent regions such as the exponen-
tial decay of the density far in the tail. Several studies2,3 pointed
out that for atoms andmolecules it is not energetically important,
but it can be important to limit numerical errors.84

Finally, we calculate the c1 and c2 coefficients of eq 7 for
different GGA approximations, using the same approach as in
ref 76. All functionals that recover μMGE2 give very accurate c1
coefficients, whereas revAPBEKint, APBEKint, and GE2 yield
larger deviations from the exact c1, as expected (see Table 1). For
the c2 coefficient, a similar trend is found, but the agreement is
not as good since the c2 coefficient accounts for quantum
oscillations that are not well described with gradient expansions.
Notably, LC94 shows a good value for both c1 and c2, despite it
formally recovering GE2 for s f 0. This is due to the fact that
LC94 recovers GE2 only at very small values of s (s e 0.1), but in
fact it is very close to the MGE2 behavior over a wide range
0.1 e s e 1.2.

3. COMPUTATIONAL DETAILS

3.1. Atoms and Ions, Jellium Spheres, and Clusters.
Densities and orbitals of atoms and ions (section 4.1) were
obtained by analytic Hartree�Fock calculations.85 For jellium
clusters, we used accurate numerical exact exchange Kohn�Sham

orbitals and densities,86 for jellium surfaces, accurate numerical
LDA Kohn�Sham orbitals and densities.51

3.2. FDE Calculations. The frozen density embedding calcu-
lations were performed within the KSCED formalism25,32 with
freeze-and-thaw cycles87 to guarantee the full relaxation of the
embedded ground-state electron densities: this approach is
equivalent to Cortona’s approach.23 We used a development
version of the TURBOMOLE program package.88 Details of our
FDE implementation in TURBOMOLE are discussed in ref 32.
In the FDE calculations, the PBE8 XC functional and def2-
TZVPPD supermolecular basis set89 were used. The def2-
TZVPPD basis set adds diffuse basis functions to the def2-
TZVPP90 basis set and grants a very accurate description of
weakly interacting systems. We used a very accurate integration
grid (gridsize = 7, radsize = 14) to minimize numerical errors.
Several sets of molecular complexes with different kinds of

interactions were considered in FDE calculations. The geome-
tries of dispersion, dipole�dipole, and hydrogen bonding inter-
acting systems were taken from the literature.27,91,92

The embedding error in the total energy was computed as

ΔE ¼ EFDE½~FeA, ~FeB� � EKS½FKS� ð10Þ
where ~FAe (r) and ~FBe (r) are the (approximated) embedded
densities, EKS is the total KS energy of total supermolecular
system with density FKS, and

EFDE½~FeA, ~FeB� ¼ TKS
s ½~FeA� þ TKS

s ½~FeB�
þ ~Tnadd

s ½~FeA, ~FeB� þ Vext ½~FeA þ ~FeB�
þ J½~FeA þ ~FeB� þ Exc½~FeA þ ~FeB� ð11Þ

In eq 11, Exc is the GGA exchange-correlation energy func-
tional, J is the Coulomb energy, Vext is the energy associated with
the external potential, Ts

KS[~Fje] is the exact KS kinetic energy of
the embedded subsystem j (actually computed from KS em-
bedded orbitals), and finally the (approximated) nonadditive
kinetic energy functional is

~Tnadd
s ½~FeA, ~FeB� ¼ ~Ts½~FeA þ ~FeB� � ~Ts½~FeA� � ~Ts½~FeB� ð12Þ

In this work, approximated functionals or densities are indicated
with a tilde (∼). Equation 12 has two degrees of approximation:
the functional form (~Ts) and the embedded densities (~FAe ,~FBe ),
which in turn depend on the approximated nonadditive kinetic
energy potential.
A quantitative measurement of the absolute error associated with

a given embedding density was obtained by computing the error

ξ ¼ 1000
N

Z
jð~FeAðrÞ þ ~FeBðrÞÞ � FKSðrÞj dr ð13Þ

with N being the number of electrons. In evaluating ξ, we
considered only the valence electron density (ξv): the core density

Table 1. Deviations (Multiplied by 103) of c1 and c2 Coeffi-
cients, Computed for Different GGA Approximations, from
Exact Ones (eq 7)a

GE2 revAKi AKi revAK AK TW02 LC94

c1 �36.2 �30.8 31.5 �2.2 �3.8 �8.0 �2.4

c2 65.8 62.6 53.7 27.0 16.8 21.6 7.2
aThe smallest values are in bold style. The following shorthands have
been used for the functional names: AK for APBEK; revAK for
revAPBEK; AKi for APBEKint; revAKi for revAPBEKint.
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is not important for the determination of chemical and physical
properties of interaction between the subsystems.
3.3. Reduced Gradient Kinetic Energy Decomposition. To

analyze the performance of different GGA kinetic functionals, we
follow the idea proposed in ref 93, where the XC functional is
decomposed in terms of its reduced gradient contributions, and
apply it to kinetic energy functionals. Thus, we define the local
(Thomas�Fermi) KE density in the s space

t½F�ðsÞ ¼
Z

dr τHEG½F�ðrÞ δðs� sðrÞÞ ð14Þ

so that

THEG
s ½F� ¼

Z
ds t½F�ðsÞ ð15Þ

We call t[F](s) the s-decomposed HEG kinetic energy distribution.
(Note that for a constant density, t[F](s) becomes a Dirac
function centered at s = 0.) For a GGA KE functional, we have

TGGA
s ½F� ¼

Z
dr τHEGs ½F�ðrÞ Fsðs½F�ðrÞÞ ð16Þ

and thus

TGGA
s ½F� ¼

Z
ds t½F�ðsÞ FsðsÞ ð17Þ

Equation 17 is very insightful: it states that the total kinetic
energy is the scalar product (in the s space) of t(s) and the kinetic
enhancement factor Fs(s).
A similar decomposition can also be obtained for the non-

additive kinetic energy (see eq 3). Hence,

Tnadd
s ½FA, FB� ¼

Z
ds tnadd½FA, FB�ðsÞ FsðsÞ ð18Þ

with

tnadd½FA, FB�ðsÞ ¼ t½FA þ FB�ðsÞ
� t½FA�ðsÞ � t½FB�ðsÞ ð19Þ

Equation 18 states that the nonadditive kinetic energy is the
scalar product (in the s space) of the s-decomposed nonadditive
HEG kinetic energy distribution tnadd(s) and the kinetic en-
hancement factor Fs(s).

In this paper, we present several plots of t(s) and tnadd(s).
These plots were obtained considering the values of the density
and of the reduced gradient on a very accurate DFT quadrature
grid.94 To obtain a smooth curve, a Gaussian broadening in s (σ =
0.07) was used.

4. RESULTS

In this section, we present the results of the application of
APBEK, revAPEK, revAPBEKint, and APBEKint functionals to
different problems, ranging from the calculation of kinetic
energies of atoms/ions and jellium clusters/surfaces to FDE
calculations on many different complexes. For comparison,
results obtained with the GE2, LC94, and TW02 functionals
are also reported.

Molecular atomization kinetic energies have already been
reported in ref 70. This test however leads to a very large absolute
error for GGAKE functionals51,52,95 and small differences among
the PBE-like functionals.70

4.1. Atoms, Jellium Spheres, and Jellium Surfaces. In
Table 2, we show the accuracy of different GGA functionals
for the calculation of noninteracting kinetic energies of atoms/
ions, jellium clusters, and jellium surfaces (similar to Table I of ref
51 and Table II of ref 52). The total error displayed in the last row
of the table is defined as in refs 51 and 52.

Error ¼ 100

� 1
2
MAREðatomsÞ þ 1

4
MAREðclustersÞ

�

þ 1
4
MAREðLDMÞ

�
ð20Þ

where MARE(atoms) is the mean absolute relative error
(MARE) of the integrated kinetic energy of 51 atoms and ions
(listed in ref 51; in addition, we included Zn2+, see Figure 3),
MARE(clusters) considers neutral spherical jellium clusters with
bulk parameter rs = 3.93 (listed in ref 51), and MARE(LDM) is
related to the jellium surface KE for rs = 2, 4, and 6, calculated in
the liquid drop model (LDM).51

Table 2 shows that the total error of eq 20 is practically the
same for most of the functional approximations considered,
because errors relative to different classes of systems compensate
each other.

Table 2. Percent Mean Absolute Relative Error of Kinetic
Energies of 51 Atoms and Ions (See Text), Jellium Surfaces
(see ref 51) and Neutral Spherical JelliumClusters (see refs 51
and 52)a

GE2 revAKi AKi revAK AK TW02 LC94 ref.

atoms/ions 1.10 0.79 0.84 1.24 0.79 0.72 0.82 0.83b

surfaces 3.30 4.23 4.40 3.55 3.93 4.00 3.80 1.17,c 2.47,d

1.77e

clusters 0.99 1.02 1.14 0.83 0.96 0.98 0.92 1.76c

error 1.63 1.70 1.80 1.71 1.62 1.60 1.59 1.94d

aAlso shown is the total error given by eq 20. Best (worst) results are
indicated in boldface (underlined). The following shorthands have been
used for the functional names: AK for APBEK; revAK for revAPBEK;
AKi for APBEKint; revAKi for revAPBEKint. bThe A0.185 functional
from the Airy gas, see ref 52. cGE4 see ref 51. dMGGAkinetic functional,
see ref 51. eThe A(1/6) functional from the Airy gas, see ref 52.

Figure 3. Percent mean absolute relative error for all atoms and ions
considered, sorted by the exact kinetic energy.
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For atoms and ions, TW02 is the most accurate (MARE =
0.72), followed by APBEK, revAPBEKint, LC94, and APBEKint,
all with similar errors (MARE = 0.79�0.82). We recall that
TW02 and LC94 were fitted to atoms, in contrast to APBEKint
and APBEK, which do not contain any empirical parameter.
Instead, revAPBEK and GE2 show a lower accuracy. However, it
is worth it to note that these functionals still outperform the
fourth-order gradient expansion and meta-GGA functionals.51

To further investigate the errors in the kinetic energy for atoms
and ions, in Figure 3, we report the relative error for all of the
atoms and ions considered, sorted according to increasing
(exact) kinetic energies.
Figure 3 shows that despite the MARE being below 1%, errors

up to 3% can be present, in particular for small atoms and heavily
charged ions. The relative error instead decreases for systems
with a large number of electrons. In this case, the functionals
recovering exactly or approximately μs

MGE2 (i.e., APBEK, revAP-
BEK, TW02, LC94) are rather accurate, whereas those recover-
ing μs

GE2 (i.e., revAPBEKint, APBEKint) perform similar to the
second-order gradient expansion and underestimate the kinetic
energy. This can be easily seen by looking at the last two atoms
(Kr and Xe) in Figure 3. This emphasizes the importance of the
nonempirical parameter μs

MGE2 for heavy atoms.
Note also that the total kinetic energy is always in the order

revAPBEK > APBEK > revAPBEKint > APBEKint. While it can
be easily expected that functionals with a larger ks or a large μs
give larger kinetic energies (due to the larger enhancement
factor), it is not obvious why APBEK > revAPBEKint, as the
former has a larger μs while the latter has a larger ks. In addition,
Figure 3 shows that the difference between these two functionals
increases with the number of electrons: for Ne(Kr), the AP-
BEK�revAPBEKint difference is 0.49% (0.61%).
To shine light on this issue, we report in Figure 4 (panel a) the

s-decomposed HEG kinetic energy distribution t(s) (see eq 14)
and the difference of the two enhancement factors in panel b.
Figure 4a shows that the energy-relevant region for Ne is 0.2 < s

< 1.3: for larger s, t(s) is vanishing exponentially (note that the
energy axis is in a log scale). As the total kinetic energy can be
obtained as the scalar product in the s space between t(s) and Fs(s),
differences in Fs(s) for s < 1 (where the revAPBEKint enhance-
ment factor is lower than APBEK, due to a smaller μs parameter)

are more important than differences due to different ks values
(high s region). Upon increasing the atom size, the t(s) distribution
moves to smaller s, making the role of ks less important.
Coming back to Table 2, we see that for jellium surfaces, on the

contrary, GE2 shows the best performance, although the error is
quite large, because in this case a strong nonlocality is required
and the fourth order-gradient expansion of the kinetic energy96

needs to be recovered. In fact, laplacian-dependent functionals
can be expected to perform accurately for these systems.51 In
addition, any GGA functional performing well for jellium sur-
faces will be rather inaccurate for atoms and molecules (see
Figure 3 of ref 48). Because of the need for high nonlocality (i.e.,
large enhancement factor), better results are obtained with
LC94, APBEK, and revAPBEK. Note also that the LC94 GGA
has five empirical parameters fitted to the kinetic energies of He,
He+, Ne, and Ne+ atoms.64 Such a fitting set takes into account
the ionization kinetic energy that contains a small contribution
from atomic surface kinetic energy. Thus, for jellium surfaces,
LC94 is favored with respect to the PBE-like GGAs.
Finally, for jellium clusters, which are in between surfaces and

atoms, revAPBEK is the most accurate functional, while APBEK,
TW02, and LC94 yield errors similar to GE2. Also, in this case,
functionals with a higher ks are favored.
4.2. FDE Calculations. In this subsection, we present the

results of FDE calculations on several sets of molecular complexes
characterized by different types on nonbonded interactions:
WI weakly interacting systems (i.e., dispersion dominated).
C6H6�Ne, (CH4)2, CH4�Ne, He�Ne, Ar�Ne, and (Ne)2,
from the benchmark set WI7�0591

DI dipole interacting systems. CH3Cl�HCl, CH3SH�HCl,
CH3SH�NCH, (H2S)2, (HCl)2, and H2S�HCl, from the
benchmark set DI6�0492

HB hydrogen-bonded systems. HF�NCH, a strong hydrogen-
bond system deeply investigated in the context of the FDE
theory;27 (H2O)2, (HCONH2)2, (HCOOH)2, (HF)2, (NH3)2,
and NH3�H2O from the benchmark set HB6-0492

Systems with a chemical bond and/or significant charge-
transfer cannot be treated at the GGA level38,39 and thus are
not considered in this work. For these systems, corrections to
GGA are required, as discussed in refs 82, 97, and 98.
4.2.1. Embedding Error on Energy. In Table 3, we report the

embedding error on the total energy (ΔE), see eq 10. The KS
binding energy (Eb

KS) of the total system is reported in the
third column of Table 3. This was corrected for the basis-set
superposition error (BSSE) using a counterpoise correction
procedure,99 and all geometries are kept fixed. Note that the
embedding error on the total energy coincides with the
embedding error of the binding energy, as the contributions
from isolated subsystems cancel and, with a supermolecular
basis set, the BSSE corrections also cancel. The results
reported in Table 3 for the LC94 and TW02 functionals
reproduce those reported in ref 38 and obtained with different
basis sets. This shows the correct convergence of our calcula-
tions with respect to the basis set. The last column of Table 3
reports also the mean average error (MAE) for the LC94 and
the LLP9161 functionals from ref 38.
In each subgroup, the systems are sorted according to the reference

Eb reported in the second column on the table. The Eb computed at
the PBE level is in agreement with the reference values, since the PBE
XC-functional correctly describes dipole�dipole and hydrogen-bond
interactions.92 On the other hand, PBE fails to describe correctly

Figure 4. (Panel a) The s-decomposedHEG kinetic energy distribution
t(s) for Ne and Kr. (panel b) APBEK-revAPBEKint difference in the
enhancement factor Fs(s).
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systems with significant dispersion interaction (see e.g. C6H6�Ne
and (CH4)2), although for other systems the PBE functional can
capture the short-range part of the dispersion interaction.
To compare results from different classes of systems, and have

a global indicator for the performance of the different KE
functionals, we consider the relative weighted MAE (rwMAE)
among all of the subgroups, namely

rwMAE ¼ 1
3 ∑
i¼WI,DI,HB

MAEi
ÆMAEiæ

� �
ð21Þ

where ÆMAEiæ is the average MAE among all of the different
functionals (but GE2) for subgroup i (we used two-digit
accuracy, thus ÆMAEWIæ = 0.2, ÆMAEDIæ = 0.9, ÆMAEHBæ =
1.4). In this way, all of the different subgroups have the same
mean influence on the rwMAE, and functionals with rwMAE
larger (smaller) than 1 have a worse (better) performance than
the average.
Alternatively, we also consider the mean absolute relative error

(MARE) of ΔE relative to the Eb computed at the super-
molecular PBE level. In this way, large absolute differences
between systems with different sizes are eliminated, and a better

Table 3. Energy Deviations between Supermolecular FDE and Kohn�Sham Calculations (ΔE = EFDE � EKS = Eb
FDE � Eb

KS)
Corresponding to Different KE GGA Functionals for Different Interactions (Weak, Dipole, Hydrogen-Bonded Systems)a

Eb ΔE = EFDE � EKS = Eb
FDE � Eb

KS

system ref Eb
KS GE2 revAKi AKi revAK AK TW02 LC94 ref

weak interaction

He�Ne 0.06 0.14 �1.12 0.08 0.12 0.08 0.12 0.12 �0.10

He�Ar 0.10 0.14 �1.17 0.05 0.10 0.05 0.10 0.09 �0.13

(Ne)2 0.13 0.18 �1.71 0.12 0.22 0.14 0.23 0.22 �0.15

Ne�Ar 0.21 0.18 �1.90 0.10 0.22 0.11 0.24 0.22 �0.20

CH4�Ne 0.35 0.22 �2.13 0.10 0.24 0.12 0.26 0.24 �0.23

C6H6�Ne 0.75 0.14b �4.71 �0.08 0.40 �0.03 0.44 0.39 �0.73

(CH4)2 0.81 0.02b �4.49 �0.45 0.07 �0.38 0.13 0.07 �0.98

MAE 2.46 0.14 0.20 0.13 0.22 0.19 0.36 0.35,c 0.14d

MARE (%) 831 46 83 49 88 81 98 88,c,f 29d,f

dipole�dipole interaction

(H2S)2 2.65 2.60 �4.99 �0.64 0.28 �0.48 0.44 0.34 �0.86

(HCl)2 3.20 3.06 �5.16 �0.12 0.97 0.07 1.15 1.03 �0.37

H2S�HCl 5.34 6.25 �5.62 0.12 1.57 0.40 1.85 1.70 0.11

CH3Cl�HCl 5.66 5.06 �7.77 �0.28 1.54 0.02 1.85 1.65 �0.45

CH3SH�HCN 5.72 5.39 �7.83 �1.41 �0.06 �1.18 0.16 0.02 �1.75

CH3SH�HCl 6.63 8.58 �7.54 0.34 2.47 0.73 2.87 2.66 0.48

MAE 6.49 0.49 1.15 0.48 1.39 1.23 0.67 0.66,c 0.85d

MARE (%) 139 11.1 21.3 9.6 26.2 22.3 15.7 16,c,f 15d,f

hydrogen bond

(NH3)2 5.02 4.83 �6.68 �1.15 0.04 �0.95 0.24 0.11 �1.43

(HF)2 7.28 7.25 �6.43 0.54 2.05 0.79 2.29 2.12 0.18

(H2O)2 7.92 7.83 �7.35 �0.47 1.13 �0.20 1.40 1.23 �0.69

NH3�H2O 10.21 10.81 �7.91 �0.76 1.08 �0.44 1.41 1.22 �0.77

HF�NCH 11.33 12.32 �8.05 0.07 2.18 0.43 2.55 2.33 0.09

(HCONH2)2 23.81 23.34 �19.36 �4.94 �0.75 �4.20 0.02 �0.41 �4.52

(HCOOH)2 25.74 28.08 �18.95 �2.74 2.34 �1.87 3.29 2.80 �1.71

MAE 10.67 1.53 1.37 1.27 1.60 1.46 1.34 1.44,c,e 1.07d,e

MARE (%) 87.1 10.9 11.8 9.3 14.3 12.7 10.6 11,c,e,f 9d,e,f

all systems

MAE 6.54 0.73 0.89 0.63 1.05 0.95 0.80

rwMAE 9.05 0.78 1.08 0.70 1.26 1.13 1.17

rwMARE 8.75 0.72 1.10 0.66 1.29 1.14 1.03
aThe first two columns report the binding energy (Eb) from reference data91 and fromKohn�Sham calculations with the PBEXC functional (Eb

KS). The
mean absolute error (MAE) and the mean absolute relative error (MARE) are also shown for each set of molecules. In the last row, the relative weighted
MAE (rwMAE) and the global relative weighted MARE (rwMARE) are reported. Bold style indicates the smallest error in each row. All energies are in
mHa (1mHa = 0.62751 kcal/mol). The following shorthands have been used for the functional names: AK for APBEK; revAK for revAPBEK; AKi
for APBEKint; revAKi for revAPBEKint. b Eb

KS differs significantly from the reference value, and it is very small. Thus, to compute the MARE, we use
(in the denominator) the reference value of Eb.

c LC94 functional, see ref 38. d LLP91 functional, see ref 38. eWithout HF-NCH fRecomputed from data
in ref 38.
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comparison is possible. However, for the systems C6H6�Ne and
(CH4)2, the Eb at the PBE level is very small, so that the MARE
will almost diverge. For these two systems, we thus considered
the error relative to the reference Eb (second column of Table 3).
In any case, the accuracy of the MARE for the WI system is not
very significant, and for this reason, we report in Table 3 only two
digits. The relative error (ΔE/Eb) for all systems is shown in
Figure 5, where the error for WI systems was divided by a
factor of 5.
Finally, we consider a global relative weighted error

(rwMARE) defined as

rwMARE ¼ 1
3 ∑
i¼WI,DI,HB

MAREi
ÆMAREiæ

� �
ð22Þ

with ÆMAREWIæ = 74, ÆMAREDIæ = 18, and ÆMAREHBæ = 12.
Considering the MAE for all systems, we have, first of all, to

emphasize that these errors are as small (0.6�1.0 mHa) as the
errors due to the approximated XC functionals.92 This means
that the FDE method can be successfully used to describe these
systems. The revAPBEK functional yields the best overall results
with a MAE of 0.63 mHa, outperforming the LC94 (and TW02)
results. More importantly, the rwMAE (rwMARE) of revAPBEK
is by 40% (36%) smaller than that of LC94.
On the other hand, the APBEK functional shows the worst

overall performance. However, we must recall that the APBEK
has no empirical parameters and was designed to recover the
correct kinetic energy of atoms with an infinite number of
electrons, whereas here we are considering small systems in the
first two rows of the periodic table. Indeed, the APBEK func-
tional has a global performance similar to that of the TW02
functional, which contains two empirical parameters. TW02 is
slightly better due to the somehow larger ks value. The compar-
ison between APBEK, TW02, and revAPBEK in fact clearly
shows that a large value of ks is needed to obtain improved
embedding energies.

For DI systems, functionals with a high enhancement factor in
the large s region (i.e., revAPBEKint, revAPBEK and LC94)
show a much better performance (with a MAE/MARE 2�3
times smaller) than functionals with a small ks (i.e., APBEK and
TW02). The revAPBEK functional has a MAE/MARE which is
40% better than the LC94 one. The very good performance of
revAPBEK can also be inspected in Figure 5: APBEK and TW02
largely overestimate ΔE, and LC94 underestimates it, while
revAPBEK is in between them with a MARE of only 9%.
Larger ks values also improve ΔE for WI systems, but with a

smaller ratio (less than a factor of 2). For these systems, LC94
seems to have a too large enhancement factor, as it yields largely
underestimated energies (see Figure 5) with a MAE = 0.36 mHa.
TheMAE of the revAPBEK is almost 3 times smaller than that of
the LC94 functional and revAPBEK shows a similar performance
to that of the LLP91 functional, which is the most accurate one
for this benchmark.38

For HB systems, the role of ks is further reduced, and
differences among functionals are smaller. Figure 5 shows that
for HB systems all of the functionals give almost exactly the same
profile, except for a constant shift. The APBEK (revAPBEK) is
the best (the worst) for (HCONH2)2 and (NH3)2. Considering
all HB systems, the revAPBEK functional gives the bestMAE and
the same MARE as the LLP91 functional.
It is worth it to note that revAPBEK also gives the sameMARE

(9%) for both DI and HB, meaning that it can provide a balanced
description of all kinds of interactions.
Concerning the other important limit, i.e., the one for small s,

the revAPBEKint functional (which recovers GE2 at small s) is,
considering all systems, also much better than LC94/TW02, but
it is slightly worse than revAPBEK (rwMAE/rwMARE 0.08/0.06
higher). This is more evident for the HB systems. On the other
hand, APBEKint is better than APBEK (rwMAE/rwMARE 0.16/
0.19 smaller). This shows that there is an inter-relation between
the large- and small-s regimes and that both the MGE2 limit for μs
and the large ks value are required to obtain a very good performance.
Finally, we note thatΔE values are always in the order APBEK >
APBEKint > revAPBEK > revAPBEKint, see Table 3 and
Figure 5. This order is different from that observed for atoms.
We will come back to this important issue in section 5.
4.2.2. Embedding Error on Density. To further analyze the

ability of different KE functionals to yield accurate nonadditive
kinetic energy potentials, we inspected the errors in embedding
densities (see eq 13) and reported them in Table 4. The analysis
of the deformation densities is frequently employed to assess the
approximations made within the FDE scheme.32,100�103 In fact,
while the analysis of interaction energies can be affected by error-
compensation between approximated kinetic energy functionals
and approximated embedding densities, the errors on the
embedding densities give a direct benchmark of the quality of
the kinetic energy potential.
The last two rows of Table 4 report the MAE for all systems

and the rwMAE, computed as in eq 21. These data show that all
functionals yield very accurate densities. GE2 fails for the WI
systems (as it excessively favors charge-transfer and covalent
bonding), but it is instead quite accurate for HB and DI ones.
Functionals with a high enhancement factor in the large-s

region (i.e., revAPBEKint, revAPBEK and LC94) show a slightly
worse performance than the ones with small ks (i.e., APBEK,
APBEKint, and TW02), but the differences in the globalMAE are
very small (less than 5%). On the other hand, differences
between different μs values can be hardly distinguished.

Figure 5. Relative embedding energy error (ΔE/Eb) for all of the
systems investigated. ΔE = EFDE � EKS. EKS is the total energy from
supermolecular Kohn�Sham PBE calculations. Eb is the PBE Kohn�
Sham binding energy, but for C6H6�Ne and (CH4)2 where the
reference binding energy91 was considered. For graphical reasons, the
errors of the first seven systems (WI) have been divided by a factor of 5.
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These small modifications in the description of the density
indicate that all functionals yield a reasonably good kinetic energy
potential, and we can suppose that the corresponding density
differences will therefore play a minor role in the determination
of errors on embedding energies (see section 5).
In addition, we found that the embedding errors in the density

have similar spatial distribution. This can be inspected from
Figures S1�S4 of the Supporting Information, where we re-
ported the plane averaged absolute error in the embedded
valence density, i.e.

R R
dx dy |FvalFDE(r) � FvalKS(r)|, where z is

the interaction axis, for different systems.

5. DISCUSSION

For the exact Ts
nadd, the embedded density will be exact (i.e.,

the sum FA
e (r) + FB

e (r) will yield the total KS density of the total

system FKS(r)) and ΔE = 0. For an approximate ~Ts
nadd, we have

instead

ΔE½~FeA, ~FeB� ¼ ~Tnadd
s ½~FeA, ~FeB� þ ΔW ½~FeA, ~FeB� ð23Þ

where

ΔW ½~FeA, ~FeB� ¼ TKS
s ½~FeA� þ TKS

s ½~FeB� � TKS
s ½FKS�

þ Vext ½~FeA þ ~FeB� � Vext½FKS�
þ J½~FeA þ ~FeB� � J½FKS�
þ Exc½~FeA þ ~FeB� � Exc½FKS� ð24Þ

The subdivision in eq 23 is interesting becauseΔW depends only
on the approximation for the nonadditive kinetic potential, as it
depends only on the embedded densities. In other words,ΔW is
a known bifunctional of the embedded densities.

If we consider a set of KE functionals which yield very similar
embedding densities (as is the case for the PBE-like ones
considered in this work), then for any given enhancement factor
Fs(s) in this set, ΔW can be approximately considered indepen-
dent of Fs(s) (i.e., it is a constant) and

ΔE½Fs� ≈ ~Tnadd
s ½Fs� þ ΔW

≈
Z

ds tnaddðsÞ FsðsÞ þ ΔW ð25Þ

where we used eq 18. Equation 25 means that differences in ΔE
among different KE functionals are directly related to differences in
the enhancement factor Fs(s) for the kinetic energy, if embedding
densities are not changing.

In order to verify the validity of eq 25 for the systems and the
functionals under investigation in this work, we consider the
relation between the following two quantities:

e½Fs� ¼ ΔE½Fs� �ΔE½FAPBEKs �
ΔT

t½Fs� ¼
~Tnadd
s ½Fs� � ~Tnadd

s ½FAPBEKs �
ΔT

ð26Þ

where

ΔT ¼ max
Fs

f~Tnadd
s g � min

Fs
f~Tnadd

s g ð27Þ

is used to normalize the range of variation of the nonadditive
kinetic energies. With the above definitions, e[Fs

APBEK] =
t[Fs

APBEK] = 0 (to set a reference value), e[Fs] < e[Fs
APBEK] (as

we found that APBEK gives the highest ΔE, see Figure 5), and
t[Fs] >� 1. If eq 25 holds exactly, then a plot of e[Fs] against t[Fs]
gives a straight line with a slope of �1. Tables with all values of
~Ts
nadd and ΔW are reported in the Supporting Information.
In Figure 6, we consider four functionals in the order APBEK,

APBEKint, revAPBEK, and revAPBEKint and all of the systems
considered in this work. Figure 6 clearly shows that, (i) for all of
the WI and HB systems, eq 25 holds almost exactly and, (ii) for
DI systems, a different behavior is found: in particular
(rev)APBEKint has a larger ~Ts

nadd than (rev)APBEK.
In order to shine light on these two findings, we report in

Figure 7 the s-decomposed nonadditive HEG kinetic energy
distribution tnadd(s) (considering LC94 embedded densities) for
four representative systems.

Table 4. Global Absolute Errors on Valence Embedding
Density ξv (See eq 13) Resulting from Supermolecular FDE
Calculations with Different KE Functionals on Different
Classes of Systems (Weak, Dipole, Hydrogen-Bonded
Systems)a

system GE2 revAKi AKi revAK AK TW02 LC94

weak interaction

He�Ne 0.60 0.04 0.08 0.05 0.09 0.08 0.10

He�Ar 0.79 0.06 0.07 0.06 0.07 0.07 0.17

(Ne)2 0.50 0.03 0.09 0.04 0.09 0.09 0.08

Ne�Ar 0.64 0.06 0.10 0.06 0.11 0.10 0.12

CH4�Ne 0.77 0.07 0.10 0.07 0.11 0.10 0.14

C6H6�Ne 0.70 0.15 0.08 0.13 0.09 0.08 0.17

(CH4)2 1.45 0.65 0.35 0.61 0.31 0.34 0.59

MAE 0.78 0.15 0.12 0.15 0.12 0.12 0.20

dipole�dipole interaction

(H2S)2 2.18 1.88 1.75 1.86 1.76 1.76 1.80

(HCl)2 2.00 1.88 1.85 1.89 1.87 1.87 1.92

H2S�HCl 3.50 3.70 3.73 3.74 3.78 3.77 3.75

CH3Cl�HCl 2.53 2.40 2.33 2.40 2.35 2.35 2.40

CH3SH�HCN 2.03 1.75 1.57 1.72 1.54 1.55 1.61

CH3SH�HCl 3.95 4.11 4.11 4.15 4.15 4.15 4.13

MAE 2.70 2.62 2.56 2.63 2.58 2.58 2.60

hydrogen bond

(NH3)2 2.20 1.83 1.60 1.79 1.58 1.59 1.69

(HF)2 1.76 1.54 1.54 1.55 1.57 1.57 1.64

(H2O)2 2.25 2.04 1.95 2.03 1.96 1.97 2.04

NH3�H2O 3.12 3.14 3.07 3.14 3.08 3.08 3.07

HF�HCN 2.66 2.84 2.81 2.84 2.82 2.82 2.79

(HCONH2)2 2.78 2.79 2.60 2.76 2.57 2.58 2.59

(HCOOH)2 3.39 3.47 3.38 3.47 3.38 3.39 3.39

MAE 2.59 2.52 2.42 2.51 2.42 2.43 2.46

all

MAE 1.99 1.72 1.66 1.72 1.66 1.67 1.71

rwMAE 2.55 1.04 0.95 1.03 0.96 0.95 1.13
aThe mean absolute error (MAE) for each set of molecules and, in the
last row, the rwMAE for these weakly-bonded systems are also reported.
Bold style indicates the smallest error in each row. The following
shorthands have been used for the functional names: AK for APBEK;
revAK for revAPBEK; AKi for APBEKint; revAKi for revAPBEKint.
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Figure 7 shows that upon formation of a bond, there is a
decrease of kinetic-energy density at large s (i.e., in the tail of the
isolated molecules) and an increase at small s (i.e., in the bond
region). The sign change of tnadd(s) occurs at about s = 1.2�1.3
for both DI and HB systems, and only the region with s < 3 is
energetically important. For the WI system, the sign change
happens at a larger s, due to the large intermolecular equilibrium
distances. The alternating behavior of tnadd(s) for the systems
illustrated in Figure 7 directly explains the differences in ΔE and
~Ts
nadd among different functionals (see eq 18). In fact:
• KE functionals with a large enhancement factor at large s
(revAPBEK and revAPBEKint) have lower ΔE and ~Ts

nadd

than the corresponding ones with smaller ks (APBEK and
APBEKint), because tnadd(s) is negative at large s.

• In a similar way, KE functionals with a higher enhancement
factor at small s (APBEK and revAPBEK) have higher ΔE
and ~Ts

nadd than the corresponding ones with smaller μs
(APBEKint and revAPBEKint), because tnadd(s) is positive at
small s.

These findings rationalize the performance of different
functionals. We discuss hereafter in more detail one represen-
tative example for the case where eq 25 holds, the water dimer.
For this system, revAPBEK has a ΔE of only �0.2 mHa,
whereas APBEK is much worse (ΔE = 1.4 mHa). The

corresponding values of ΔW are �12.44 and �12.15 mHa,
respectively (see Supporting Information): thus differences in
the embedded densities are negligible with respect to differ-
ences in ~Ts

nadd. We thus fix the density to the APBEK one, and in
Figure 8, we plot tnadd(s) Fs(s) (panel a) and

R
0
s tnadd(s0) Fs(s0)

ds0 (panel b).
The plots clearly show that differences are significant only for s>

1.5. For this reason, if we define the correct value of the approxi-
mated ~Ts

nadd as the one that gives ΔE = 0, i.e., ~Ts
nadd = �ΔW,

we note that the larger Fs(s) at high s of the revAPBEK reduces
the ~Ts

nadd energy toward the correct value. Clearly, this condition
holds due to an error cancellation. In fact, for a given system,
different approximate KE functionals (i.e., different enhancement
factors) might exists which satisfy ~Ts

nadd = �ΔW, although both

Figure 6. Relation between e[Fs] and t[Fs] (see text for definitions) for
weakly interacting systems (panel a), dipole-interacting systems (panel
b), and hydrogen-bonded systems (panel c). The values at e = t = 0
represent the (reference) APBEK results. Lines starting from it show the
values for the APBEKint, revAPBEK, and revAPBEKint functionals (in
this order). In each panel, the black dot-dashed line with slope �1
represents the ideal behavior according to eq 25.

Figure 7. s-Decomposed nonadditive HEG kinetic energy density
distribution tnadd for H2O�H2O, NH3�NH3, CH3SH�HCN, and
(Ne)2 (the latter is multiplied by a factor of 10 for graphical reasons).

Figure 8. Contributions to the nonadditive kinetic energy for
H2O�H2O, using the APBEK and the revAPBEK functionals, fixing
the embedded density to the APBEK ones. (Panel a) The s-decomposed
nonadditive HEG KE distribution tnadd multiplied by the enhancement
factor (Fs(s)) as a function of the reduced gradient (s). (Panel b)
Cumulative integral of the data in panel a. Also shown, the �ΔW value
(from APBEK).
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~Ts
nadd andΔW can be significantly different from the ones obtained

with the exact KE functional. Actually, accurate KE functionals
should reproduce the exact Ts

nadd and ΔW separately, and not
only their sum. However, these exact values cannot be easily
obtained because they will require in practice the solution of an
inverse-KS problem,104,105 in order to obtain the exact nonadditive
kinetic potential and the exact embedded density.33,103,106�108

Nevertheless, within a simple (and efficient) GGA approach,
we can consider a KE functional to be accurate for FDE applica-
tions if it can obtain a good performance over a very large set
of systems, i.e., achieving similar error cancellation for different
systems. Indeed, as shown in Table 3, the larger ks value of the
revAPBEK functional improves ΔE for the largest number
of systems and yields the best averaged performance (rwMARE
= 0.66).

Clearly, a different empirically optimized value ks may also be
found that yields even a better performance for the FDE energies
for a given set of systems. To demonstrate our latest statement,
we note that (see Figure 5) for HB systems all of the functionals
give the same profile, with only a constant shift. This means that
none of the considered PBE functional forms can achieve in this
case a vanishing error for all of the HB systems, but further tuning
of the ks value can then be used to reduce the MAE. In fact, we
recomputed all seven HB systems for ks = 1 (and μs = μs

MGE2),
and we found a MAE of 1.050 mHa, i.e., almost the same as that
of the LLP91 functional, which yields the lowest MAE among
different KE functionals considered in ref 38. We note however
that with ks = 1 the description of (NH3)2, (HCOOH)2, and
(HCONH2)2 is improved (with respect to revAPBEK), but for
other systems, the energy is overestimated (see Supporting
Information). Furthermore, we found that the MARE is not
reduced (still 9%) with respect to revAPBEK. It is worth it to
recall that in the revAPBEK functional the ks value was chosen
without taking into account weakly bounded systems but just
following the conjointness relation with the improved exchange
energy of the revPBE functional.72 In this sense, the revAPBEK
functional can also be considered nonempirical.

On the other hand,Table 3 andFigure 5 show that amodification
of the enhancement factor for small s (i.e., a reduction of the μs
parameter) does not lead to large differences in the embedding
energies, as tnadd(s) is very small in this region. However, revAPBE-
Kint (rwMARE = 0.72) is even less accurate than revAPBEK
(rwMARE = 0.66), mainly due to the worse description of HB
systems. Thus, functionals which satify theMGE2 limit provide both
accurate embedding energies and accurate total KE, where, see
Figure 4, the important region is s < 1.3. The improvement of
APBEKint (rwMARE = 1.10) with respect to APBEK (rwMARE =
1.29) for embedding energies can be instead traced back to an error-
compensation for the too small ks. In fact, ~Ts

nadd can be reduced by
decreasing μs or increasing ks. However, APBEKint is the worst
functional for the benchmark in Table 2.

Coming back to Figure 6, we now discuss the DI systems, where
eq 25 does not hold. First of all, we note that the APBEKint
and revAPBEKint functionals lead to larger Ts

nadd values but
lower ΔE values than APBEK and revAPBEK, respectively. This
traces back to a significant reduction of ΔW from (rev)APBEK to
(rev)APBEKint KE functionals (see Supporting Information),
originating from relatively large variations of the embedded
density. To better understand this point, we plot in Figure 9
the difference of tnadd calculated at the APBEKint and APBEK
levels (both different enhancement factors and densities were
used here).

The figure clearly shows that for CH3SH�HCl the kinetic
energy density at small s values is much larger for APBEKint than
for APBEK, which accounts for the large Ts

nadd variation (see
Figure 6b). A similar effect is also present for CH3SH�HCN,
with lower intensity, while for the H2O dimer only a small
oscillation, with opposite peaks of equal intensity, is found, so
that upon integration the difference between APBEKint and
APBEK is averaged out (Ts

nadd changes by 0.1 mHa from
APBEKint and APBEK, see Supporting Information). The high-
er kinetic energy density at small s observed for APBEKint
indicates that a higher electron density is present in the bonding
region when this functional is used. The reason for this is
probably relayed in the behavior of the APBEKint enhancement
factor at small s (recovering 1 + μGE2s2), which favors delocaliza-
tion of the density in the bond. This effect is larger for the DI
systems because they contain highly polarizable atoms of the second
row (S, Cl).We note finally that an increased density in the bond
region is a small effect and does not necessarily correlate with
improvements in the embedded density (see Table 4).

6. SUMMARY AND CONCLUSIONS

In this paper, we have reviewed the recently introduced
APBEK and revAPBEK GGA kinetic energy functionals and
have presented an extended study of their ability to compute
kinetic energies of atoms and jellium clusters and surfaces and
their performance in supermolecular FDE calculations.

These nonempirical functionals recover theMGE2 expansion and
have been constructed mainly from the semiclassical theory of the
many-electron neutral atoms, which incorporates a strong conjoint-
ness conjecture, as we showed in Figure 1. However, small perturba-
tions of the homogeneous electron gas are correctly described by the
second-order gradient expansion (GE2), and due to the simplicity of
the GGA level, any semilocal functional cannot recover both
expansions in the slowly varying density limit. Thus, we introduced
two new functionals, APBEKint and revAPBEKint, which recover
the GE2 limit at small s and which have enhancement factors similar
to the PBEint exchange functional of ref 11.

The APBEK and revAPBEK functionals show performances
comparable and in many cases superior to the current state-of-
the-art for GGA KE functionals, which in this context were
represented by functionals such as LC94 and TW02. The

Figure 9. Difference in the s-decomposed nonadditive HEG kinetic
energy density distribution, between the APBEKint and APBEK func-
tionals, for H2O�H2O, CH3SH�HCN, and CH3SH�HCl.
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accuracy of these latter two functionals relied on empirical
parametrization to the kinetic energy of small atoms: we showed
instead that this empirical parametrization led to enhancement
factors which closely resemble the MGE2. This means that the
MGE2 (exact for an atom with a large number of electrons) is
very accurate also for small atoms so that the MGE2 represents a
new paradigm for the construction of accurate and nonempirical
kinetic energy functionals.

However, the MGE2 mainly defines the behavior of the
enhancement factor for small values of the reduced density
gradient, and furthermore GGA KE functionals are approxima-
tions of integrated KE Ts and not of KE density τ. Thus, GGA KE
functionals rely on error cancellation. To shine light on the role of
gradient corrections in KE functionals, we have introduced the s
decomposition of KE, equivalent with the KE distribution in the s
space (see eqs 14�19). Our approach can well show the behavior
of a GGA for a given system (see Figures 4, 6, 7�9) and can be a
useful tool in the FDE and kinetic energy development fields.

Our analysis showed that the performance of PBE-like func-
tionals depends on a balance between the low and high s region:
thus, for accurate results, μs and ks must be interrelated. Results
presented in this work show that functionals which satisfy the
exact MGE2 limit have to be preferred. In fact:
• For the total kinetic energy in atoms/ions and in jellium
clusters/surfaces, APBEK performs best and its accuracy
increases for large atoms; in these cases, revAPBEK is also
accurate, while functionals that satisfy the GE2 limit strongly
underestimate the kinetic energy.

• For a benchmark of 20 small molecules with dispersion,
dipole�dipole, and hydrogen bond interactions (thus in-
corporating the behavior of a very large set of molecular
systems), we have found that revAPBEK is the most
accurate functional for FDE interaction energies (see
Table 3), while all of the PBE-like functionals give similar
(small) integrated embedding density errors (see Table 4).
Recovering the GE2 does not lead to improved accuracy.
The similarity of the embedding errors on the density and
their similar spatial distribution (see Figures S1�S4 in the
Supporting Information) suggests that all of the nonadditive
kinetic energy potentials are rather similar.

Therefore, the revAPBEK GGA functional can be considered
as the current best choice for FDE calculations of nonbonded
systems, because it is nonempirical and it has a well balanced
accuracy for any kind of weak interaction.

Our embedding energy s decomposition (eq 25) shows that
the performance of the GGA KE functional might be still be
improved. In fact, it should be possible to develop new enhance-
ment factors109 eventually with the inclusion of the laplacian of the
density,51,53,80,109 which can improve the accuracy of the energy
without changing the embedded density. In this context, theMGE2
is an important limit to be satisfied to reduce empiricism.

Future works should also verify the accuracy of the revAPBEK
functional for the embedding energy of large systems containing
heavy atoms, where the MGE2 limit is expected to work better.
Furthermore, error cancellation can also occur with the approx-
imate XC functional. In this work, we used PBE, but the new
APBE XC functional70 might be more appropriate.
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ABSTRACT: We have critically examined and compared various ways to obtain standard harmonic molecular mechanics
(MM) force-field parameters for metal sites in proteins, using the 12 most common Zn2+ sites as test cases. We show that the
parametrization of metal sites is hard to treat with automatic methods. The choice of method is a compromise between speed and
accuracy and therefore depends on the intended use of the parameters. If the metal site is not of central interest in the investigation,
for example, a structural metal far from the active site, a simple and fast parametrization is normally enough, using either a
nonbonded model with restraints or a bonded parametrization based on the method of Seminario. On the other hand, if the metal
site is of central interest in the investigation, a more accurate method is needed to give quantitative results, for example, the method
by Norrby and Liljefors. The former methods are semiautomatic and can be performed in seconds, once a quantum mechanical
(QM) geometry optimization and frequency calculation has been performed, whereas the latter method typically takes several days
and requires significant human intervention. All approaches require a careful selection of the atom types used. For a nonbonded
model, standard atom types can be used, whereas for a bonded model, it is normally wise to use special atom types for each metal
ligand. For accurate results, new atom types for all atoms in the metal site can be used. Atomic charges should also be considered.
Typically, QM restrained electrostatic potential charges are accurate and easy to obtain once the QM calculation is performed, and
they allow for charge transfer within the complex. For negatively charged complexes, it should be checked that hydrogen atoms of
the ligands get proper charges. Finally, water ligands pose severe problems for bonded models in force fields that ignore nonbonded
interactions for atoms separated by two bonds. Complexes with a single water ligand can normally be accurately treated with a
bonded potential, once it is ensured that the water H atoms have nonzero Lennard-Jones parameters. However, for metal sites with
several water molecules, a nonbonded model with restraints (taken from the QM calculations) is more stable.

’ INTRODUCTION

Molecular mechanics (MM) simulations have become an
important complement to experiments for obtaining structural
and mechanistic information on biological systems at an atomic
level.1 For example, in the great majority of X-ray and NMR
structure determinations, the experimental data are supplemen-
ted by MM calculations to give chemically reasonable bond
lengths and angles.2 Moreover, MM calculations and molecular
dynamics (MD) simulations have become an important ingre-
dient in biochemical and medicinal chemistry studies.3,4

The advantage with MMmethods is their speed: With today’s
computer resources and software, you can study even big protein
complexes with full atomic detail and simulate medium-sized
proteins for hundreds of nanoseconds. On the other hand, the
MM methods need to be parametrized, that is, you need to have
MM parameters for all atoms in the system of interest. For
biochemical macromolecules, this does not pose any problem,
because standard MM parameters are available for all normal
amino acids and nucleic acids.5,6 Moreover, more general force
fields are available for other molecules, such as carbohydrates and
small druglike molecules.7�16

However, metal sites constitute a major problem for force
fields.1,17�22 The reason for this is that the strength of me-
tal�ligand bonds is intermediate between that of covalent bonds

and nonbonded interactions, such as hydrogen bonds.Moreover,
metals can have many different types of ligands and the number
of bonds around a metal is often more than the number of
covalent bonds around an atom. Therefore, the metal-coordina-
tion sphere is often flexible with several different geometries
possible. Finally, for transition metals, quantum mechanical
ligand-field, spin-state, trans, and Jahn�Teller effects also be-
come important, which are hard tomodel in a standardMM force
field.23 Therefore, MM parametrizations for metals have tradi-
tionally been restricted to specific metal sites (with a given set of
ligands), for which accurate results can be obtained,24�27 or
metal-specific force fields requiring specialized software.23,28,29

There are several approaches to incorporate metal ions into
MM force fields. The simplest one is to describe the interaction
between the ion and its ligand entirely by nonbonded interac-
tions, that is, by electrostatics and Lennard-Jones terms (the
nonbonded or ionic method). Such a model has been suggested
for Zn, based on formal charges on the ion (+2).30 This model
has also been modified to include polarization and charge
transfer,31 or dummy atoms between the metal and the ligands.32�34

Sometimes, the nonbonded potential has been supplemented by

Received: December 17, 2010
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metal�ligand restraints to ensure that the ligands stay bound.35

The restraints can be of many types, for example, harmonic or
flat-bottomed, single- or double-sided.

Alternatively, explicit bonds are defined between the metal
and its ligand, a bonded (valence) model. Then, the me-
tal�ligand bonds are treated the same way as covalent bonds,
that is, with bond, angle, and dihedral terms (although the latter
are often ignored for metal sites).24,25,36,37 This bonded model is
typically combined with a nonbonded potential (electrostatics
and Lennard-Jones terms), using either formal charges on the
metal or charges derived from quantum mechanical (QM)
calculations.24 The points-on-a-sphere approach is a mixed
model in which a metal�ligand stretching function is used, but
the ligand�metal�ligand bond angles are replaced by 1,3-
nonbonded interactions for the coordinating atoms.17,38,39 Other
more specialized methods to treat metal ions also exist, for
example, ligand-field MM,23 Valbond,28 the universal force field
(UFF),40,41 YETI,42,43 or SIBFA.44�46

Likewise, there exist several methods to perform a force-field
parametrization, which depend on the force field used. For
example, for a nonbonded force field with formal charges, only
two parameters (the Lennard-Jones parameters for the metal)
are available, and they can easily be optimized to reproduce QM
data, for example, to give proper metal�ligand distances. How-
ever, for a bonded force field, you have many more parameters
that need to be optimized. In principle, these parameters can also
be obtained from QM calculations, for example, by taking the
optimummetal�ligand bond lengths and angles from the values
observed in QM-optimized structures of model complexes.24,25

The corresponding force constants can be obtained from QM
scans of the potential surface for the bond or angle, but this is
tedious for more than a few parameters. Instead, it is more
common to obtain the force constants from a projection of the
Hessian matrix (obtained from a QM frequency calculation) into
internal coordinates.16,24,25 Unfortunately, such a procedure is
ambiguous because the total number of internal coordinates
(bond, angles, and dihedrals) around a metal is more than the
degrees of freedom (for example, around a four-coordinate
metal, four bonds and six angles can be defined, but there
are only 5 � 3 � 6 = 9 degrees of freedom). This means that
the internal coordinates are not independent and different
choices of internal coordinates will give different force con-
stants.47,48 Moreover, it is not certain that the optimum bond
lengths and angles obtained from a QM optimization represent
unstrained equilibrium parameters (as is assumed for aMM force
field). Instead, they represent an optimum compromise for all
interactions (bonded as well as nonbonded) between all atoms in
the complex.

In 1996, Seminario47 suggested an approach to obtain force
constants directly from the Hessian matrix, thereby avoiding any
use of internal coordinates. This procedure has been employed in
automatic parametrization programs by at least three groups, for
example, Hess2FF and the metal-center parameter builder.48�50

It makes the extraction of force constants from the Hessian
unambiguous (in fact, the force constants can be obtained in
two ways, but they typically give similar results that can be
averaged).48 Test calculations have shown that the Seminario
approach gives better force constants than the method involving
internal coordinates.49 Unfortunately, the interdependence of
the various internal coordinates still exists. Moreover, this
approach involves a double-counting of electrostatic and Len-
nard-Jones interactions: The QM Hessian matrix contains all

interactions, including electrostatic and van der Waals interac-
tions. However, the Hessian is used only to extract the bonded
interactions, whereas electrostatics and van der Waals interac-
tions are calculated by separate terms by the MM program. For
bonds and angles, this is no problem, because most force fields
ignore nonbonded interactions between atoms one or two bonds
apart. However, for dihedrals, it is a serious problem, because
most force fields complement dihedral terms with nonbonded
energies, typically scaled down by a constant factor (for example,
in the AMBER force field, used in this paper, 1,4-electrostatics are
scaled down by a factor of 1.2 and 1,4-Lennard-Jones interactions
by a factor of 2.0). This means that the dihedral parameters will
already contain some nonbonded interactions, which then are
double-counted in the MM calculations. Thus, the Seminario
approach is only approximate.

Norrby and Liljefors and co-workers51,52 have suggested an
approach that solves these problems. It involves a complete
optimizations of all parameters of the force field in an iterative
manner. For every set of parameters, the MM structure is
optimized, so there is no risk of double-counting any interactions
and it is not assumed that the geometric parameters in the QM
structure represent equilibrium values in the MM force field.
However, QM data are still used as the reference, e.g. bond
lengths, angles, dihedrals from the QM structure, as well as the
Hessian elements, and the fitting procedure ensures that the
optimized MM structure is as close as possible to the QM
structure. This approach was originally developed for the MM3
force field,53 but it has recently been implemented also for the
AMBER force field and software.54

In this paper, we compare five different approaches to obtain
MM parameters for metal sites in proteins using standard
nonpolarizable harmonic force fields, viz., two variants of a
nonbonded potential, a restrained nonbonded potential, the
Seminario approach,47 as implemented in the Hess2FF
software,48 the zinc AMBER force field (ZAFF; also based on
the Seminario approach),49 and the ideal procedure of Norrby
and Liljefors (NL).51,54 As test cases, we use 12 simplemodels for
the most common Zn2+ sites in proteins. Sites of this type were
also used in the previous studies.49,50 As a reference, we use
the corresponding structures optimized by QM methods, and
we compare with the structures and Hessian elements of the
structures optimized with the various force fields. This compar-
ison also allows us to discuss various problems that are typically
encountered during the parametrization of metal sites. The take-
home message is that the method of choice depends on the
intended use of the force field and that the parametrization of
metal sites is seldom an automatic procedure.

’METHODS

Structures. As test cases, we used 10 models of the most
common Zn2+ sites in proteins, taken from the previous inves-
tigation by Merz and co-workers:50 ZnCys4, ZnCys3His,
ZnCys2His2, ZnCysHis3, ZnHis4, ZnHis3H2O, ZnHis2(H2O)2,
ZnHis(H2O)3, ZnHis3Asp, and ZnHis2Asp2. For two of the
models (ZnCys3His and ZnHis3H2O), alternative coordinating
atoms of the His groups were also tested.50 In these models, Cys
was modeled by CH3S

�, His by methylimidazole, and Asp by
CH3COO

�. The starting structures for the optimizations were
taken from typical crystal structures, selected as in the previous
investigation.50 The structures were protonated by the tleap
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routine in AMBER-1055 and then truncated with hydrogen
atoms (these H atoms will be called HT below).
Quantum Mechanical Calculations. The structures were

optimized with the hybrid density-functional theory method
B3LYP,56�58 using the 6-31G* basis set59�61 (again following the
previous study).50 After the geometry optimization, analytic fre-
quencies were calculated at the same level of theory. This structure
and the Hessian matrix obtained from the frequency calculation
were used as a reference in both the NL and Hess2FF parametriza-
tions and as the target for all the MM minimizations. Charges on
all atoms were calculated with the RESP approach, as implemented
in AMBER-10,55 using electrostatic potentials calculated at the
B3LYP/6-31G* level and sampled with the Merz�Kollman
scheme,62 albeit with a higher-than-default density of points
(10 concentric layers with 17 points/Å2). All QM calculations were
performed with Gaussian-09.63 Coordinates of the optimized QM
structures are given in Table S10 in the Supporting Information.
Force Fields, Parametrizations, andMolecularMechanical

Calculations. All the MM calculations were run with the sander
(minimization) and nmode (Hessian calculation) modules of the
AMBER-10 software.55 Two sets of nonbonded force fields were
studied (NB1 and NB2). They differed in the charges and
Lennard-Jones parameters: One set used a formal charge of +2
on Zn and standard AMBER charges on all the ligand atoms
(corrected to a proper net charge for each ligand on the HT
atom; NB2). All the other force fields (including the bonded
potentials) used the QM RESP charges for all atoms (note that
ZAFF normally uses charges calculated for larger models that
include full capped amino acids,50 but for the truncated models
we used the RESP charges also for ZAFF). Likewise, one set of
nonbonded force field (NB1) used the Stote�Karplus Lennard-
Jones parameters for Zn,30 R = 1.95 Å and ε = 1.046 kJ/mol,
whereas all the other force fields employed the Merz parameters,
R = 1.1 Å and ε = 0.0523 kJ/mol.24,50 On all the other atoms,
standard AMBER Lennard-Jones parameters were used, except
sometimes for water, as will be discussed below.
Atom types and bonded parameters for ZAFF were extracted

from the Supporting Information of the original publication.50

The restrained nonbonded potential used RESP charges, the
Merz Lennard-Jones parameters, and a double-sided harmonic
potential with the minimum distance taken from the QM
structure and the force constant taken from the Hess2FF48

calculation (distinct distances and force constants were used
for all four ligands).
For the Hess2FF and NL force fields, two sets of atom types

were tested. The first (ATmin) used standard AMBER atom types
for all ligands (and the same atom type for the HT atom as
the other hydrogen atoms bound to the same carbon atom).
A distinct atom type was used for each Zn-ligating atom. This
means that only bonded interactions involving Zn were param-
etrized; all the other bonded parameters were taken from the
AMBER-99SB force field.64,65 The second set (ATmax) used
individual atom types for all atoms in the complex. Thus, all
bonded parameters of the complex were optimized.
The Hess2FF force field was obtained with the Hess2FF

program.48 This program reads the output file of the Gaussian
frequency calculation and calculates all the bonded parameters
via the Seminario approach.47 For the ATmax set, the program is
completely automatic and generates AMBER topology and
parameter files. For the ATmin set, a file with the desired atom
types is provided as input. The program then gives the proper
averaging of all parameters. Further instructions for the program

can be found in http://www.teokem.lu.se/∼ulf/Methods/parm.
html.
The NL force field was constructed according to the method

developed by Norrby and Liljefors,51 using the recent imple-
mentation for AMBER.55 This method minimizes a penalty
function consisting of the deviation of geometries and Hessian
elements between the QM and MM calculations, giving different
weights to different kinds of data. The geometries were described
as lists of all bonds, angles, and dihedral angles, rather than by
absolute coordinates. The weight factors of the various data types
were 100 Å�1 for bonds, 2 deg�1 for angles, 1 deg�1 for torsions,
and 0.01�0.1 mol 3Å

2/kcal for Hessian elements (0.01 for
elements involving interactions of an atom with itself, 0.02 for
atoms bound to each other, 0.04 for atoms connected by two
bonds, 0.1 for atoms connected by three bonds, and 0.01 for all
other elements).51,66

The iterative NL optimizations were started from the corre-
sponding Hess2FF force field. After convergence, the force field
was checked. Typically, some bonds and angles get zero force
constants in the first runs of the parametrizations. These were
reset to reasonable values and force constants of the other angles
around the same central atom were reduced, and then the
parametrization was run again. This was repeated until all bonds
and angles had nonzero force constants and all other parameters
were reasonable. Further instructions for the procedure are
found in http://www.teokem.lu.se/∼ulf/Methods/ponparm.
html. Both the NL and the Hess2FF programs are available from
the authors upon request.
Molecular Dynamics Simulations. Two Zn-containing pro-

teins were studied with molecular dynamics (MD) simulations,
viz. the δ0 subunit of the clamp-loader complex of DNA poly-
merase III (PDB file 1A5T),67 which contains a single Cys4 Zn
finger, and the spore coat polysaccharide biosynthesis protein
SpsE (PDB file 1VLI),68 which contains a ZnHis2(H2O)2 site.
The two structures were protonated with the tleap module in
AMBER,55 with the assumption that all Asp and Glu residues are
negatively charged and all Lys and Arg residues are positively
charged. The protonation state of the His residues was decided
from a detailed study of the hydrogen-bond network and the
local surroundings of these sites. The two His residues in 1VLI
that coordinate to Zn were protonated on the ND1 atom,
whereas the other His residues were assumed to be protonated
on the NE2 atom. For 1A5T, His residues 24, 73, 103, and 238
were assumed to be protonated on the NE2 atom and the other
residues were assumed to be doubly protonated. A few side-chain
atoms that were not resolved in the 1VLI crystal structure were
built with the tleap software. Residues 65�73 were also missing
in the structure and they were ignored in the calculations.
Both proteins were solvated in a periodic octahedral box with

water molecules extending at least 9 Å from the protein on all
sides, keeping the crystallographic water molecules. Six simula-
tions were performed. First, the systems were subjected to a
1000-step minimization, keeping all heavy atoms in the proteins
restrained toward their positions in the crystal structure with a
force constant of 418 kJ 3mol�1

3Å
�2. Then, two 20 ps MD

simulations were run with the same restraints. The first simula-
tion was run with a constant volume and the second with a
constant pressure. Finally, the box size was equilibrated by a
50-ps MD simulation with a constant pressure and without any
restraints. Finally, an equilibration of 200 ps and a production
simulation of 5 ns were run with a constant volume. During the
latter run, coordinates were collected every 2 ps.
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The MD calculations were run with the sander module in
the Amber software,55 using the Amber 1999SB force field
(FF99).64,65 For 1A5T, we used the ZAFF charges for the Zn
site, whereas for 1VLI, the ZAFF charges are erroneous in the
deposited files (e.g., 7 � 10247 e for one of the two H atoms in
water).50 Therefore, we recalculated these charges, following the
instructions in the ZAFF paper (the charges are listed in Table S9
in the Supporting Information).50 The NB2 simulations em-
ployed a +2 charge for the Zn ion and Amber 1999SB charges65

for the other residues. Water was described explicitly with the
TIP3P model.69 Long-range electrostatics were treated with
particle-mesh Ewald method70,71 with a grid size of 803, a
fourth-order B-spline interpolation, a tolerance of 10�5, and a
real-space cutoff of 8 Å. The temperature was kept constant at
300 K and the pressure was kept at 1 atm by use of the Berendsen
weak-coupling algorithm72 with time constants of 1 ps. The
nonbonded pair list was updated every 50 fs. Bond lengths
involving hydrogen atoms were constrained with the SHAKE
algorithm,73 allowing for a MD time step of 2 fs. However, for
some force fields, several of the simulations crashed with SHAKE
failure. This was solved by turning off SHAKE and reducing the
time step to 0.5 fs.

’RESULTS AND DISCUSSION

In this paper, we compare the performance of eight different
Zn force fields on 12 model complexes of the most common Zn
sites in proteins.50 We will first discuss the results of a model
complex with typical behavior, followed by the average results of
all complexes. Then we will describe three complexes that
illustrate two types of problems that are encountered when
parametrizing metal complexes. The performance of the force
fields is judged by how closely they reproduce the structure and
the Hessian of the QM-optimized structure used for the para-
metrization. For the Hessian, we calculated the correlation
coefficient (r2) between all QM and MM Hessian elements.
For the structure, we studied the root-mean-squared deviations
(rmsd) for all bonds, angles, and dihedral angles (in Ångstr€oms
or degrees). Moreover, we will list the root-mean-squared
deviations (rmsd) and maximum deviation for the coordinates
(after a rmsd fit of the MM and QM structures).
Zn(His)4 Model. The [Zn(CH3-imidazole)4]

2+ model gives
results that are typical for most of the complexes. FromTable 1, it
can be seen that the nonbonded potential with RESP charges and
Stote�Karplus Zn Lennard-Jones parameters (NB1) gave the
worst results, with a rmsd for the coordinates of 2.45 Å,
illustrating that the structure has completely changed. The

reason for this is that all Zn�N distances have increased (from
2.01 to 3.35, 3.56, 4.94, and 8.05 Å; cf. Figure 1a), illustrating that
the parameters are not optimized for this complex. Much better
results were obtained with a formal +2 charge for Zn (and
standard AMBER charges for the other atoms), especially when
combined with theMerz Zn Lennard-Jones parameters (NB2; cf.
Figure 1b; the Stote�Karplus parameters gave appreciably worse
results). Of course, even better results could be obtained by
tuning the Lennard-Jones parameters for Zn, but because there
are only two parameters available, only restricted improvements
can be expected, especially for complexes with more than one
type of ligands. This illustrates that nonbonded models are very
sensitive to the nonbonded parameters and that a single set of
parameters will not be optimal for all type of complexes.17

The restrained nonbonded potential gave much better result
than NB1 but slightly worse than NB2 (because it is based on the
RESP charges), although the rmsd for the bonds is better. This
shows that the restraints ensure that the ligands do not dissociate.

Table 1. Performance of the Various Force Fields for the ZnHis4 Complexa

Hess2FF NL

NB1 NB2 restrained ZAFF ATmin ATmax ATmin ATmax

r2 Hessian 0.861 0.978 0.967 0.979 0.972 0.963 0.987 0.985

rmsd bonds 0.973 0.045 0.025 0.011 0.016 0.010 0.017 0.006

rmsd angles 7.3 3.1 5.0 2.3 2.2 0.4 2.2 0.2

rmsd dihedrals 14.4 2.3 3.3 2.6 3.7 3.6 3.0 1.0

rmsd coordinates 2.45 0.26 0.33 0.18 0.20 0.20 0.21 0.05

max coordinates 6.05 0.44 0.57 0.40 0.46 0.47 0.52 0.12
aThe six quality measures are correlation coefficient (r2) between all QM and MM Hessian elements; root-mean-squared deviations (rmsd) for all
bonds, angles, dihedral angles, and coordinates between MM and QM optimized structures; and maximum deviation (max) for coordinates.

Figure 1. Comparison of QM structure (thin sticks) with MM struc-
tures obtained with (a) NB1, (b) NB2, (c) ZAFF, and (d) NL�ATmax

force fields (thick lines) for the Zn(His)4 model.
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All the bonded force fields gave better results than the
nonbonded ones, with RMSDs for the coordinates of only
0.05�0.21 Å (cf. Figure 1c). As expected, the ZAFF and
Hess2FF�ATmin approaches gave similar results; they employ
essentially the same methodology and differ only in details of the
implementation (for example, ZAFF have zeroed all force
constants for dihedrals involving Zn). Interestingly, theNL�ATmin

results are also similar (NL�ATmin gives better Hessian and
angles, whereas ZAFF gives better bonds, dihedrals, and co-
ordinates). Of course, NL approach can be tuned to give better
results for the other quality measures by changing the weights in
the NL penalty function.
Even better results can be obtained if all atom types are

optimized (ATmax), with both Hess2FF and NL. This shows
that the accuracy of ZAFF and the other ATmin force fields is
mainly limited by standard AMBER force-field parameters, used
for the imidazole ligands. However with ATmax, NL gives much
better results than Hess2FF in all quality measures. In fact,
NL�ATmax gives a nearly perfect fit, as can be seen in Figure 1d.
This shows that NL is inherently a much better approach for
parametrization and that the rather poor results with the ATmin

atom types mainly reflected problems in the AMBER parameters.
Other Models. Most of the other models gave results similar

to that of the Zn(His)4 model. Therefore, the results are not
discussed in detail (the performance of each model is shown in
Tables S1�S8 in the Supporting Information). Instead we list
the average quality measures of each MM force field for all 12
models in Table 2. From these data, it can be seen that NL�ATmax

gives the best performance for all six quality measures. In fact, the
rmsd for the bonds and angles are 4 times better than the second-
best method, and the rmsd for the dihedrals and the rmsd
and maximum deviation of the coordinates are half that of the

second-best method. This shows that this approach is consider-
ably more accurate than the other methods.
The next method is NL�ATmin, which is second in all quality

measures, even if the rmsd for the bonds is similar to that of
Hess2FF�ATmax. The latter method is third in performance for
all quality measures except the rmsd for dihedrals, for which
ZAFF gives slightly better results.
The ZAFF force field gives slightly better results than the

Hess2FF�ATmin force field in all quality measures except the
maximum coordinate error. On the other hand, we will see below
that ZAFF failed for two of the complexes, which are omitted
from the ZAFF average but not from the averages of the other
methods; if these two complexes are omitted also from the
Hess2FF�ATmin average, the latter method is actually better
than ZAFF in all quality measures (giving 0.951, 0.022 Å, 2.66�,
8.2�, 0.32 Å, and 0.44 Å for the six entries in Table 2). This shows
that these two complexes are problematic also for the other
methods and deteriorate the averages in Table 2.
The restrained andNB2 force fields give similar and somewhat

varying results. NB2 gives a better Hessian and better angles and
dihedrals, whereas the restrained model is better for the other quality
measures. In fact, the restrained model gives better bonds than both
ZAFF and Hess2FF�ATmin. The NB1 force field gives the worst
results in all quality measures. Thus, we can conclude that the per-
formance of the force fields is quite uniform over the 12 tested com-
plexes and follows the order NL�ATmax, NL�ATmin, Hess2FF�
ATmax, Hess2FF�ATmin, ZAFF, restrained, NB2, and NB1.
Zn(Cys)4 Model. Three of the model complexes gave pro-

blems that often are encountered when parametrizingmetal sites.
Initial calculations on the [Zn(CH3S)4]

2� complex gave unex-
pectedly poor results with all methods. In particular, the dihedral
angles of the methyl groups were poorly reproduced, giving large

Table 2. Average Performance of the Various Force Fields Tested for the 12 Model Complexesa

Hess2FF NL

NB1 NB2 restrained ZAFFb ATmin ATmax ATmin ATmax

r2 Hessian 0.742 0.882 0.833 0.907 0.896 0.928 0.985 0.992

rmsd bonds 0.213 0.048 0.020 0.022 0.032 0.012 0.012 0.003

rmsd angles 3.6 3.2 3.3 2.6 2.9 1.9 1.6 0.4

rmsd dihedrals 11.9 10.1 10.3 8.2 10.3 8.4 5.5 2.3

rmsd coordinates 1.25 0.56 0.50 0.33 0.34 0.26 0.16 0.07

max coordinates 2.31 1.10 1.04 0.79 0.71 0.57 0.39 0.15
aQuality measures are the same as in Table 1. Raw data are given in Tables 1 and 3�5 and in Tables S1�S8 in Supporting Information. bZAFF failed for
two complexes [ZnHis3(H2O) and ZnHis2(H2O)2], which are omitted from the average only for ZAFF.

Table 3. Performance of the Various Force Fields for the ZnCys4 Complexa

Hess2FF NL

NB1 NB2 restrained ZAFF ATmin ATmax ATmin ATmax

r2 Hessian 0.869 0.836 0.384 0.853 0.901 0.904 0.995 0.993

rmsd bonds 0.330 0.245 0.062 0.076 0.016 0.014 0.006 0.004

rmsd angles 4.4 2.1 3.6 1.2 0.6 0.4 0.4 1.0

rmsd dihedrals 10.0 14.9 37.1 13.1 13.2 13.2 13.2 12.6

rmsd coordinates 0.49 0.46 0.30 0.32 0.32 0.32 0.31 0.29

max coordinates 0.74 0.76 1.29 0.44 0.54 0.54 0.54 0.53
aQuality measures are the same as in Table 1.
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RMSDs of dihedrals and coordinates. The problem was traced to
the charges of the hydrogen atoms, which turned out to be
negative. In this small model, the general structure (the dihedrals)
is completely determined by weak hydrogen bonds between the
methyl groups and the sulfur atoms. If the hydrogen atoms have a
negative charge, these interactions become repulsive, and the
structure will completely change.
The improper charge of the hydrogen atoms is probably caused

by the negative net charge (�2) of the complex; negatively charged
complexes often give problems in QM calculations.74 It can be
avoided in many different ways, for example, by changing the
method or basis set or by performing the calculations in a
continuum solvent. In order to keep the calculations as similar as
possible to the original ZAFF calculations, we decided to use a
slightly different basis set, LanL2DZ.75,76 It gave a positive charge on
the hydrogen atoms and a geometry thatwas similar to that obtained
with the 6-31G* basis set.
Results of the parametrizations obtained from the structures

optimized with this basis set are shown in Table 3. The results are
quite similar to those obtained for the other models. The
nonbonded models gave the worst results, but this time the
two nonbonded models gave similar results.
The three ATmin force fields gave similar results. Moreover,

the two ATmax force fields gave slightly better results, but the
improvement is not so large, because the model is so small (21
atoms) and the number of AMBER parameters is few (two bonds
and one angle). The differences in coordinates are quite high for
all bonded potentials because they form a somewhat different
pattern of the S�HC hydrogen bonds (Figure 2). However, we
have checked with QM calculations that the QM pattern is more
stable than that obtained with MM.
ZnHis2(H2O)2 and ZnHis(H2O)3Models. For the two [Zn(CH3-

imidazole)2(H2O)2]
2+ and [Zn(CH3-imidazole)(H2O)3]

2+models,

theZAFFminimizations starting from theQM structures crashed
because the O and H atoms from different water molecules
overlap, as can be seen in Figure 3. This is caused by the Lennard-
Jones parameters of the H atoms of water. The default water
model in AMBER is TIP3P69 and it has zeroed Lennard-Jones
parameters on the hydrogen atoms (i.e., it interacts with other
molecules only through the O atom, to increase computational
speed). These parameters were also used in ZAFF. This is
problematic for a metal complex, because there are typically
other ligating atoms with a substantial negative charge (in our
case, the coordinating O atom of the other water ligand; O2 in
Figure 4). This atom is two bonds away from the O atom of the
first water ligand (O1), implying that the Lennard-Jones and
electrostatic interactions between these two atoms are ignored.
On the other hand, the O2 atom and the H atom of the first water
(H1) are three bonds away, implying that the electrostatics and
Lennard-Jones interactions in AMBER are scaled down by
factors of 1.2 and 2.0, respectively. However, if the Lennard-
Jones parameters of H1 atoms are zero, it means that there is no
repulsive interaction between the O2 and H1 atoms and there-
fore the electrostatic attraction may bring the two atoms
together, until they reside on top on each other, giving an infinite
electrostatic energy.
This problem can partly be avoided by adding nonzero

Lennard-Jones parameters on the H atoms of water. For the
Hess2FF and NL force fields, we use the same Lennard-Jones
parameters as backbone HN groups (atom type H; this is the
only polar H atom type in AMBER with nonzero Lennard-Jones
parameters), R = 0.6 Å and ε = 0.657 kJ 3mol�1

3Å
�2. From

Table 4, it can be seen that this is enough to avoid problems in the
minimizations.
However, it can be seen that the two Hess2FF force fields still

give quite large rmsd values for the coordinates (0.9 and 1.6 Å).
The reason for this is that the O�O distance becomes only
0.8�0.9 Å, giving strongly distorted structures (Figure 5a). This
is caused by a related problem: Even if there are nonzero
Lennard-Jones parameters on the H atoms, there is still no
repulsion between the O atoms on different water molecules.
Therefore, there will be a strong attraction between the H and O
atoms on different water molecules, which only will be repelled at
short distances, owing to the small radius of the H atom. In fact,
there are four H�O interactions (hydrogen bonds) of 1.6 Å in
the structure in Figure 5a, but with the wrong orientation (the O
atoms are in the middle), owing to the missing O�O repulsion.
This shows that the problem cannot be avoided by using a larger
Lennard-Jones radius of the water H atom, because it will not

Figure 3. Structure of the Zn(His)2(H2O)2 complex, optimized with
the ZAFF force field, the step before the minimization crashes. Note that
two of the H and O atoms overlap.

Figure 4. Schematic representation of nonbonded interactions between
two Zn-bounded water molecules, illustrating that the O1�O2
1,3-interaction is ignored, whereas the H1�O2 1,4-interaction is included.Figure 2. Comparison of QM (thin sticks) and Hess2FF-ATmax

structures of the ZnCys4 model.
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change the orientation (1.6 Å is a reasonable distance for a strong
hydrogen bond).
On the other hand, the NL force fields gave excellent

structures, especially with ATmax, as can be seen in Figure 5b.
Apparently, a thorough parametrization of the bonded param-
eters can overcome the problems caused by water Lennard-Jones
parameters, for example, by compensating the missing non-
bonded O�O interaction by a large O�Zn�O force constant.

It is also notable that the restrained nonbonded force field gave
a better structure than Hess2FF, as can be seen in Table 4 and
Figure 5c. The reason for this is that, in a nonbonded force field,
there are no bonds to the Zn ligands, so the O�O interaction is
fully active, ensuring that there is no great distortion of the
structure. Moreover, the restraints on the Zn�ligand distances
ensure that these distances are well reproduced, better than in the
Hess2FF structures. On the other hand, there are no angles
involving Zn, so the structure is far from perfect (the rmsd for the
coordinates is 0.5 Å). This shows that the restrained nonbonded
model is an alternative to a bonded model with more than one
water molecule.
Similar results apply also to the ZnHis(H2O)3 complex

(Table 5): The ZAFF minimization crashed with overlapping
H andO atoms. Hess2FF-ATmin (with nonzero H parameters for
water) managed the minimization but gave a quite poor struc-
ture, this time caused by decreased Zn�Obond lengths (∼1.6 Å,
to improve the H�O hydrogen bonds). On the other hand,
Hess2FF-ATmax, NL�ATmin, and especially NL�ATmax gave
accurate structures. The restrained nonbonded model is better
than both nonbonded models.
A natural question is why the problems with the water

molecule and the Lennard-Jones parameters are seen only with
two or more water molecules and not for the ZnHis3(H2O)
complex (Table S1, Supporting Information). The reason
is most likely that, for the latter complex, van der Waals
interactions between the water O atom and the nonligating
atoms in the imidazole ring prohibit the H andO atoms of water
from coming too close to the N atom. However, our experience
with other metal complexes involving a water ligand is that
you often encounter problems with unstable MD trajectories
if you use zeroed Lennard-Jones parameters for the water
H atoms.

Table 4. Performance of the Various Force Fields for the ZnHis2(H2O)2 Complexa

Hess2FF NL

NB1 NB2 restrained ZAFF ATmin ATmax ATmin ATmax

r2 Hessian 0.924 0.914 0.920 crashed 0.413 0.669 0.971 0.997

rmsd bonds 0.375 0.048 0.014 0.060 0.011 0.011 0.002

rmsd angles 4.6 5.6 2.7 10.8 10.6 1.6 0.1

rmsd dihedrals 8.2 7.1 2.2 49.1 40.6 1.6 0.1

rmsd coordinates 0.95 0.52 0.50 1.58 0.94 0.10 0.00

max coordinates 1.51 0.87 0.81 3.48 2.44 0.21 0.01
aQuality measures are the same as in Table 1.

Table 5. Performance of the Various Force Fields for the ZnHis(H2O)3 Complexa

Hess2FF NL

NB1 NB2 restrained ZAFF ATmin ATmax ATmin ATmax

r2 Hessian 0.781 0.759 0.750 crashed 0.821 0.967 0.972 0.997

rmsd bonds 0.405 0.080 0.024 0.163 0.015 0.015 0.002

rmsd angles 4.4 5.5 4.5 2.6 2.0 2.5 0.1

rmsd dihedrals 21.2 23.2 24.4 14.8 2.9 3.6 0.1

rmsd coordinates 0.89 0.54 0.31 0.37 0.09 0.11 0.00

max coordinates 1.32 1.33 0.93 0.74 0.19 0.23 0.01
aQuality measures are the same as in Table 1.

Figure 5. Comparison of QM (thin lines) with (a) Hess2FF�ATmin,
(b) NL�ATmax, or (c) restrained nonbonded structures of the
Zn(His)2(H2O)2 models. Panel a shows that the Hess2FF�ATmin

structure has a close O�O interaction and, hence, a strongly distorted
structure. In panel b, the fit is so perfect (the rmsd of the coordinates is
0.003 Å) that the thin lines cannot be discerned.
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Molecular Dynamics Simulations. The tests in the previous
sections were performed only for small model systems. Such tests
have the advantage of having a well-defined reference, viz., the
QM calculation. Therefore, small differences between the various
force fields can be easily discerned. However, it is also of interest
to see how the various Zn force fields behave in simulations of full
proteins. Therefore, we have performed two sets of MD simula-
tions with all eight force fields on two Zn-containing proteins: the
δ0 subunit of the clamp�loader complex of DNA polymerase III
(1A5T),67 which contains a single Cys4 Zn finger, and the spore
coat polysaccharide biosynthesis protein SpsE (1VLI),68 which
contains a ZnHis2(H2O)2 site. These two proteins were selected
among those used for the model systems because they contain a
single metal site and no other unusual ligands. One of them

contains a Zn site, for which we do not expect any problems in
the simulations, whereas the other one is a hard test case. The
proteins were simulated for 5 ns (after equilibration) and the
structure of the Zn site was examined for 2500 snapshots
sampled every 2 ps. The results are collected in Tables 6 and 7.
For the protein with the ZnCys4 site, all force fields except

NB1 gave stable Zn sites throughout the whole simulation.
However, for the NB1 force field, the Zn�S bonds were always
long (∼3.2 Å); after 100 ps the ligands started to dissociate, and
after 800 ps Zn had dissociated from all four Cys ligands and
drifted around in the solvent. Such a dissociation of the metal
ion is always a risk with a nonbonded model, especially if the
Zn�ligand interactions are too weak, as in the NB1 force field.
On the other hand, the NB2 force field gave too strong Zn�S

bonds, with average and maximum distances of 1.98 Å and 2.17
Å, respectively; these are appreciably shorter than the QM
distances of 2.53 Å (Table 6). This shows that a nonbonded
force field needs to be thoroughly calibrated for the complex of
interest to give accurate results. A nonbonded force field with
RESP charges and Merz Lennard-Jones parameters gave average
Zn�S bond lengths of 2.43 Å (NB3 in Table 6), closer to theQM
reference.
The other six force fields gave rather similar results with

average Zn�S bonds of 2.40�2.52 Å (Table 6). It is notable
that the NL force fields gave longer Zn�S bonds that are closer
to the QM bond lengths than the other four force fields. The
reason for this is that the other force fields simply use the QM
bond length as the equilibrium value, which owing to interactions
with the other atoms in the complex leads to too short bonds. On
the other hand, the NLmethod optimizes the structure withMM
in every step of the parametrization, so that if the other
interactions in the complex tend to shorten the Zn�S bonds,
this is compensated by longer equilibrium Zn�S bond lengths

Table 7. Variation of Zn�Ligand Bond Lengths in Simulation of Spore Coat Polysaccharide Biosynthesis Protein SpsEa

His1 His2 Wat1 Wat2 O�O

avg min max avg min max avg min max avg min max avg min max

QM 1.95 1.95 2.05 2.05 3.08

NB1b

NB2c 2.11 1.87 2.52 2.20 1.89 2.84 1.90 1.73 2.18 1.92 1.73 2.34

Simulations with Merz Zn Lennard-Jones Parameters

restrained 1.98 1.84 2.13 1.97 1.84 2.13 2.03 1.84 2.28 2.03 1.85 2.25 3.85 2.54 4.36

ZAFFd

Hess2FF�ATmin 1.92 1.75 2.18 1.94 1.73 2.13 1.73 1.47 1.92 1.72 1.49 1.96 0.83 0.69 1.05

Hess2FF�ATmax 1.95 1.74 2.16 1.98 1.76 2.16 2.02 1.9 2.16 2.03 1.89 2.18 0.82 0.66 1.09

NL�ATmin 1.92 1.75 2.12 1.94 1.76 2.12 2.02 1.86 2.14 2.02 1.89 2.14 0.97 0.77 1.43

NL�ATmax 1.99 1.79 2.22 1.96 1.78 2.17 2.02 1.92 2.13 2.02 1.88 2.14 1.74 1.41 2.12

Simulations with Stote�Karplus Zn Lennard-Jones Parameters

restrained 2.49 2.40 2.58 2.49 2.42 2.59 2.57 2.43 2.71 2.56 2.45 2.70 4.67 2.93 5.25

ZAFFd

Hess2FF�ATmin 1.87 1.84 2.54 1.90 1.84 2.09 1.64 1.84 1.91 1.79 1.85 1.95 0.85 0.71 1.18

Hess2FF�ATmax 1.90 1.70 2.08 1.90 1.71 2.10 2.01 1.87 2.13 2.02 1.88 2.14 0.85 0.68 1.10

NL�ATmin 1.89 1.76 0.66 1.91 1.90 2.11 2.01 1.89 2.13 2.02 1.77 2.15 1.08 0.79 1.85

NL�ATmax 1.94 2.16 0.21 1.91 2.16 2.11 2.02 2.18 2.14 2.00 2.36 2.13 1.74 1.32 2.35
aAverage, minimum, and maximum distances are given for the four Zn�ligand bonds, as well as the O�O distance between the two water ligands. bZn
dissociates. cThe Wat2 ligand for this simulation dissociated and was replaced by three new water ligands. The results in the Wat2 column are the
average, minimum, and maximum values for these three ligands. d Simulation crashed.

Table 6. Variation of Zn�S Bond Lengths in Simulation of δ0
Subunit of Clamp�Loader Complex of DNA Polymerase IIIa

force field avg std dev min max

NB1b

NB2 1.98 0.04 1.86 2.17

NB3c 2.32 0.13 1.99 3.40

restrained 2.43 0.09 2.11 2.74

ZAFF 2.40 0.09 2.08 2.74

Hess2FF�ATmin 2.47 0.09 2.13 2.79

Hess2FF�ATmax 2.48 0.09 2.11 2.85

NL�ATmin 2.50 0.09 2.15 2.85

NL�ATmax 2.52 0.08 2.20 2.85
aAverage, minimum, and maximum distances are given for the four
Zn�S bonds, as well as their standard deviation (std dev). The QM
distances were all 2.53 Å. bZn dissociates. cA nonbonded force field with
RESP charges, but Merz Zn Lennard-Jones parameters.
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(e.g., ∼2.56 Å with NL�ATmin). Consequently, the average
Zn�S bond length is within 0.01 Å of the QM value for the
NL�ATmax simulation and 0.03 Å too short with NL�ATmin,
whereas it is 0.05�0.06 Å too short with Hess2FF, 0.10 Å too
short for the restrained model, and 0.13 Å too short with ZAFF.
This illustrates one of the advantages of the NL approach.
The Zn site in this protein is on the surface, exposed to the

solvent. Therefore, it is not unexpected that water molecules
occasionally come rather close to the Zn ion. This happen in a
few snapshots for all force fields except NB2, but the water
molecule never stays close to the Zn ion for more than one or two
snapshots.
Finally, we can compare the Zn�S distances observed in the

simulations with those reported in the crystal structure,
2.27�2.34 Å, with an average of 2.31 Å. Thus, the experimental
distances are 0.22 Å shorter than the theoretical ones. This
discrepancy between theory and experiment for a ZnCys4 site has
been discussed before;74 it is caused by missing solvation effects
in the vacuumQM calculations for this highly negatively charged
complex. Of course, such problems need to be considered in an
accurate parametrization of the metal site. In our case, it could be
solved by performing the QM optimization and frequency
calculations in a continuum solvent with a high dielectric
constant. Alternatively, for the restrained nonbonded potential
and the bonded potentials based on the Seminario approach,
experimental data can easily be included in the force field, as the
restraint target or the equilibrium bond lengths or angles.
However, for the NL approach this is more problematic, because
a target function needs to be defined and it is likely that if the QM
bond lengths are changed, the Hessian elements and the angles
will also change. Therefore, for NL it is better to use a QM
method that gives accurate results.
The results of the simulation of the ZnHis2(H2O)2 site in the

spore coat polysaccharide biosynthesis protein spsE are de-
scribed in Table 7. As expected, we encountered severe problems
with the stability of the simulations with ZAFF, owing to over-
lapping H and O atoms from the water ligand (like the structure
in Figure 3), and the resulting structures were distorted. How-
ever, the other bonded force fields also showed stability

problems, but these could be solved by running some (or in a
few cases all) of the simulations without any bond-length
constraints and a short time step (0.5 fs).
As for the other protein, the Zn ion dissociates from the

original ligands with the NB1 force field, in this case already
during the equilibration. It diffuses around in water solution and
does not bind to the same ligand for more than 400 ps.
However, with the NB2 force field, the Zn ion remains in the

original site but one of the water ligands dissociates during the
equilibration. It is replaced by three additional water ligands,
giving a six-coordinate Zn ion throughout the production
simulation. The Zn�N bond lengths are 0.16�0.25 Å longer
than in the QM calculations, whereas the Zn�O bonds are
0.13�0.15 Å too short. This shows that it is hard with a
nonbonded model to get all metal�ligand bond lengths correct
if there are several types of ligands, because only two Lennard-
Jones parameters are available (unless you change the Lennard-
Jones parameters also of the ligands, which will influence their
interactions with the surrounding protein).
All five bonded potentials retained the bonds between Zn ion

and the original ligands. However, in all simulations, an addi-
tional water molecule also bound to the Zn ion, although with the
NL�ATmin force field it was frequently exchanged during the
simulation. Sometimes, the coordination number increased even
to six. All average Zn�ligand bond lengths are within 0.04 Å of
the QM bond lengths, except the two Zn�O distances for
Hess2FF�ATmin (0.33 Å too short). This may give the impres-
sion that the simulations are successful, but this is not the case, as
the statistics of the O�O distance between the two water ligands
show (also included in Table 7). In the QM structure it is 3.08 Å,
but in the simulations this distance is never longer than 2.18 Å,
and it is 0.8 Å on average in the Hess2FF simulations. This shows
that the structures are strongly affected by the problem of the
missing 1,3 O�O repulsion, discussed above, and the structures

Figure 6. Snapshot of MD simulation of spore coat polysaccharide
biosynthesis protein SpsE with NL�ATmin force field. The Zn ligands,
as well as two second-sphere water molecules, are shown. Note the short
O�O interaction between the two original water ligands (0.89 Å).

Figure 7. Crystal structure of spore coat polysaccharide biosynthesis
protein SpsE with Zn ion (magenta), two water ligands (red balls), two
His ligands (sticks), and Glu-22 and Glu-234 (sticks) emphasized.
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are actually totally unrealistic, as is shown by the typical snapshot
in Figure 6.
In fact, the only simulation that gives realistic results is the

restrained nonbonded potential, for which the Zn�ligand dis-
tances are within 0.03 Å of the QM distances. However, also in
this simulation, an additional water ligand tends to bind to the Zn
site, exchanging several times during the 5 ns simulation (one
water ligand stays for 2 ns; the others stay for less than 0.6 ns). On
the other hand, such an increase in the coordination number of
the Zn ion is not totally unrealistic considering the crystal struc-
ture. As can be seen in Figure 7, the four observed ligands are all
nearly on the same hemisphere of the Zn ion, with a seemingly
empty coordination site on the opposite side, with over 6 Å to the
closest protein atom. Thus, it is possible that the simulation with
the restrained nonbonded potential actually gives a good picture
of the metal coordination.
The coordination number can be determined by the force

field. The Zn ion is almost hidden by the ligands. Therefore, the
Zn Lennard-Jones parameters for a bonded potential can be used
to avoid undesired ligand. With the Zn charge used for this site
(1.33 e), the Merz Zn Lennard-Jones parameters gives a mini-
mum for the interaction with a water molecule of ∼1.95 Å. On
the other hand, the Stote�Karplus parameters give an ∼0.9 Å
longer interaction. Therefore, we rerun the bonded and re-
strained nonbonded simulations also with the latter parameters.
For the bonded potentials, the results did not change signifi-
cantly, except that the extra water ligand disappeared (i.e., the
structures were still unrealistic), although there were still occa-
sional water molecules approaching the Zn site, with distances
down to 2.62 Å. However, for the restrained nonbonded
potential, reasonable four-coordinate structures were obtained.
Unfortunately, the Zn Lennard-Jones parameters also affect the
distances of the four original ligands so that they became∼0.5 Å
too long. The reason for this is, of course, that the restraints are
harmonic (a r2 term) whereas the repulsive Lennard-Jones term
is a much steeper r�12 term. Of course, we can tune these
interactions by changing the restraint or by using specific
Lennard-Jones terms for the Zn�solvent interactions, but we
did not pursue such calculations any further.
This shows that the MD simulations will give the results

dictated by the parameters used. If we want to know whether the
Zn site if four- or five-coordinate in this protein, we could
optimize the structure of ZnHis2(H2O)3 with QM methods
and then tune the Zn Lennard-Jones parameters so that we
get the correct Zn�O bond lengths with the Zn charge used in
the simulations (note that the minimum distance depends
on the Zn charge, and therefore a new calibration has to be
done for each new metal site when RESP charges are used).
If the simulations then show an increased coordination
number, the calculations indicate that that the site should be
five-coordinate.
On the basis of the available results, the Merz parameters give

Zn�O bond lengths closer to the QM results [for the ZnHis2-
(H2O)2 model] than the Stote�Karplus parameters. Therefore,
it is likely that the site actually should be five-coordinate,
although additional calculations are needed to settle this issue.
The reason why only two of the three water molecules are
observed in the crystal structure (at 2.38 Å resolution) is
probably that the two observed water molecules are stabilized
by two Glu residues (Glu-22 and Glu-224, cf. Figure 7), whereas
the third water molecule does not form any strong interactions
with the surrounding protein.

’CONCLUSIONS

Recently, two softwares have been presented to obtain MM
force-field parameters for metal sites.49,50 These may give the
false impression that any metal site may be rapidly and accurately
parametrized in an automatic manner. The intention of this
paper is to give a more nuanced picture of the matter and to show
that the parametrization of metal sites involves several pitfalls.

First, there are several levels of approximation for the para-
metrization of metal sites. The lowest is a nonbondedmodel with
standard charges for the ligands and formal charges for the metal.
It can be used without any parametrization for any metal site but
is unlikely to give accurate results for a general metal site, as has
been seen in Tables 1�7. In particular, there is a great risk for an
unwanted exchange of ligands.49,77 Therefore, such a model is
not recommended.

At the next level, the QM calculations can be used to obtain a
full bonded model for the metal site. Such calculations can be
made automatic with the approach of Seminario,47 as has been
suggested several times.48�50 Once the QM calculations are
done, the parametrization takes only seconds. However, it must
be remembered that this approach is only approximate: It
assumes that the bond lengths, angles, and dihedrals observed
in the QM structure are optimal, although they actually are a
compromise of strain and nonbonded interactions caused by the
other ligands, and it involves a double counting of nonbonded
interactions, in particular for dihedrals.

These problems are avoided by the ideal iterative method by
Norrby and Liljefors.51 In this approach, a penalty function is set
up describing the goal of the force field and the importance of the
various terms, for example, the reproduction of QM bond lengths,
angles, dihedrals, and Hessian elements. Then the parameters are
optimized by full minimization at each step, numerical derivatives,
and nonlinear optimization algorithms. This is a much more
involved method, taking hours to several days for complicated
systems. Moreover, the optimization typically have to be run
several times before all parameters are acceptable, and significant
human intervention and judging are needed. On the other
hand, essentially a perfect fit to the QM data can be obtained
(cf. Figures 1d and 5b), which is also reflected in the Zn�ligand
distances during the simulations. As a results, reliable energies can
be extracted from such simulations of metal complexes.52,54

Furthermore, the accuracy of a parametrization is affected by
the choice of atom types. For a nonbonded model, it is natural to
use standard atom types for all atoms. However, for a bonded
model, the choice of atom types is more crucial. A reasonable
choice for the Seminario approach is standard atom types for all
ligand atoms, except those binding to the metal, for which new
atom types are employed, different for all ligands (but using
standard parameters within the ligand). For parametrizations with
the Norrby�Liljefors approach, a more thorough consideration of
atom types is necessary. This method is so accurate that the
accuracy of the final model is typically limited by the force field of
the ligands. Therefore, it is preferable to use new atom types also
for all (not symmetry-equivalent) atoms of the ligands.

This study has also illustrated several possible pitfalls during
the parametrization of metal sites. First, the ZnCys4 complex
showed that for negatively charged complexes, there is a risk that
improper charges are obtained. In particular, it should be checked
that ligand hydrogen atoms get a proper (positive) charge. For
this model, QM calculations in vacuum also give poor results
compared to experiments.
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Second, we have showed that water molecules pose a serious
problem for bonded models in force fields (like AMBER) that
ignore nonbonded interactions for atoms separated by two
bonds. The reason for this is that the repulsion between the
ligating atoms is ignored. If these bind hydrogen atoms (as for
water), these H atoms may form hydrogen bonds to the other
ligating atoms with a wrong orientation, as is shown in Figures 5a
and 6, leading to distorted structures.

With a single water molecule, it is possible to obtain reason-
able structures, once it is ensured that the water H atoms have
nonzero Lennard-Jones parameters. However, with several water
molecules even the NL method gives strange structures in MD
simulations. The only method that works in such a case is the
restrained nonbonded model. It combines the best aspects of the
nonbonded and bonded models and avoids the problem with the
1,3-interactions by not explicitly define any bonds. Clearly, it is
only an approximate method (cf. Figure 5c), but it can be
improved by adding more restraints, for example, for angles
around the metal, at the end giving a model that is similar to the
Seminario approach but avoiding the problem of ignored
1,3-interactions. The restrained nonbonded model is similar to
the points-on-a-sphere (POS) model, frequently used for co-
ordination compounds.17,38,39 Both methods include metal�
ligand bonds, exclude ligand�metal�ligand angles, and include
ligand�ligand nonbonded interactions. However, the POS
model normally retains all the other bonded terms involving
the metal, whereas the restrained model excludes them. More-
over, the POS model typically ignores many nonbonded inter-
actions involving the metal, whereas the restrained model
includes them all.

In conclusion, we have seen that the parametrization of metal
sites is not an automatic approach and, as usual in computational
methods, there is a trade-off between accuracy and speed. We
would suggest the following general strategy: If the metal site is
not of central interest (e.g., a structural metal far from a catalytic
or ligand-binding site), a bonded parametrization based on the
Seminario method is recommended. If the metal site involves
more than one water ligand, a restrained nonbondedmodel must
be used. However, if the metal site is of central interest, either in
structural or energy terms, a more thorough parametrization is
needed, based on the Norrby�Liljefors approach. Finally, we
want to emphasize the need of testing the parametrization before
use, that is, how well it reproduces the QM calculations used for
the parametrization in terms of structures and Hessian elements.
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ABSTRACT: Molecular dynamics (MD) is a powerful tool for understanding the fluctuations of biomolecular systems. It is,
however, subject to statistical errors in its sampling of the underlying distribution of states. One must understand these errors in
order to draw meaningful conclusions from the simulation. This is becoming ever more critical as MD simulations of even larger
systems are attempted. We present here a new method for determining the extent of convergence that relies on measures of the
fluctuation space sampled by the simulation without any a priori knowledge of states or partitioning of the configuration space. This
method reveals long correlation times, even for simple systems, and suggests cautionwhen interpretingmacromolecular simulations.
We also compare this method with previous efforts to characterize the sampling of MD simulation.

1. INTRODUCTION

It has long been known that molecular dynamics (MD) is
subject to statistical errors introduced by both the temporal
sampling and the scale or length of the simulation. These stat-
istical errors can lead to poor or erroneous estimations of the
distribution of states and hence reduce the accuracy of values
calculated from the simulation. Many biologically relevant ques-
tions that MD attempts to answer require understanding the
statistical uncertainty in measurements derived from the simula-
tion. Ideally, the best way to estimate the error is to run multiple
independent simulations. However, this is not always practical, so
we often wish to determine the error from a single simulation.
The size of the statistical uncertainty (error bars) for these
measurements is intimately related to the number of indepen-
dent samples of the quantity in question that are present in
the simulation. This number is implicitly dependent on the
correlation time for the observable. Estimating the correlation
time therefore leads to an estimate for the uncertainty in the
measurement.

In the simplest case, determining the precision of measure-
ments from the simulation focuses on a scalar quantity or an
observable. In this case, block averaging1 is the gold standard for
determining the statistical error; it works by dividing the trajec-
tory into blocks and computing the standard error of the ob-
servable for each block. As the block size is increased, the error
estimated approaches the true error. However, methods that rely
on a single observable can bemisleading due to coupling between
fast relaxation and other, slower processes.2

In order to safely estimate the standard error, one ought to
focus on the slowest relevant relaxations known in the system. As
such, a number of groups have attempted to develop measures of
global sampling quality. A number of these are based on principal
component analysis (PCA). Balsera et al.3 examined the overlap
between fluctuation directions from different sampling windows
and found that the dominant modes changed, suggesting a lack
of convergence. Amadei et al.,4 in contrast, used the root-
mean-squared inner product for the first 10 directions between

two halves of a 2 ns long simulation for protein L and cytochrome
c551. This measure was applied to pairs of subtrajectories of
increasing size as well as consecutive 50 ps windows and sug-
gested convergence occurring within the subnanosecond regime,
when compared to short (nanosecond-scale) simulations. Hess5

introduced amore detailedmeasure called the covariance overlap
that considers both the directions of fluctuations and their
relative magnitudes. He also presented the cosine content
measure that compares the projection of the trajectory along a
principal component to a cosine. The projection for a diffusive
system will be more cosine-like than a system that has sampled
multiple conformations. Using the covariance overlap between a
trajectory of a protein and all subintervals as well as the cosine
content, Hess found that while there was a suggestion of
convergence on the order of 10 ns for the system used, a longer
simulation was needed to accurately estimate the longest correla-
tion times. Faraldo-G�omez et al.6 used the covariance overlap to
compare consecutive nanosecond blocks as well as blocks of
different sizes (1, 2, 4, 8, and 16 ns) as well as the cosine content
and found that some regions of a protein (such as the membrane-
embedded domains of smaller proteins) can be well-sampled on
the order of tens of nanoseconds. They also found that overall
undersampling leads to imprecise B-factor predictions. Gross-
field et al.7 used the covariance overlap to characterize the
similarity of fluctuations spaces between multiple 100 ns simula-
tions of rhodopsin and found indications of a lack of conver-
gence even with longer simulations. Sullivan et al.8 introduced a
measure of the configuration space sampled by the simulation
and examined both the dimensionality of this space over time as
well as the dependence of the phase space volume with increas-
ingly large windows sampled from the trajectory. Using this
method, transitions between conformational substates were
found to occur on the nanosecond time scale, implying that
longer time scales are required for adequate statistical sampling.
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There are alternative approaches that do not directly consider
the fluctuation directions. Smith et al.9 compared a number of
observables over time, such as intramolecular activation energy,
root-mean-square distance, numbers of clusters, and numbers of
hydrogen bonds. Lyman et al.10,11 used a random partitioning of
the conformation space of the system along with an analysis of
the variance associated with this binning to determine an
“effective sample size” that is related to how well it has sampled
the distributions of states. This method was also applied to
multiple independent simulations of rhodopsin.7

The method we have developed is in essence an extension of
one used previously to analyze the convergence of membrane
proteins7 and is similar in spirit to the blocked covariance overlap
used by Hess.5 The underlying concept is that if a system is well
sampled by MD, then the fluctuation space for sufficiently large
subsets of the trajectory should be very similar. The blocked
covariance overlap method combines the best aspects of two
existing methods: block averaging is the best-of-breed method
for assessing statistical error in a single variable, and covariance
overlap is a powerful tool for assessing similarity of global
fluctuations as a single scalar value.

Here, we present the results of applying this method to long,
state of the art simulations of three different classes of biomo-
lecules, ranging in size from a dipeptide to an integral membrane
protein. In aggregate, we analyze nearly 29 μs of simulation time
from all-atom MD. We show that this method indicates the
quality of sampling in a simulation as well as gives an estimate of
the rate of convergence, within certain limits. We also compare
these results to previous efforts to characterize sampling quality,
in particular, the decorrelation time10 and the effective sample
size11 methods developed by Zuckerman and co-workers. Finally,
we compare these results to the cosine content measure.5

2. METHODS

2.1. Block Average Root-Mean-Square Distance. We used
block averaging1 to assess convergence of the average structure.
Briefly, the entire trajectory is first aligned to an optimal average
structure using an iterative scheme.7 We then divide the trajec-
tory into contiguous blocks. We compute the average structure
for each block, and the root-mean-square deviation (rmsd)
between each average structure is calculated. The standard
deviation for the rmsd at each block size is then plotted. The
plateau, if present, indicates both the error in and the correlation
time for the average structure.
2.2. Principal Component Analysis. The Cartesian coordi-

nates for a structure at a given time point can be thought of as a
3N dimensional column vector, whereN is the number of atoms,
i.e., [x1, y1, z1, ..., xN, yN, zN]

T. The trajectory (or ensemble of
structures) can then be represented by concatenating these
column vectors together forming a 3N� L conformation matrix
A, where L is the number of snapshots in the trajectory. To
compute the principal component analysis (PCA) of A, the
average structure must be removed (i.e., the row-average of A is
subtracted from A). The principal components are then calcu-
lated by finding the eigendecomposition of the covariance matrix
AAT, i.e., U ΛUT = AAT. The eigenvectors (columns of U) give
the direction of fluctuations, in a least-squares sense, and the
eigenvalues (diagonal elements of Λ) give the magnitude of the
corresponding fluctuation. In the case of a protein, or other
complete molecule, it is necessary to first remove global rotations
and translations. We do this by computing the average structure

from the trajectory (described above) and aligning each frame
to it.
2.3. Covariance Overlap. For the proposed method to work,

it is necessary to devise a mechanism to quantitatively compare
two PCA results. This is typically done by comparing the sub-
spaces (i.e., fluctuation directions for a set number of most
significant modes) determined by the PCA. Here, we use the
covariance overlap,5�7 which measures not only the similarity in
the directions of motion (eigenvectors) but also their relative
importance (eigenvalues). This measure ranges from 0, where
the fluctuations are completely dissimilar, to 1, where the
fluctuations are identical. The covariance overlap between two
PCA results is defined as

ΩA, B ¼ 1�
∑

Nmodes

i
ðλAi + λBi Þ � 2 ∑

Nmodes

i
∑

Nmodes

j

ffiffiffiffiffiffiffiffiffiffi
λAi λ

B
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q
ð vBA

i 3 vB
B
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6664

3
7775
1=2
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where λi

A is the ith eigenvalue from the PCA for ensemble A and
vBi
B is the ith eigenvector from ensemble B.
2.4. Bootstrapping. Bootstrapping is a computational proce-

dure used to determine the statistical error in a measurement.12

The fundamental idea behind bootstrapping is that randomly
drawing subpopulations from a distribution provides many dif-
ferent estimates for a statistical quantity. These estimates can
then be used to estimate the error in themeasure. It is particularly
useful when the full distribution is unknown or complex but one
has a statistical sampling of it.
In MD simulations, each structure is correlated to its neigh-

bors in time. Bootstrapping can be used to remove this correla-
tion from an observable. Structures are randomly drawn from the
trajectory to create an ensemble and the observable calculated.
This is repeated many times with the standard deviation in the
distribution of averages computed becoming an estimate of the
true uncertainty.
2.5. Block Covariance Overlap Method.The first step in the

block covariance overlap method (BCOM) is to align the entire
trajectory with an iterative alignment procedure7 using specific
atoms as reference points (in this work, nonhydrogen atoms for
the small molecules and the transmembrane CR atoms for the
larger systems). Next, the conformation matrix is constructed
from these atoms, and a PCA computed as described in Section
2.2. In direct analogy to block averaging, the BCOM is typically
computed for a range of block sizes, up to half the size of the
trajectory. Given a trajectory with L frames and a block size k, the
trajectory is divided into L/k contiguous blocks. A PCA is then
computed for each block. Within an individual block, there is no
additional alignment performed since the trajectory as a whole is
already in an optimal alignment. However, the average structure
from the block is used in the subtraction for the PCA. The
covariance overlap (eq 1) is then computed against the PCA for
the entire trajectory. In essence, the full trajectory is treated as the
gold standard. The average covariance overlap is then reported
as a function of block size.
The block covariance overlap is then normalized by the value

expected if the trajectory was totally uncorrelated. This value is
determined by bootstrapping13 the blocks, i.e., each block is
created by randomly drawing (with replacement) samples from
the entire trajectory, and the covariance overlap is computed
between the PCA of the block and the overall trajectory. This
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procedure is repeated a set number of times (typically 50) for
each block size, and the average covariance overlap is used to
scale the block overlap data.
The inverse of the bootstrap-normalized blocked covariance

overlap is a decaying curve that can generally be fit by a
3-exponential function, f(t) = k1e

�t/t1 + k2e
�t/t2 + k3e

�t/t3 + 1,
where t1�t3 are different correlation time constants. The 3-ex-
ponential function was determined to give the best fit to the
observed data by fitting 1�4 exponential functions and examin-
ing the residual errors.
2.6. Cosine Content. The cosine content for the first mode

was calculated based on the method presented by Hess.5 In brief,
the trajectory is aligned and divided into multiple contiguous
blocks of a given size, as described above. The eigendecomposi-
tion is computed as previously described. The projection of the
conformation matrix along the first eigenvector is then used to
calculate the cosine content according to

c ¼ 2
T

Z T

0
cosðπt=TÞpðtÞdt

 !2 Z T

0
p2ðtÞdt

 !�1

ð2Þ

where p(t) is the tth element of the projection vector and the
average value over all contiguous blocks is reported.
2.7. Lightweight Object Oriented Structure Analysis Pack-

age. All analyses were performed using the Lightweight Object
Oriented Structure analysis package (LOOS),14,15 an object-
oriented library for creating new analytical tools for MD that
is implemented in C++ . LOOS uses Boost16 and atlas17,18 for
additional functionality and high-performance linear algebra
calculations. LOOS includes a powerful “selection expression”
parser that enables tools to easily select which atoms to operate
on. In addition, LOOS provides support for reading the native file
formats for most major MD packages, including CHARMM,19

NAMD,20 Amber,21 Gromacs,22 and Tinker.23 Also included with
LOOS are over 50 analytical tools, including suites of programs
for computing elastic network model solutions and the con-
vergence analyses presented in this work. LOOS is freely
available from SourceForge (http://loos.sourceforge.net).
2.8. Structural Decorrelation Time and Effective Sample

Size. For comparison purposes, we also applied two previously
published methods developed by Zuckerman and co-workers
for assessing the convergence of MD simulations, which we
believe represent the state of the art in the field. The first method
uses the “decorrelation time” as described by Lyman et al.10

Briefly, this method partitions the conformational space of the
trajectory using a set of randomly drawn “reference” structures

and compares the variance of the histograms of subsets of the
ensemble (using the reference structures) with the expected
variance if the structures were uncorrelated. The second method,
described by Zhang et al.,11 uses the same tesselation of config-
uration space but then clusters the reference “bins” based on the
rates of exchange between the different clusters. This gives an
estimate for the number of uncorrelated conformations found in
the ensemble from which a decorrelation time can be estimated.
Implementations of both tools are available from the Zuckerman
lab Web site (http://www.ccbb.pitt.edu/Faculty/zuckerman/
software.html) and are also available in the convergence suite
in LOOS.14

2.9. Model Systems. Several different systems were used to
assess convergence, ranging from a dipeptide to a set of G
protein-coupled receptors, and are listed in Table 1. The first
systemwas a “toy” system based on Lyman et al.,10 consisting of a
dileucine in implicit water at 500 K simulated in Tinker23 for 1μs,
with structures saved every 100 ps . The second system is a short
hexapeptide derived from lactoferrin B in explicit water;24,25

NAMD20 was used on a BlueGene/P26 to simulate this peptide in
the NVT ensemble at 323 K using CHARMM2219,27,28 with
CMAP28 parameters. Snapshots were saved every 1 ns. We ran
multiple simulations, with 2 lasting approximately 3.1 μs each
and 4 other simulations that are each approximately 4.3 μs long.
For both the LfB6 and the dileucine systems, all heavy atoms
were used in performing alignments and for computing the PCA.
Three different G protein-coupled receptors (GPCRs) were

used as the larger test systems. The details of their construction
have been previously described, but in brief, each consisted of the
GPCR embedded in a lipid bilayer along with explicit solvent.
The first system is a 1.02 μs all-atom simulation of β2AR,

29 the
second is a 1.6 μs simulation of dark-state rhodopsin,30 and the
final system is an approximately 1.9 μs simulation of the CB2
canabannoid receptor.31 For these larger systems, only trans-
membrane R carbons were considered for analysis.

3. RESULTS AND DISCUSSION

3.1. Convergence of the Average Structure. As a trajectory
evolves over time, the estimate for the average structure will
change. This can be the result of new conformational substates
being found or from changes in the relative population of the
existing substates. This variation is particularly important for
methods such as PCA that depend upon the average structure as
a reference point. This dependence can be easily demonstrated

Table 1. Systems Used for Analyzing Convergence

system length (ns) conditions

dileucine 1000 500 K, implicit solvent

LfB6 #1 3164 323 K, explicit solvent

LfB6 #2 3127 323 K, explicit solvent

LfB6 #3 4275 323 K, explicit solvent

LfB6 #4 4275 323 K, explicit solvent

LfB6 #5 4285 323 K, explicit solvent

LfB6 #6 4285 323 K, explicit solvent

β2AR 1023 310 K, explicit solvent and membrane

rhodopsin 1605 310 K, explicit solvent and membrane

CB2 1882 310 K, explicit solvent and membrane
Figure 1. Block averaging of the rmsd between each block and the
optimal global average for the 1 μs dileucine trajectory.
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by randomly perturbing the average structure used in computing
a PCA and then calculating the covariance overlap between the
perturbed and the unperturbed modes. An rms perturbation as
small as 0.1 Å in the β2AR average structure reduces the co-
variance overlap from 1 to 0.92 and an overlap of 0.94 for
rhodopsin and CB2. Therefore, we must first ask at what point is
it reasonable to believe that the average structure has converged
such that its statistical errors no longer perturb the PCA results
significantly. For the case of the 1 μs dileucine simulation,
Figure 1 shows the block averaged rmsd. The rmsd error in the
average structure does not plateau until around 10 nswith an error
of 0.019 Å . This is a higher uncertainty than would be suggested
based on a plot of the running average rmsd (≈0.002 Å) for the
simulation (see Figure SI1A, Supporting Information). The
running average rmsd for the transmembrane CR’s of rhodopsin
is also shown in Figure SI1B, Supporting Information. It appears
to show a convergence at approximately 1.4 μs with an error of
0.025 Å . It is important to note however that the rmsd beyond
the first several hundred nanoseconds is quite small in both cases,
and it would be tempting to determine convergence of the
average structure at this point. The rmsd between each structure
of the rhodopsin simulation and the starting crystal structure is
shown in Figure SI2, Supporting Information. Here, there is a
short plateau at 0.5 μs where the rmsd does not increase,
followed by an increase and a longer plateau at about 1 μs. This
“classical” measure of convergence therefore suggests that the
simulation has “converged” by 1 μs.
3.2. Convergence and Correlation Times. The PCA of an

MD trajectory is defined by both the fluctuations of the system as
well as how well these are sampled. To illustrate this, imagine a
simple model system that has two distinct states. If the system
stays in one well, then the average structure and the fluctuations
about that average will be different from the case where the
system transitions between the two wells. Similarly, once the
simulation samples the true statistical distribution of states (e.g.,
twice as many samples in state one as in state two), then the
average structure and the fluctuations about that average will be
different still. Only once the fluctuation subspaces cease to
change, can we consider the simulation well sampled.
The covariance overlap (eq 1) is a powerful tool for determin-

ing how similar the conformational spaces sampled by two
trajectories are. In contrast to the subspace overlap,32 which
only considers the similarity of directions, the covariance overlap
also includes the relative significance (i.e., power) of each mode.
The covariance overlap also considers all modes, rather than an
arbitrary subset. This is a more stringent test on whether the

subspaces are similar, since it requires a better sampling of the
underlying fluctuations in order for both the directions and the
power spectra to match.
If we wish to say that a trajectory has “converged,” then it is

reasonable to expect that the fluctuations from different, large
subsets of the trajectory should be similar, i.e., have a covariance
overlap that approaches 1. The point at which convergence has
been achieved can then be determined by choosing successively
smaller subsets and determining at what point the covariance
overlap diverges from 1. In practice, the subsets are picked as
contiguous blocks of a given size spanning the trajectory. This
method is what we call the BCOM. It is, in effect, a quantification
of the statistical error present in the MD simulation due to finite
and discrete sampling. The overlap for each block is then
normalized by the overlap value expected were there no cor-
relations via bootstrapping, and the inverse of the resulting curve
is fit to a three exponential function. As the block sizes increases,
this ratio will decay toward 1, where the blocks are long enough
that they are effectively uncorrelated.
Hess5 notes that autocorrelation functions of principal com-

ponents can be fitted with a double exponential function using a
fast and a slow correlation time. Indeed, such a hierarchy has
been seen previously in PCA analysis for large systems and
manifests as a “beads on a string”when visualizing the fluctuation
phase space.29,33 Within a bead, or conformation state, there is a
short correlation time as the local well(s) are explored. The
transition between different beads occurs at a much slower time
scale. In contrast, our method results in three different correla-
tion times, typically at different scales (i.e., fast, medium, and slow
scale). While we could hypothesize that the third time scale is the
time to get a sampling of the distribution of states, we have no
underlying model to justify a triple exponential; fitting with two
exponentials leaves a clear residual, while the residual from triple
exponential appears random.
The covariance overlap from the BCOM and the bootstrapped

BCOM (BBCOM) for the dileucine system is shown in Figure 2.
Both the BCOM and the BBCOM approach 1 after 500 ns. The
BCOM curve rapidly increases to 0.95 around 50 ns and then
slowly increases thereafter. The bootstrapped curve, in contrast,
is very close to its peak value for random sets containing as many
points as 25 ns blocks. These curves illustrate the effect of
correlation within the blocks. The ratio of the BBCOM to the

Figure 2. BCOM and BBCOM for the 1 μs dileucine trajectory. Figure 3. Inverse of bootstrap-normalized BCOM for the 1 μs dileucine
trajectory. A three-exponential function is fit to the curve giving
three different correlation times. The correlation times are t1 = 1.7 ns,
t2 = 16.0 ns, and t3 = 194.3 ns.
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BCOM is shown in Figure 3, along with the best three-expo-
nential fit. The correlation times, determined from the three-
exponential fit, are shown in Table 2. It is quite clear from this
graph that the dileucine system has converged since the ratio
decays to 1 by 500 ns. What is striking in this figure is the
magnitude of the longer time scale for such a simple system—
nearly 200 ns. This is a measure of the simulation time required
to accurately determine the relative populations of the different
states available to dileucine. It is worth noting that this time is far
longer than the average lifetime of any single state. Rather, it
reflects the fact that even a molecule as simple as dileucine has a
significant number of states available to it.

In order to further assess the quality of sampling, we also
performed a decorrelation time and an effective sample size
analysis, as described in Section 2.8. The normalized variance
versus decorrelation time is shown in Figure 4 for three different
step sizes through the trajectory. Each curve converges to 1
at≈0.7�0.9 ns. Similarly, the decorrelation time estimated from
the effective sample size (also described in Section 2.8) is
0.45� 0.53 ns. The decorrelation times and their estimates for
each system are shown in Table 3. It is important to remember
that these two methods are not measuring the same thing as the
BCOM; both of these methods hinge on the rate of interconver-
sion between individual states, which BCOM measures as the
convergence of their populations. Examining the pairwise (all-
to-all) rmsd map (Figure SI3A, Supporting Information), it is
apparent that dileucine has substates that last approximately 1 ns.
Indeed, the pairwise rmsd map is a very simple test that can be
used to give a qualitative assessment of how well sampled the
trajectory is.2,29 However, the off-diagonal blocks, despite having
a low rmsd, are not guaranteed to be structurally similar.
While the decorrelation time (or the rate of transitions

between states) can be quite rapid, the convergence of the
distribution of observables may take much longer. For example,
the dileucine trajectory can be partitioned as above but using
5 bins. A running average of the bin populations is computed and
graphed over time in Figure 5. The majority of the changes in
populations have smoothed out in the first 200 ns or so, with
some variation in bins 1 and 4 that continue until nearly 1 μs.
3.3. LfB6. The LfB6 hexapapetide (RRWQWR-NH2) is a

slightly largermodel system that was simulated in explicit solvent.
As with the dileucine model, all nonhydrogen atoms were con-
sidered in the analysis. The average inverse bootstrap-normalized
BCOM plot for all 6 LfB6 simulations is shown in Figure 6 with
the fit parameters listed in Table 2. There is a short correlation
time of 33 ns with longer correlation times of 200 ns and 1316 ns.
When fit individually, half of the simulations have long correla-
tion times exceeding the largest block size. This accounts for the
variation in the BCOMplot at 1 μs and beyond and is evidence of
a lack of convergence despite being a small system that was
simulated for far longer than is typical for full proteins.
The decorrelation time plots for LfB6 are shown in Figure 7.

The curves for the different step sizes are averaged over all six
simulations. This figure yields an estimated decorrelation time of

Table 2. Fitting of Three-Exponential Curve to BCOM
Results for Different Model Systems

model k1 t1 (ns) k2 t2 (ns) k3 t3 (ns)

dileucine 0.42 1.7 0.10 16.0 0.04 194.3

LfB6 0.19 32.9 0.17 199.9 0.12 1316.3

β2AR 0.76 23.3 0.51 248.9 0.19 2481.2

rhodopsin 2.18 10.0 0.89 47.0 1.24 804.5

CB2 1.69 7.3 0.98 39.1 1.15 934.7

Figure 5. The running average of the population for each bin over time
using 5 bins for the dileucine simulation.

Figure 4. Decorrelation time estimation by plotting σobs
2 (t) for three

different step sizes: 2, 4, and 10. The time point where the curves reach
1 is the approximate decorrelation time.

Table 3. Decorrelation Times As Estimated by Variance Plots
(τd) and fromAutomated Effective Sample Size Analysis (τd0 )

a

model τd (ns) τd0 (ns)

dileucine 0.7�0.9 0.45�0.53

LfB6 40�55 35.6�51.0

β2AR
b 75�90 37.2�46.7

rhodopsinb 130�150 60.3�70.9

CB2b 140�175 76.7�91.2

β2AR
c 90�100 60.5�78.2

rhodopsinc 140�180 120.0�150.5

CB2c 170�230 160.8�188.7
aAll analyses used 20 replicates. The τd for dileucine and LfB6 used step
sizes of 2, 4, and 10, while all other models used 2, 3, and 4. b 20 bins were
used and not all clustering for τ0d resulted in 2 top-level clusters.

c 10 bins
were used and not all clustering for τ0d resulted in 2 top-level clusters.
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40� 55 ns. The average decorrelation time derived from the
effective sample size analysis (using 20 replicates) is approxi-
mately the same, 35.6� 51 ns. This time scale also matches the
short correlation time from the BCOM analysis.

Figure 8A shows the running average of the cluster popula-
tions for a 20 bin partitioning of the first LfB6 trajectory. Here,
the bins are across the x axis with time along the y axis. Color
indicates the deviation of the running average from the overall
average population for each column. Qualitatively, what we find
is that the cluster populations continue changing until approxi-
mately 1�1.5 μs, although there are again variations up to the full
3 μs of the simulation. The time scale of the convergence of these
cluster populations corresponds to the long time scale predicted
by the BCOM analysis of 1.3 μs.
3.4. GPCRs. The three GPCR simulations represent an

application of these methods to large systems of biological in-
terest, with state of the art trajectories ranging from 1 to nearly
2 μs. In order to make the convergence criterion more lenient,
only the transmembrane R carbons were considered in the ana-
lysis, since incorporating the fluctuations of the flexible loops
and the terminii would vastly expand the configuration space of
the systems. The BCOM curve and fit for β2AR is shown in
Figure 9A. The best exponential fit to the data is again a three-
exponential giving three well-separated correlation times of
approximately 23 ns, 250 ns, and 2.5 μs. It is important to note
that the longest correlation time, 2.5 μs, is longer than the largest
block size used in the analysis. Moreover, the final ratio is above
1.2, indicating that the longest blocks still do not appear uncor-
related, which in turn suggests that the system is poorly con-
verged. Interestingly, a previous analysis of the phase space
formed by the first three principal components for β2AR

29 found
the presence of “beads”, indicative of conformational substates,
with an average duration of 252 ns. This time scale is virtually
identical to the medium time scale found by the BCOM.
The decorrelation time and effective sample sizes for β2AR are

shown in Table 3. In this case, the analyses were repeated using
two different numbers of bins for the partitioning of configura-
tion space: 10 and 20 bins. There were an insufficient number of
frames to support larger step sizes (i.e., N = 10) in the decor-
relation time plots, so step sizes 2�4 were used instead. The
estimated decorrelation times for β2AR are 90� 100 ns for
10 bins and 75� 90 ns for 20 bins. The effective sample size
hierarchical clustering did not generally result in two top-level
states (this can occur in this analysis when there are states that do
not interconvert during the trajectory, which is itself a sign that
the trajectory has not converged). In addition, the effective
sample size (Neff) per bin was only slightly greater than 1,
suggesting that the system is not converged and that the resulting

Figure 7. Decorrelation time estimation from σobs
2 (t) for all 6 LfB6

simulations averaged together. The error bars are the standard deviation
across all six simulations. The decorrelation time is estimated as being
between 40 and 55 ns.

Figure 6. The inverse of the averaged, bootstrap-normalized BCOM
plot for all six LfB6 simulations. The error bars are the standard deviation
of the normalized BCOM from all simulations. The correlation times are
t1 = 32.0 ns, t2 = 199.9 ns, and t3 = 1316.3 ns. The t1 correlation time
closely matches the decorrelation time estimated by other methods.

Figure 8. A visualization of the change in cluster populations over time for the first LfB6 trajectory (panel A) and for β2AR (panel B). Color represents
the deviation from the column average.
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statistics are suspect. The estimated decorrelation times based on
Neff are 60� 78 and 37� 47 ns for 10 and 20 bins, respectively.
The running average of the cluster populations for β2AR is
shown in Figure 8B; many of the bins show sharp population
changes well into the simulation, such as bin 1 at nearly 700 ns,
while bin 5 continues to drift until the 1 μs mark, and bin 8 shows
a sudden change at almost 1 μs. The extent of convergence for
CB2 can be seen in the all-to-all rmsd plot in Figure SI3B,

Supporting Information. The only significant cross-peak, indicat-
ing revisiting of conformational substates, occurs at around
1.4 μs, although there are broad regions with some self-similarity,
such as the first 0.4 μs and 0.6� 1.1 μs. In addition, one can
qualitatively discern small blocks along the diagonal whose size is
approximately 100 ns. This again reinforces the challenges of
adequately sampling a large protein system, even with start of the
art, microsecond-scale simulations.
The BCOM, decorrelation time, and Neff for rhodopsin and

CB2 are also given in Tables 2 and 3. In each case, the BCOM
curve never comes close to 1. Rhodopsin plateaus at approxi-
mately 1.7 (Figure 9B), and CB2 reaches about 1.6 (Figure 9C),
indicating neither system is converged. Moreover, the long
correlation time exceeds the largest block size used in the ana-
lysis, further suggesting that the systems have not converged. The
decorrelation time and Neff analyses are somewhat more com-
plicated given the differences between 10 and 20 bins. While the
change in decorrelation time is not that significant, theNeff varies
considerably. In the 10 bin case, the number of top clusters found
is smaller than in the 20 bin case, and it is likely that the larger
numbers are more reflective of the “true” decorrelation time.
Nevertheless, the decorrelation times for all of the GPCRs are
quite long, approaching 100 ns or longer.
While the time scales found by the BCOM and the decorrela-

tion and Neff analysis diverge for the GPCR systems, all methods
indicate that there are quite long time scales involved and that the
number of statistically independent configuration samples, even
in a multimicrosecond simulation, is small. This divergence is
also not entirely unexpected considering that the BCOM is using
a very different approach from the decorrelation time and Neff

analysis. Moreover, since the per bin Neff is very close to 1,
indicating insufficient sampling quality, the estimated decorrela-
tion times are suspect.
3.5. Cosine Content. The cosine content for contiguous

blocks along the first mode is shown in Figure 10. The average
cosine content across all blocks of a given size is plotted, and the
error bars are the standard deviation. Figure 10A illustrates the
cosine content for a converged simulation, the first LfB simula-
tion. The cosine content reaches 0 around 1 μs, suggesting con-
vergence on a slightly longer time-scale than determined by
BCOM (≈900 ns, data not shown). In contrast, Figure 10B
shows the cosine content for the rhodopsin simulation, a
nonconverged simulation. The cosine content begins high and
increases with larger block sizes. Hess suggests that, in practice,
the cosine content can be a useful negative indicator of con-
formational sampling.5 In a simpler form, the cosine content of
the first mode for the entire trajectory can be a simple test to
determine whether a system is undersampled. For example, the
cosine content for β2AR, rhodopsin, and CB2 are 0.78, 0.87, and
0.9, respectively. In contrast, the average cosine content for the
LfB simulations is 0.003.
3.6. Known Unknowns: Suggestion for Practical Applica-

tions of BCOM. There are two tantalizing questions for the
BCOManalysis: How reliably can it indicate when a system is not
converged, and can it predict howmuch longer is required to run
until convergence is achieved? Philosophically, this is a difficult
prospect since it is difficult to know what is not known. It is
always possible that increasing the simulation time will reveal a
new conformation state, and there is no way to know that this
state exists solely by using the previously seen configuration
space. In tests where the trajectories were arbitrarily truncated
and the BCOM performed, the reliability of using the long

Figure 9. Inverse of the bootstrap-normalized BCOM for the simula-
tion of β2AR (panel A), rhodopsin (panel B), and CB2 (panel C). The
longest correlation times are 2481, 804, and 935 ns, respectively, and are
approximately equal or greater than the largest block size, indicating a
lack of convergence.
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time-scale coefficient and the BCOM ratio is low until at least the
average structure begins to converge. Indeed, when the simula-
tion is so small that it stays within a single well, it may in fact
be well sampled within this restricted conformation space—in
effect, convergence is in the eye of the beholder. An alternative
interpretation is that if the simulation is far too short, then there is
no way to know this. Once the trajectories become sufficiently
large, however, more credence can be given to these indicators.
This is not conclusive proof, however. In some cases, the trajec-
tory was truncated before a new state was discovered, resulting in
an apparent convergence (data not shown). In some respects,
however, the BCOM was not incorrect in that given the known
configuration space, the simulation did appear to be converged.
However, once the trajectory was extended and the new state was
seen, it was apparent that the simulation was not close to
convergence. It bears repeating that there is no way to prove a
simulation (or even an ensemble of simulations) has converged
to the correct answer. Rather, one can only demonstrate that the
system has not converged or that it may be converged.
It is important to bear in mind that none of these methods

replace the simpler methods of assessing the simulation’s sam-
pling, such as visually inspecting the all-to-all rmsd of the system,
examining the convergence of the average structure, and the time
series of observables of interest. While it has been repeatedly
shown that these measures are not necessarily indicative of
good sampling quality, they are a simple test that represents a
minimum threshold that any simulation must pass before more
sophisticated methods are employed. Similarly, much can be
learned by plotting the projection of the system along the first
several principal components, and this is typically a computa-
tionally inexpensive analysis.

4. CONCLUSIONS

We have devised a new method for assessing both the quality
of sampling and the rate of convergence for amolecular dynamics
simulation. The method relies on the similarities of the subspace
sampled by the simulation and defined by the system’s fluctua-
tions. This method differs from other approaches in that it relies
on fitting the resulting curves to a three-exponential function
rather than a graphical interpretation. In addition, more informa-
tion is considered in the analysis by using the covariance overlap,
utilizing a wide range of block sizes for partitioning the trajectory
and normalizing the resultant overlaps by a bootstrapped block

sample. Moreover, the hierarchical nature of the different corre-
lation times indicates a longer time scale for sufficient sampling of
the “known” configuration space than is suggested by other mea-
sures. Armed with this knowledge of the correlation times in the
simulation, we can now make assertions regarding the effective
sample size for any observable statistics and hence the statistical
errors that are present in those quantities.

All of the methods investigated in this work suffer when the
simulation is far too short. That is, they require a minimum
sampling quality before one can hope to determine how well
converged or sampled the system is. Even in the case where the
simulation is converged, there is appreciable variation in the
numbers obtained for the correlation and decorrelation times,
although the general time scales are similar. Absent a priori
knowledge of what the fluctuation space should look like, there is
no method known to the authors that can determine an
“unknown unknown,” that is, states that should have been seen
but have not yet been visited by the system. Moreover, many of
these methods for assessing sampling quality are new, and it is
not yet clear under what conditions they perform well and those
under which they fail. Given this, we strongly recommend that all
available methods, ranging from the simple rmsd plots and the
cosine content along the first few modes to the structural
decorrelation analyses and BCOM, be used to assess sample
quality and convergence. These tests are computationally in-
expensive (particularly relative to the cost of running an all-atom
simulation), and implementations are freely available as part of
LOOS. Only in concert, combining Neff with BCOM for
example, can we hope to assert what the statistical error is and
whether or not a simulation is well sampled. We must emphasize
again that despite the improvements in these methods for
assessing sampling quality, there is no substitute for visually
observing the time series, be it torsions or projections along a
principal component to look for multiple transitions.

’ASSOCIATED CONTENT

bS Supporting Information. Three figures: The first shows
the rmsd between the running average structure for time t and
t + 1 for dileucine and rhodopsin. The second shows the rmsd
between the structure at time t and the starting crystal structure
for rhodopsin. The final figure shows the all-to-all rmsd for each
structure in the dileucine simulation with every other structure in

Figure 10. The average cosine content as a function of block size for the first LfB simulation (panel A) and rhodopsin (panel B). The error bars are the
standard deviations across all contiguous blocks of a given size.
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the same simulation as well as for the CB2 simulation. This
information is available free of charge via the Internet at http://
pubs.acs.org/.

’AUTHOR INFORMATION

Corresponding Author
*E-mail: alan_grossfield@urmc.rochester.edu.

’ACKNOWLEDGMENT

We would like to thank Dan Zuckerman for his insightful
discussions and reading of this manuscript. We would also like
to thank IBM Watson for the BlueGene supercomputer and
Michael Pitman for the GPCR simulations. We are also grateful
to the Center for Research Computing at the University of
Rochester for providing computing systems and personnel to
enable the research presented in this manuscript.

’REFERENCES

(1) Flyvbjerg, H.; Petersen, H. J. Chem. Phys. 1989, 91, 88–103.
(2) Grossfield, A.; Zuckerman, D. M. Ann. Rep. Comp. Chem. 2009,

5, 23–48.
(3) Balsera, M.; Wriggers, W.; Oono, Y.; Schulten, K. J. Phys. Chem.

1996, 2567–2572.
(4) Amadei, A.; Ceruso, M. A.; Nola, A. D. Proteins 1999, 36,

419–24.
(5) Hess, B. Phys. Rev. E 2002, 65, 031910.
(6) Faraldo-G�omez, J. D.; Forrest, L. R.; Baaden, M.; Bond, P. J.;

Domene, C.; Patargias, G.; Cuthbertson, J.; Sansom, M. S. P. Proteins
2004, 57, 783–91.
(7) Grossfield, A.; Feller, S. E.; Pitman, M. C. Proteins 2007, 67,

31–40.
(8) Sullivan, D. C.; Kuntz, I. D. Proteins 2001, 42, 495–511.
(9) Smith, L. J.; Daura, X.; van Gunsteren, W. F. Proteins 2002,

48, 487–96.
(10) Lyman, E.; Zuckerman, D. M. J. Phys. Chem. B 2007, 111,

12876–82.
(11) Zhang, X.; Bhatt, D.; Zuckerman, D. M. J. Chem. Theory

Comput. 2010, 6, 3048–3057.
(12) Efron, B. Ann. Stat. 1979, 1, 1–26.
(13) Efron, B.; Tibshirani, R. J. An Introduction to the Bootstrap; CRC

Press LLC: Boca Raton, FL, 1998; pp 45�57.
(14) Romo, T. D.; Grossfield, A. Conf. Proc. IEEE Eng. Med. Biol. Soc.

2009, 1, 2332–5.
(15) Romo, T. D.; Grossfield, A. LOOS: Lightweight Object Oriented

Structure analysis; Grossfield Lab, University of Rochester Medical
School: Rochester, NY; http://loos.sourceforge.net. Accessed May 20,
2011).
(16) BOOST C++ Libraries; http://www.boost.org.
(17) Whaley, R. C.; Dongarra, J. In Proceedings from Ninth SIAM

Conference on Parallel Processing for Scientific Computing, San
Antonio, TX, March 22�24, 1999; SIAM: Philadelphia, PA, 1999;
(in CD-ROM).
(18) Whaley, R. C.; Petitet, A. Software: Practice and Experience

2005, 35, 101–121.
(19) Brooks, B.; Bruccoleri, R.; Olafson, B.; States, D.; Swaminathan,

S.; Karplus, M. J. Comput. Chem. 1983, 4, 187–217.
(20) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid,

E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kal�e, L.; Schulten, K. J. Comput.
Chem. 2005, 26, 1781–802.
(21) Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.;

Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J.
J. Comput. Chem. 2005, 26, 1668–88.
(22) Spoel, D. V. D.; Lindahl, E.; Hess, B.; Groenhof, G.;Mark, A. E.;

Berendsen, H. J. C. J. Comput. Chem. 2005, 26, 1701–18.

(23) Ponder, J. Tinker, version 4.2; Department of Biochemistry and
Molecular Biophysics, Washington University School of Medicine:
St. Louis, MO, 2007.

(24) Tomita, M.; Takase, M.; Bellamy, W.; Shimamura, S. Acta
Paediatr. Jpn. 1994, 36, 585–91.

(25) Romo, T. D.; Bradney, L. A.; Greathouse, D. V.; Grossfield, A.
Biochim. Biophys. Acta, Biomembr. 2011, 1808, 2019–30.

(26) Allen, F.; et al. IBM Syst. J. 2001, 40, 310.
(27) MacKerell, A. D., Jr.; Brooks, C. L., III; Nilsson, L.; Roux, B.;

Won, Y.; Karplus, M. CHARMM: The Energy Function and Its Para-
meterization with an Overview of the Program; John Wiley and Sons:
Chichester, 1998; Vol. 1; pp 271�277.

(28) A. D. MacKerell, J.; Feig, M.; C. L. Brooks, I. J. Comput. Chem.
2004, 25, 1400–15.

(29) Romo, T. D.; Grossfield, A.; Pitman, M. C. Biophys. J. 2010,
98, 76–84.

(30) Grossfield, A.; Pitman, M. C.; Feller, S. E.; Soubias, O.;
Gawrisch, K. J. Mol. Biol. 2008, 381, 478–86.

(31) Hurst, D. P.; Grossfield, A.; Lynch, D. L.; Feller, S.; Romo,
T. D.; Gawrish, K.; Pitman, M. C.; Reggio, P. H. J. Biol. Chem. 2010,
285, 17954–17964.

(32) Hess, B. Phys. Rev. E 2000, 62, 8438–48.
(33) Clarage, J. B.; Romo, T.; Andrews, B. K.; Pettitt, B. M.; Phillips,

G. N. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 3288–92.



Published: June 13, 2011

r 2011 American Chemical Society 2473 dx.doi.org/10.1021/ct200215d | J. Chem. Theory Comput. 2011, 7, 2473–2484

ARTICLE

pubs.acs.org/JCTC

Benchmarking the Approximate Second-Order Coupled-Cluster
Method on Biochromophores
Robert Send,† Ville R. I. Kaila,‡,§,|| and Dage Sundholm*,§

†Institut f€ur Physikalische Chemie, Karlsruher Institut f€ur Technologie, Kaiserstrasse 12, 76131 Karlsruhe, Germany
‡Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health,
5 Memorial Drive, Bethesda, Maryland, United States
§Department of Chemistry, P.O. Box 55 (A. I. Virtanens plats 1), FIN-00014 University of Helsinki, Finland

)Helsinki Bioenergetics Group, Programme of Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki,
P.O. Box 65, FI-00014 Helsinki, Finland

ABSTRACT: Extensive benchmarking calculations are presented to assess the accuracy of commonly used quantum chemical
methods in studying excited state properties of biochromophores. The first few excited states of 12 common model chromophores
of photoactive yellow protein, green fluorescent protein, and rhodopsin have been studied using approximate second-order coupled-
cluster (CC2) and linear-response time-dependent density functional theory (TDDFT) calculations. The study comprises
investigations of basis-set dependences on CC2 excitation energies as well as comparisons of the CC2 results with excitation
energies obtained at other computational levels and with experimental data. The basis-set study shows that the accuracy of the two
lowest excitation energies is generally sufficient when triple-ζ basis sets augmented with polarization functions are employed,
whereas the third and higher excited states were found to require diffuse basis functions in the basis set. Augmenting the basis set
with diffuse functions contributes less than 0.15 eV to the excitation energies of low-lying excited states, except for some of the
studied anionic states and for Rydberg states. Calculations at the TDDFT level using the B3LYP functional show the necessity of
stabilizing anions with point charges or counterions when aiming at reliable electronic excitation spectra. The two lowest excitation
energies of the green fluorescent protein and rhodopsin chromophores calculated at the CC2 level agree within 0.15 eV with
experimental excitation energies, whereas the B3LYP values are somewhat less accurate, with a maximum deviation of 0.27 eV. The
computed excitation energies for the photoactive yellow protein chromophore models deviate from available experimental values by
0.3�0.4 eV and 0.1�0.5 eV, at the CC2 and B3LYP levels of theory, respectively.

’ INTRODUCTION

Prediction of excitation energies is of profound importance in
elucidating molecular mechanisms of photochemical and photo-
biological processes, and in characterizing chemical intermedi-
ates determined by spectroscopic techniques. For quantitative
predictions, this requires high accuracy of the quantum chemical
method, i.e., a deviation of 0.1 eV or less. The use of sufficiently
large molecular model systems puts additional constraints on the
choice of quantum chemical methods. The accuracy of calculated
excitation energies depends on the level of the electron correla-
tion treatment and the basis-set size. Accurate computational
approaches such as high-order configuration interaction or
coupled-cluster-based methods can yield excitation energies in
close agreement with experimental results, provided that the
employed basis set is sufficiently large.1�5 However, such
calculations are still limited to very small systems, comprising
less than 10 atoms.6 The use of small basis sets introduces
significant errors, implying that the results are unreliable despite
the accurate treatment of the electron correlation. Density
functional theory (DFT) and low-order ab initio electron corre-
lation methods, such as approximate second-order coupled-
cluster (CC2) calculations, can be employed in combination
with large basis sets to yield results in the complete basis-set limit.
However, even the CC2 calculations are computationally very

expensive for the larger biochromophores. The linear-response
time-dependent DFT (TDDFT) method, which has become a
very popular tool for investigating excited states, provides
accurate excitation energies at much lower computational cost
relative to ab initio correlation methods.7�9 The drawback is a
significant number of problematic cases where today’s func-
tionals do not provide accurate excitation energies.2,5,10�13

Biological chromophores are an intriguing challenge for
quantum chemical methods.14,15 The complexity of biological
systems such as protein surroundings are part of these challenges.
However, isolated chromophore models of well studied proteins
suffice to reveal the limitations of any contemporary excited state
quantum chemical method. The discrepancies in the excited state
descriptions have caused some controversies but also confusion
with respect to the reliability and applicability of the concerned
methods.16�19 There is an increasing amount of extensive
experimental gas-phase data for excitation energies of common
biological chromophore models.20�26 These data have been
compiled by Ma et al.27 and used to assess the accuracy of the
many-body Green’s function approach.28 The compilation of
reference data has revealed the need for benchmarking the most

Received: March 30, 2011
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common excited state methods to obtain an overview of their
performance and to resolve the confusion about applicability,
basis-set requirements, and further parameter dependencies.

Benchmark sets of vertical excitation energies are numerous,
especially for organic chromophores. Most recent efforts com-
prise the best estimates benchmark of the Thiel group, in which
reference values are obtained computationally,10 and the meta
studies on various benchmarks by Jacquemin and co-workers.29

Epifanovsky et al.30 recently benchmarked excited states of the
anionic green fluorescent protein chromophore, which is one of
the molecules studied in this work.

Vertical excitation energies are not readily deduced from
experimental results. Calculated vertical excitation energies are
therefore usually compared to the maxima of the experimental
absorption spectra. A more accurate way of benchmarking would
be to compare calculated adiabatic excitation energies with
experimental results.31,32 However, such comparisons require
information about excited state minima as well as experimentally
resolved vibrational spectra, both of which are unavailable for the
present series of biochromophores. Thus, we rely on compar-
isons of vertical excitation energies to experimental absorption
maxima and assume that the introduced uncertainties are smaller
than the error of the computational method.

In this work, we investigate the basis-set dependence of the
lowest excitation energies of important biochromophore models
by CC2 calculations with basis sets extended to quadruple-ζ
quality. The obtained values are compared to excitation energies
and oscillator strengths obtained by TDDFT calculations and to
experimental data. The benchmark set comprises seven p-hydro-
xycinnamic acid chromophore models representing the blue-
light photoreceptor of the photoactive yellow protein (PYP),
three p-hydroxybenzylideneimidazolinone (pHBDI) chromo-
phore models of the green fluorescent protein (GFP), and two
protonated Schiff-base (PSB) retinal models, which are the
chromophores of rhodopsin proteins. Part of this study aims at
identifying problems in the TDDFT calculations by direct
comparison to CC2 results.

This article is structured as follows. The computational
methods and the studied chromophores are described in the
Computational Details section. The basis-set convergence of the
CC2 calculations is discussed in the Results section, where the
CC2 and DFT excitation energies obtained in the complete-
basis-set limit are also compared to previously calculated and
measured values. The main conclusions are summarized in the
Conclusions section.

’COMPUTATIONAL DETAILS

Methods and Basis Sets. This study employs the Karlsruhe
basis sets of double-, triple-, and quadruple-ζ quality (def2-SVP,
def2-TZVP, and def2-QZVP), as well as the triple-ζ basis set
augmented with diffuse functions from Dunning’s aug-cc-pVTZ
basis set (aug-TZVP).33�36 The def2 prefix is omitted in the
following. The number of spherical (5d, 7f, 9g) basis functions is
2565 in the QZVP calculations on all-trans-retinal. Optimization
of the molecular ground state structures was performed at the
second-order Møller�Plesset perturbation theory (MP2) level
employing the TZVP basis sets and the resolution-of-the-identity
(RI) approximation.37�39 The excitation energies were calcu-
lated at the CC2 level using the RI approximation.40�43 The 1s
orbitals of C, N, and O were uncorrelated in the ab initio
calculations. The excitation energies were also calculated at the

TDDFT level using Becke’s three-parameter functional (B3LYP)
and aug-TZVP basis sets.44�48

Extrapolated basis-set limits at the CC2 level were estimated
by combining values for the excitation energies obtained with the
three largest basis sets (TZVP, aug-TZVP, and QZVP). All
calculations were done with Turbomole version 6.149 on a Linux
cluster equipped with 2.6 GHz AMD Opteron processors. The
calculations are computationally demanding. Typical computa-
tional times for the CC2 calculations are 100 CPU hours for
calculating the first excited state of HBDI� using the QZVP basis
set and 150 CPU hours for obtaining the first excited state of
PSBT+ at the CC2/TZVP level.
Benchmark Set Composition. In this work, we investigate

the biochromophores shown in Figure 1, recently studied by Ma
et al. at the many-body Green’s function theory (MBGFT)
level.27 The abbreviations reported in the figure indicate the
protonation states with prime (phenolate) and double prime
(carboxylate) symbols, as well as the total charge of themolecular
system. TDDFT calculations on the anionic chromophores are
also performed with external point charges to obtain charge
neutrality. The point charges ensure that the DFT ionization
threshold is larger than the studied excitation energies.
Photoactive Yellow Protein Chromophore Models. The PYP

molecule is a bacterial photoreceptor, responsible for absorbing
blue light photons by its p-coumaric acid chromophore.50,51 The
studied PYP chromophoremodels comprise trans-p-coumaric acid

Figure 1. The molecular structures of the studied chromophore
models: (a) the photoactive yellow protein chromophore models, (b)
the green fluorescent protein chromophore models, (c) the rhodopsin
chromophore models.
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(pCA), deprotonated trans-p-coumaric acid (pCA�0), trans-p-
coumarate (pCA�00), deprotonated trans-p-coumarate (pCA2�,)
p-vinyl phenol (pVP), thiomethyl-p-coumarate (TMpCA�), and
thiophenyl p-coumarate (pCT�), shown in Figure 1a.
Green Fluorescent Protein Chromophore Models. The GFP

molecule is responsible for the bioluminescence of many marine
organisms.52 The luminescence takes place only when its chro-
mophore, pHBDI embedded in the β-barrel structure of the
protein, is exposed to blue light but not in solution.52 Three GFP
model chromophores, shown in Figure 1b, are investigated,
namely, pHBDI, pHBDI�, and pHBDI+. The phenol group is
deprotoned in the pHBDI� model, and the methyl group of
the imidazolinone nitrogen in the pHBDI model is substituted
by a protonated ethylamine group (�CH2CH2NH3

+) in the
pHBDI+ model.
Rhodopsin Chromophore Models. Rhodopsin is a G-protein

coupled receptor, responsible for light absorption in vertebrate
visual pigments.53,54 Two models of the light absorbing

chromophore of rhodopsin were studied, 11-cis and all-trans
retinal (Figure 1c). In the former chromophore model, a butyl
group is connected to the protonated nitrogen atom of the retinyl
chain, simulating the cross-linked Lys-296 in the protein. In
the latter chromophore model, the Schiff base nitrogen has
two methyl substituents. Both models have a net positive charge
of +1.

’RESULTS

Basis-Set Convergence of the CC2 Calculations. The basis
set convergence of the five lowest singlet excited states is shown
in Figure 2 and Tables 1�4. The two lowest excited states of
most chromophores are valence states and well described using
the TZVP basis sets. The excitation energies obtained at the
CC2/TZVP level deviate less than 0.15 eV from the extrapolated
CC2/aug-QZVP values. The pHBDI� chromophore constitutes
an exception, where the second excited state obtained at the

Figure 2. The basis-set convergence of the five lowest singlet excitation energies (in eV) of the investigated chromophore models studied at the CC2
level. The extrapolated aug-QZVP excitation energies are denoted Ext. The legend for the line structures is only given in the first subfigure.
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CC2/QZVP level deviates by 0.45 eV from the CC2/aug-TZVP
value. Diffuse anionic states, states in the continuum, as well as
states with significant Rydberg character can be identified by
augmenting the basis set with diffuse functions. They might
lower the excitation energy even by more than 1 eV. The higher
excited states (states 3�5) of the PYP chromophore models
seem to require the use of diffuse basis functions. Diffuse states
are not observed for the positively charged chromophores among
the five lowest excited states. As previously shown, a second set of
diffuse functions is sometimes necessary in order to approach the
basis-set limit.5 The excitation energies of the diffuse states are
underlined in Tables 1�4. For pCA2�, the first set of diffuse
functions lowers the excitation energies by a factor of 2, implying
that the electrons of the doubly charged anion are unbound.
Thus, no reliable values for the excitation energies of pCA2� can
be obtained without stabilizing the system with counterions,
solvent molecules, or by protein residues.
The present benchmark calculations show that the two lowest

excited states of the investigated chromophores, which are also
the biologically relevant states, are accurately described with
TZVP basis sets. Moreover, the calculations show the impor-
tance of diffuse basis functions for higher excited states of anionic
and neutral chromophores. The calculations also indicate the
importance of assessing the basis set requirement individually for
such chromophores.

Comparison of CC2 and B3LYP Excitation Energies. General
Trends. The excitation energies and oscillator strengths, obtained at
the B3LYP and CC2 levels, are compared in Figure 3 and Table 5.
The excitation energies calculated for the cationic and neutral
chromophore models at the B3LYP level are systematically smaller
than the corresponding CC2 energies, with a deviation of�0.14 to
+0.44 eV and a maximum deviation of 0.64 eV for some of the
higher excited states (e.g., for pCA�00). At first glance, the B3LYP
excitation energies seem to be in better agreement with experi-
mental data than the CC2 ones, particularly for the smaller PYP
chromophores. However, the oscillator strengths of the lower
excited states of the anions obtained at the B3LYP level indicate
that the TDDFT calculations suffer from problems, most likely
related to the previously discussed DFT continuum problem.5,55

The B3LYP calculations on some of the neutral chromophores also
yield oscillator strengths that significantly differ from those obtained
at the CC2 level, indicating that the states have different orbital
character.
Cationic and Neutral Chromophores. The excitation energies

of the PYP chromophore model pVP calculated at the B3LYP/
aug-TZVP level are 0.15�0.44 eV smaller than the correspond-
ing CC2 values. The B3LYP calculations yield very small
oscillator strengths for the higher excited states, whereas four
of the five states are bright at the CC2 level. The basis set
convergence at the CC2 level shown in Figure 2 indicates that
some of the higher excited states are not fully converged with the
aug-TZVP basis set. When comparing the extrapolated values, a
smaller difference between B3LYP and CC2 excitation energies
of 0.02�0.32 eV is obtained.
For the pCA chromophore, which has an additional proto-

nated carboxyl group relative to pVP, the first and the fifth

Table 1. Basis-Set Dependence of the CC2 Excitation
Energies (in eV) for the Five Lowest Excited Singlet States of
the Photoactive Yellow Protein Chromophore Models pCA,
pCA�0, pCA�00, and pCA2�a

molecule basis 1a 2a 3a 4a 5a

pCA SVP 4.73 4.93 5.11 6.35 6.70

pCA TZVP 4.52 4.77 4.96 6.02 6.43

pCA QZVP 4.47 4.73 4.92 5.95 6.13

pCA aug-TZVP 4.44 4.72 4.90 5.45 5.88

pCA extrapolated 4.39 4.68 4.86 5.38 5.58

pCA oscillator strength 0.54 0.27 0.00 0.22 0.16

pCA�0 SVP 3.37 3.59 4.41 4.63 5.54

pCA�0 TZVP 3.24 3.54 4.23 4.50 5.27

pCA�0 QZVP 3.18 3.53 4.16 4.47 4.84

pCA�0 aug-TZVP 3.25 3.43 3.53 3.88 4.01

pCA�0 extrapolated 3.19 3.42 3.46 3.85 3.79

pCA�0 oscillator strength 1.01 0.00 0.10 0.00 0.05

pCA�00 SVP 3.23 3.40 4.13 4.39 4.50

pCA�00 TZVP 3.28 3.43 4.17 4.34 4.41

pCA�00 QZVP 3.29 3.44 4.18 4.29 4.33

pCA�00 aug-TZVP 3.27 3.33 3.41 3.50 3.60

pCA�00 extrapolated 3.28 3.34 3.42 3.45 3.52

pCA�00 oscillator strength 0.00 0.00 0.02 0.02 0.05

pCA2� SVP 3.96 4.28 4.43 4.44 4.52

pCA2� TZVP 3.76 4.23 4.24 4.35 4.48

pCA2� QZVP 3.67 4.15 4.21 4.22 4.31

pCA2� aug-TZVP 1.98 2.08 2.50 2.73 3.15

pCA2� extrapolated 1.89 2.00 2.47 2.60 2.98

pCA2� oscillator strength 0.13 0.04 0.69 0.00 0.00
aThe molecular structures were optimized for the ground state at the
MP2/TZVP level. Excitation energies for Rydberg and anionic states
that demand diffuse basis functions in the basis set are underlined. The
oscillator strengths calculated at the CC2/TZVP level are given.

Table 2. Basis-Set Dependence of the CC2 Excitation
Energies (in eV) for the Five Lowest Excited Singlet States of
the Photoactive Yellow Protein Chromophore Models pVP,
TMpCA�, and pCT�a

molecule basis 1a 2a 3a 4a 5a

pVP SVP 4.83 5.50 6.78 7.01 7.18

pVP TZVP 4.66 5.25 6.42 6.44 6.84

pVP QZVP 4.61 5.18 5.96 6.34 6.52

pVP aug-TZVP 4.58 5.11 5.22 5.60 5.80

pVP extrapolated 4.53 5.04 4.76 5.50 5.48

pVP oscillator strength 0.05 0.52 0.00 0.28 0.45

TMpCA� SVP 3.19 3.45 4.43 4.64 4.67

TMpCA� TZVP 3.04 3.40 4.23 4.44 4.92

TMpCA� QZVP 2.99 3.39 4.16 4.41 4.50

TMpCA� aug-TZVP 2.96 3.30 3.45 3.47 3.84

TMpCA� extrapolated 2.91 3.29 3.38 3.44 3.42

TMpCA� oscillator strength 1.21 0.00 0.09 0.00 0.00

pCT� SVP 3.15 3.39 4.11 4.47 4.58

pCT� TZVP 3.04 3.36 3.89 4.26 4.40

pCT� QZVP 3.00 3.35 3.84 4.19 4.33

pCT� aug-TZVP 2.98 3.33 3.37 3.55 3.57

pCT� extrapolated 2.94 3.32 3.32 3.48 3.50

pCT� oscillator strength 1.37 0.00 0.00 0.08 0.00
aThe molecular structures were optimized for the ground state at the
MP2/TZVP level. Excitation energies for Rydberg and anionic states
that demand diffuse basis functions in the basis set are underlined. The
oscillator strengths calculated at the CC2/TZVP level are given.
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transitions are strong at the B3LYP level, while the CC2
calculations predict similarly as for the pVP model four strong
transitions among the five lowest excited states. The two lowest
excitation energies obtained at the CC2 level are 0.30�0.35 eV
larger than the experimental values, whereas the discrepancy at
the B3LYP level is only 0.09�0.14 eV (cf. Comparison to
Experiment section).
For the GFP and rhodopsin models (pHBDI+, pHBDI,

PSBT+, and PSB11Me2
+), the B3LYP and CC2 excitation

energies and oscillator strengths are in qualitative agreement.
The B3LYP excitation energies of pHBDI+ and pHBDI are
0.2�0.3 eV smaller than the CC2 excitation energies, whereas
the lowest excitation energies differ from the experimental values
of the GFP and rhodopsin chromophores by 0.07�0.27 eV. The
deviation from experiments at the CC2 level is 0.10�0.14 eV.
The differences of 0.14 eV and�0.19 eV between the B3LYP and
CC2 excitation energies of the first excited state of pHBDI+ and
pHBDI affect the conclusions drawn from the B3LYP and CC2
calculations. For the two lowest states of PSBT+ and
PSB11Me2

+, the B3LYP and CC2 energies differ by 0.09�0.23
eV, whereas for the three higher excited states, the B3LYP
energies are 0.37�0.63 eV smaller than the CC2 values.
Anionic Chromophores.TheDFT ionization potential is given

by the absolute orbital energy of the highest occupied molecular
orbital (HOMO).55 This implies that if the excitation energies
exceed the DFT ionization potential (IP), the TDDFT calcula-
tions might yield unreliable results. In some cases, the excitation
energies obtained using an increasing size of the basis set converge
toward theHOMOenergy corresponding to the first IP according
to Koopmans’ theorem.5,55 This is especially problematic in the
description of anions which have a weakly bound HOMO and

thus a very low IP. To avoid the DFT ionization problem,
TDDFT calculations were performed with the anions stabilized
by external point charges (pc-B3LYP), placed 5 Å from the
molecular plane, both above and below the negatively charged
substituent. The point charges lift the ionization threshold,
ensuring that the lowest excited states are bound states at the
DFT level. The dependence of the position and distribution of the
point charges were not investigated, since the aim of the point
charges is merely to avoid the DFT continuum problem.
The DFT IPs are much smaller than the Hartree�Fock self-

consistent field (HF SCF) ones, because of the self-interaction
problem, which causes problems for the anions as all excited
states lie formally in the DFT continuum above the ionization
threshold. The calculations show that the lowest excitation
energies are only slightly dependent on the presence of the point
charges, indicating that the states could be considered as some
kind of metastable resonances in the DFT continuum. The high
density of states of the anions becomes more sparse in the DFT
calculation when point charges are used, showing the necessity of
using point charges. Comparison of the B3LYP and CC2
oscillator strengths for the anionic chromophores shows that
the B3LYP calculations often yield low-lying intruder states,
which disappear when the anion is stabilized by point charges.
This stabilization leads to an increase of the absolute HOMO
energy, whereas the gap between the HOMO and the lowest-
unoccupied molecular orbital (LUMO) remains nearly unal-
tered, indicating that excitation energies are less affected by the
point charges than the IP. The excitation energies and oscillator
strengths calculated with and without point charges are com-
pared in Table 6 and Figure 4.
The external point charges red-shift the first excited state of

pCA�0 from 3.05 to 2.79 eV (Figure 4). The bright transition is
blue-shifted by 0.08 eV from 3.34 to 3.42 eV, whereas the
oscillator strengths remain nearly unchanged (not shown). The
higher excitation energies are blue-shifted, yielding values in
good agreement with the CC2 energies. The bright state at the
CC2 level is the first excited state, whereas at the pc-B3LYP level,
the second excited state has the largest oscillator strength.

Table 3. Basis-Set Dependence of the CC2 Excitation
Energies (in eV) for the Five Lowest Excited Singlet States of
the Green Fluorescent Protein Chromophore Models
pHBDI, pHBDI�, and pHBDI+a

molecule basis 1a 2a 3a 4a 5a

pHBDI+ SVP 3.22 4.15 4.43 4.59 5.54

pHBDI+ TZVP 3.15 4.03 4.36 4.44 5.32

pHBDI+ QZVP 3.13 3.99 4.34 4.42 5.27

pHBDI+ aug-TZVP 3.12 4.00 4.33 4.41 5.25

pHBDI+ extrapolated 3.10 3.96 4.31 4.39 5.20

pHBDI+ oscillator strength 1.09 0.02 0.00 0.00 0.10

pHBDI SVP 3.88 4.01 4.70 4.71 5.55

pHBDI TZVP 3.71 3.90 4.53 4.56 5.57

pHBDI QZVP 3.68 3.89 4.50 4.52 5.45

pHBDI aug-TZVP 3.66 3.87 4.49 4.51 5.01

pHBDI extrapolated 3.63 3.86 4.46 4.47 4.89

pHBDI oscillator strength 0.77 0.00 0.15 0.00 0.16

pHBDI� SVP 3.03 3.32 4.52 4.80 5.16

pHBDI� TZVP 2.92 3.30 4.30 4.54 4.57

pHBDI� QZVP 2.88 3.30 3.99 4.23 4.38

pHBDI� aug-TZVP 2.77 2.85 3.24 3.25 3.35

pHBDI� extrapolated 2.73 2.85 2.93 2.94 3.16

pHBDI� oscillator strength 1.17 0.00 0.07 0.00 0.00
aThe molecular structures were optimized for the ground state at the
MP2/TZVP level. Excitation energies for Rydberg and anionic states
that demand diffuse basis functions in the basis set are underlined. The
oscillator strengths calculated at the CC2/TZVP level are given.

Table 4. Basis-Set Dependence of the CC2 Excitation
Energies (in eV) for the Five Lowest Excited Singlet States of
the Retinal Protonated Schiff-Bases PSBT+ and PSB11Me2

+a

molecule basis 1a 2a 3a 4a 5a

PSBT+ SVP 2.23 3.45 4.34 4.72 4.89

PSBT+ TZVP 2.17 3.35 4.22 4.54 4.73

PSBT+ QZVP 2.15 3.33 4.19 4.52 4.70

PSBT+ aug-TZVPb 2.16 3.34 4.20 4.52 4.70

PSBT+ extrapolated 2.14 3.32 4.17 4.50 4.67

PSBT+ oscillator strength 1.92 0.50 0.10 0.01 0.05

PSB11Me2
+ SVP 2.24 3.45 4.30 4.71 4.88

PSB11Me2
+ TZVP 2.17 3.34 4.16 4.53 4.70

PSB11Me2
+ QZVP 2.16 3.32 4.13 4.51 4.68

PSB11Me2
+ aug-TZVPb 2.16 3.32 4.14 4.51 4.68

PSB11Me2
+ extrapolated 2.15 3.30 4.11 4.49 4.66

PSB11Me2
+ oscillator strength 1.56 0.47 0.15 0.06 0.07

aThe molecular structures were optimized for the ground state at the
MP2/TZVP level. The oscillator strengths calculated at the CC2/TZVP
level are given. b In the aug-TZVP calculations on retinals, the d and f
functions were removed from the augmentation due to ground state
convergence problems.
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The excitation energies obtained for pCA�00 at the pc-B3LYP
and CC2 levels are in qualitative agreement. The 10 lowest
excited states of pCA�00 have a vanishing oscillator strength at the
pc-B3LYP level. The external point charges increase the excita-
tion energies of the chromophore in addition to producing a less
dense spectrum. Still, at the pc-B3LYP level, the 10 lowest
excitation energies are located in an energy interval of less than
1 eV, within 2.98 and 3.83 eV.
Similar results were obtained for the PYP chromophore

models TMpCA� and pCT� and the GFP chromophore model
pHBDI�. Upon point-charge stabilization, the first excitation
energy remains nearly unchanged, while the higher excitation
energies are blue-shifted. For these anions, the first excited state
has the largest oscillator strength at the CC2 level, whereas
B3LYP and pc-B3LYP calculations suggest that the second and
fifth excited states are the strongly light-absorbing ones.
The first CC2 excitation energy of the studied chromophores is

smaller than the orbital energy of theHOMOorbital as obtained in
the HF SCF calculations. The only exception is pCA2�, having a

positive HOMO energy of 0.22 eV, whereas pCA�0 and pHBDI�

have only one state below the IP obtained at theHF SCF level. For
TMpCA�, three excited states lie below the ionization threshold of
the HF SCF calculation. The rest of the studied chromophores
have all five excited states below the HF SCF ionization threshold.
The HOMO energies obtained in the HF SCF calculations are
given in Table 5. The ionization potentials obtained at the CC2
level are not expected to deviate much from theHF SCF ones. For
pCA�0, the HOMO energy of 3.15 eV is 0.23 eV larger than the
ionization threshold obtained at the coupled-cluster singles and
doubles (CCSD) level.56 The ionization and excitation thresholds
of pCA�0 (phenolate) and pCA�00 (carboxylate) have very
recently been discussed by Zuev et al.56

pCA2�. The doubly anionic PYP chromophore model pCA2�

was neutralized by four positive charges, placed 5 Å from the
molecular plane above and below the two negatively charged
substituents. At the pc-B3LYP level, the point charges shift
the excitation energies by less than (0.2 eV, and the oscillator
strengths of the five lowest states are very small. At the pc-CC2

Figure 3. Comparison of the five lowest singlet excitation energies (in eV) and corresponding oscillator strengths calculated at the B3LYP and CC2
levels. All values are obtained using aug-TZVP basis sets. The integers on the x axis enumerate the excited states.
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level, the lowest excitation energy is red-shifted as compared to
the CC2 value, while the higher excited states are blue-shifted.
The three lowest lying states have nonvanishing oscillator
strengths at the CC2 level, with the third state being the brightest
one. The external point charges effectively damp the intensity of
the five lowest excited states, at both levels of theory. The
absorption spectra for pCA2� calculated at the pc-B3LYP and
pc-CC2 levels agree qualitatively despite a difference between
some excitation energies by more than 0.4 eV
Comparison to MBGFT Calculations. The chromophores of

PYP, GFP, and rhodopsin were recently studied with a MBGFT
method by Ma and co-workers.27 Uncontracted, universal, and
almost even-tempered basis sets consisting of 40 primitive
Gaussian basis functions of the s, p, and d types for the heavier
atoms were employed in the calculations. An analogous basis set
consisting of 30 basis functions was used for hydrogen. The basis-
set convergence was assessed by adding basis functions in the
π-electron region centered above and below bond centers.27

Unfortunately, the accuracy and reliability of such nonstandard
basis sets are not well established. The MBGFT method might
treat molecular excited states more accurately than, e.g., TDDFT
with today’s functionals, which, however, cannot be assessed
prior to a more systematic study.
Ma et al. reported MBGFT vacuum excitation energies for

the chromophore models of PYP, GFP, and rhodopsin, with

deviations from experimental values of only 0.01�0.17 eV,27

which is a much higher precision than obtained at any other
computational level. However, some of the available experimen-
tal excitation energies are not obtained from gas-phase measure-
ments but determined from measurements in solution or a
protein environment. For example, the excitation energies of
the GFP chromophore pHBDI measured in solvent (3.51 eV)
and in protein (3.12 eV) differ significantly.57,58 A recent
calculation at the complete-active-space second-order perturba-
tion theory (CASPT2) level using the newer zero-order Hamil-
tonian yields a lowest excitation energy of 3.58 eV,19 which
agrees well with the present CC2 value of 3.63 eV. This suggests
that the experimental gas-phase value should be closer to 3.51 eV
as obtained in solution than to 3.12 eV as measured in the
protein. Thus, the excitation energy of 3.17 eV obtained in the
MBGFT calculation is most likely 0.3�0.4 eV too small. Similar
discrepancies might occur for the other chromophores, for which
gas-phase measurements are not available, suggesting that the
MBGFT approach might be less accurate than reported by Ma
and co-workers.27

The B3LYP excitation energies are 0.10�0.33 eV higher than
the corresponding MBGFT values, except for the anionic
pHBDI� chromophore model, where B3LYP is 0.22 eV below

Table 5. The Five Lowest Excitation Energies (E in eV) of the
Biochromophore Models Calculated at the B3LYP/aug-
TZVP Levela

molecule 1a 2a 3a 4a 5a HOMOb

pCA E 4.13 4.51 4.55 5.04 5.24 �6.29

pCA f 0.62 0.00 0.04 0.00 0.13 (�8.40)

pCA�0 E 3.05 3.34 3.34 3.40 3.49 �1.39

pCA�0 f 0.00 0.00 0.81 0.00 0.00 (�3.15)

pCA�00 E 2.62 2.69 2.81 2.87 3.04 �1.49

pCA�00 f 0.00 0.00 0.00 0.00 0.00 (�4.66)

pCA2� E 1.99 2.11 2.50 2.73 2.96 +2.08

pCA2� f 0.00 0.00 0.00 0.00 0.00 (+0.22)

pVP E 4.43 4.76 4.78 5.18 5.39 �5.86

pVP f 0.14 0.28 0.00 0.01 0.00 (�7.92)

TMpCA� E 2.94 3.18 3.23 3.40 3.49 �1.50

TMpCA� f 0.00 1.01 0.00 0.00 0.00 (�3.23)

pCT� E 2.85 2.94 3.12 3.21 3.21 �1.71

pCT� f 0.14 0.00 0.01 0.01 0.95 (�3.39)

pHBDI+ E 3.26 3.70 4.06 4.16 4.93 �9.05

pHBDI+ f 0.89 0.03 0.00 0.02 0.01 (�10.9)

pHBDI E 3.44 3.69 4.19 4.28 4.60 �5.62

pHBDI f 0.67 0.00 0.07 0.01 0.00 (�7.55)

pHBDI� E 2.45 3.01 3.03 3.16 3.21 �1.30

pHBDI� f 0.00 0.87 0.00 0.00 0.07 (�2.89)

PSBT+ E 2.26 3.11 3.80 3.88 4.16 �8.02

PSBT+ f 1.38 0.78 0.01 0.00 0.03 (�9.75)

PSB11Me2
+ E 2.25 3.10 3.77 3.88 4.15 �8.10

PSB11Me2
+ f 1.10 0.67 0.05 0.01 0.08 (�9.87)

aThe molecular structures were optimized for the ground state at the
MP2/TZVP level. The oscillator strengths (f) and the highest occupied
molecular orbital energies (HOMO) obtained in the B3LYP and HF
SCF calculations are also reported. bThe HOMO energies obtained at
the HF SCF level are given within parentheses.

Table 6. Comparison of Excitation Energies (in eV) and
Oscillator Strengths of the Anionic Chromophores Calculated
at the B3LYP/aug-TZVP and pc-B3LYP/aug-TZVP Levelsa

molecule level and point charge 1a 2a 3a 4a 5a

pCA�0 B3LYP +1 E 2.79 3.42 3.58 3.66 3.75

pCA�0 B3LYP +1 f 0.00 0.77 0.00 0.00 0.00

pCA�0 B3LYP E 3.05 3.34 3.34 3.40 3.49

pCA�0 B3LYP f 0.00 0.00 0.81 0.00 0.00

pCA�00 B3LYP +1 E 2.98 3.14 3.40 3.58 3.62

pCA�00 B3LYP +1 f 0.00 0.00 0.00 0.01 0.00

pCA�00 B3LYP E 2.62 2.69 2.81 2.87 3.04

pCA�00 B3LYP f 0.00 0.00 0.00 0.00 0.00

pCA2� B3LYP +2 E 1.81 2.31 2.68 2.76 2.83

pCA2� B3LYP +2 f 0.00 0.00 0.00 0.00 0.00

pCA2� B3LYP E 1.99 2.11 2.50 2.73 2.96

pCA2� B3LYP f 0.00 0.00 0.00 0.00 0.00

pCA2� CC2 +2 E 1.86 2.59 2.83 2.91 3.27

pCA2� CC2 +2 f 0.00 0.00 0.00 0.01 0.00

pCA2� CC2 E 1.98 2.08 2.50 2.73 3.15

pCA2� CC2 f 0.13 0.04 0.69 0.00 0.00

TMpCA� B3LYP +1 E 2.90 3.26 3.49 3.70 3.75

TMpCA� B3LYP +1 f 0.00 0.99 0.00 0.00 0.00

TMpCA� B3LYP E 2.94 3.18 3.23 3.40 3.49

TMpCA� B3LYP f 0.00 1.01 0.00 0.00 0.00

pCT� B3LYP +1 E 3.00 3.22 3.46 3.56 3.81

pCT� B3LYP +1 f 0.00 1.04 0.00 0.00 0.00

pCT� B3LYP E 2.85 2.94 3.12 3.21 3.21

pCT� B3LYP f 0.14 0.00 0.01 0.01 0.95

pHBDI� B3LYP +1 E 2.73 3.06 3.15 3.39 3.56

pHBDI� B3LYP +1 f 0.00 0.93 0.00 0.00 0.00

pHBDI� B3LYP E 2.45 3.01 3.03 3.16 3.21

pHBDI� B3LYP f 0.00 0.87 0.00 0.00 0.07
aThe CC2/aug-TZVP and pc-CC2/aug-TZVP values for pCA2� are
also reported.
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the MBGFT value. However, as discussed above, the anionic
chromophore suffers at the TDDFT level from the continuum
problem. An external neutralizing point charge increases the
TDDFT excitation energy to 2.73 eV, which is 0.06 eV larger
than the excitation energy predicted by MBGFT. The pc-B3LYP
excitation energies are 0.06�0.25 eV higher than the correspond-
ing MBGFT energies, while the CC2 excitation energies are
0.06�0.45 eV larger than the corresponding MBGFT energies
Comparison to CASPT2 Calculations. General Remarks.

Complete-active-space self-consistent-field (CASSCF) calcula-
tions combined with CASPT2 energy corrections have for a long
time been the prime tool for studying ground and excited states
of biochromophores. However, recent studies show that a
number of older CASPT2 results are of limited value because
the basis-set convergence has not been extensively assessed and
the employed zeroth-order Hamiltonian was less accurate than
originally anticipated. The recently introduced zeroth-order
Hamiltonian in CASPT2 incorporates an empirical parameter
and increases average excitation energies by 0.3 eV.13,18,59 The
CASPT2 excitation energies obtained using the new zeroth-
order Hamiltonian seem to be in good agreement with experi-
mental results provided that the employed basis sets are large
enough. Valsson and Filippi18 recently showed that the use of
ground-state CASSCF optimized structures in CASPT2 studies
results in artifacts when the excitation energies are sensitive to the
geometry. The popular combination of CASSCF structures and
single-point CASPT2 energies can thus lead to a qualitatively
wrong character of the excited states, yielding results in complete
disagreement with the consistent use of molecular structures and

excitation energies calculated at the CASPT2 level. Thus, many
older CASSCF/CASPT2 studies of photochemical systems
might have predicted incorrect reaction mechanisms.
Nevertheless, properly combined CASSCF and CASPT2

calculations are indispensable in studies of the excited state,
when the reference state or the excited state has significant
multiconfiguration character. Such situations occur quite fre-
quently in photochemical processes, especially when the wave
packets are approaching conical intersections. For vertical ex-
citations, the lowest excited states of the investigated chromo-
phores can be rather accurately expressed by expanding them in
the configuration state basis of all singly and doubly excited
determinants from a single-reference Slater determinant. At the
ab initio level, the contributions from the double excitations are
important as they take correlation effects into account, whereas
in the TDDFT calculation the correlation effects are considered
by the employed density functional. For many of the studied
chromophores, CASPT2 calculations of the vertical excitation
energies are not expected to yield more accurate excitation
energies than obtained at the CC2 level. The computational
costs for CASPT2 calculations increase rapidly with the size of
the active space, hampering the feasibility of the CASPT2
calculations on larger molecules. For the GFP and rhodopsin
chromophores, the approximations in the CASPT2 model and
the inevitable limitations of the CASPT2 calculations introduce
uncertainties of at least the same magnitude as the CC2
approximation, whereas for the PYP chromophore high-order
correlation effects are more significant.
PYP Chromophores. A larger discrepancy between CASPT2

and CC2 excitation energies was obtained for the methyl ester of
the pCA�0 chromophore, recently studied at the CASPT2 level by
Coto et al.60 They obtained an excitation energy of 2.54 eV, which
is 0.34 eV smaller than the experimental value of 2.88 eV.25 The
choice of the zeroth-order Hamiltonian is not mentioned in their
work.60 Experimentally, the absorption maximum of the methyl
ester and the corresponding acid deviate in absorbance by only
3 nm, corresponding to an excitation energy shift of (0.02 eV.
Thus, the discrepancy between the CASPT2 and experimental
results cannot be due to the methyl group. Recent CASPT2
calculations on pCA�0 using the new standard IPEA shift of
0.25 eV as well as approximate third-order coupled-cluster
(CC3) calculations yielded very similar excitation energies of
2.96 and 2.98 eV, respectively.56 Depending on the choice of the
zeroth-order Hamiltonian in the CASPT2 calculation, the excita-
tion energies differ by about 0.3 eV. The present CC2 value of 3.19
eV calculated for the same chromophore model is 0.31 eV larger
than the experimental value. The CC2 calculations overestimate
the excitation energies for pCA�0 and the other PYP chromophore
models, whereas the older CASPT2 values for pCA�0 are too
small. The recent CASPT2 and CC3 excitation energies agree
within 0.1 eV with experimental results.25,56

GFP Chromophores. The GFP chromophore illustrates
another example where CASPT2 and CC2 excitation energies
agree well. The present CC2 calculation yields an excitation
energy of 3.63 eV for pHBDI, which is in almost perfect
agreement with the CASPT2 value of 3.58 eV.19 Gas-phase
measurements of the excitation energies of pHBDI have not
been reported, whereas the lowest excitation energy of pHBDI
measured in solvents is 3.51 eV.58 The corresponding excitation
energy obtained for the chromophore in the protein is 3.12 eV,57

indicating that the protein shift is much larger than the sol-
vent shift.

Figure 4. Comparison of the excitation energies (in eV) and the
corresponding oscillator strengths of the anionic chromophores calcu-
lated at the B3LYP level with those obtained with point-charge
stabilization. The corresponding CC2 energies for pCA2� are also
shown. All values are obtained using aug-TZVP basis sets. The integers
on the x axis enumerate the excited states.
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Retinal Chromophores. The first excitation energy of isolated
11-cis-retinal at the CASPT2 level converged toward 2.28 eV
prior to the gas-phase measurement.61 After the experimental
value was reported, CASPT2 and CC2 calculations yielded
excitation energies of 2.05 and 2.10 eV, which are in fair
agreement with the experimental value of 2.03 eV.22,62,63

However, when the more recent zeroth-order Hamiltonian
is employed, a CASPT2 excitation energy of 2.30 eV is
obtained.18 This zeroth-order Hamiltonian was designed to
eliminate the mean error in CASPT2 excitation energies, and
Valsson and Filippi conclude that the experimental value
corresponding to the vertical transition is located around
2.34 eV.18 The recent storage ring experiments do not render
comparisons of experimental and computed retinal spectra
easier.26

This illustrates that discrepancies between CASPT2 and CC2
excitation energies are not necessary due to the multireference
character of the wave function and must be separately deter-
mined by a more careful analysis. In addition, gas-phase mea-
surements of electronic excitation spectra of biochromophores
are indispensable22 and need to be interpreted with the help of
simulated vibronic spectra. Unfortunately, in the case of retinals,
such a simulation is currently not possible, as the excited state
potential energy surface does not correspond to a harmonic
potential.
Comparison to Experimental Results. General Trends. The

B3LYP excitation energies seem to be in better agreement with
experimental data than the CC2 ones, particularly for the smaller
PYP chromophores. However, the oscillator strengths obtained
at the B3LYP level indicate that the TDDFT calculations suffer
from problems, most likely related to the previously discussed
DFT continuum problem.5,55 For pVP, pCA, pCA�0, and pCT�,
the excitation energies obtained at the B3LYP level are indeed
closer to the experimental values than the CC2 ones, whereas for
pHBDI+, pHBDI�, PBST+, and PBSMe2

+, the CC2 excitation
energies agree well with experimental results. For pCA�0,
TMpCA�, and pHBDI�, the first excited state is a spurious state
at the B3LYP level. The excitation energies of the lowest
bright states calculated at the CC2, B3LYP, and pc-B3LYP
levels are compared to corresponding gas-phase values in
Table 7. The comparison of the excitation energies for the
first bright state of the anions shows that CC2 values are with
deviations of �0.03 to +0.31 eV in much better agreement
with experimental results than values obtained at the B3LYP
(0.15�0.46 eV) and pc-B3LYP levels (0.30�0.52 eV). The
range of the deviations is given in parentheses. For pCT�, the

first and bright excited state at the B3LYP level is shifted up in
energy when the molecule is stabilized by point charges. The
first excited state of the anions is a dark state at the pc-B3LYP
level, whereas at the CC2 level, the lowest excited state has
large oscillator strengths.
PYP Chromophores.Theoretical prediction of spectra requires

accurate determination of both excitation energies and in-
tensities. However, the experimental spectrum is subject to
vibrational broadening as well as intensity borrowing, which
makes comparison of calculated and experimental spectra
challenging.23,64,65 The calculated excitation energies of all
PYP chromophore models are compared to experimental data
in Table 8.
In the case of pVP, the experimental spectrum is obtained using

two-photon ionization spectroscopy, implying that the band in-
tensities cannot be compared to the present calculations.21 The
strong dipole transitions obtained in the CC2 calculations appear
at 5.04 and 5.5 eV, corresponding to a valence and a Rydberg
transition, respectively. The two lowest experimental excitation
energies are 4.12 and 4.75 eV. In the calculation, the two lowest
transitions are weak and appear at 4.53 and 4.76 eV. The former is
a valence band with a very small transition probability, whereas
the latter state has significant Rydberg character, as suggested by
the requirement of diffuse basis functions. At the B3LYP level, the
lowest excitation energy of 4.43 eV is 0.3 eV larger than the
experimental value, whereas the B3LYP and CC2 excitation
energies of the second state are identical and in perfect agreement
with experimental results.

Table 7. Comparison of CC2, B3LYP, pc-B3LYP, and
Experimental Excitation Energies (in eV) of the Bright State
of the Anionsa

molecule CC2 B3LYP pc-B3LYP exp. reference

pCA� 3.19(1) 3.34(3) 3.42(2) 2.88 21

pCT� 2.94(1) 2.85(1)b 3.22(2) 2.70 20

TMpCA� 2.91(1) 3.18(2) 3.26(2)

pHBDI� 2.73(1) 3.01(2) 3.06(2) 2.59, 2.76 70, 71
aThe order of the excited state is given within parentheses. The
calculated values are extrapolated CC2 values from Tables 1, 2, and 3.
The B3LYP and pc-B3LYP data are gathered from Table 6. bThe
energy of the second bright state (the fifth state) at the B3LYP level
is 3.21 eV.

Table 8. The Extrapolated CC2 Excitation Energies As Well
As the Excitation Energies Calculated at the B3LYP/aug-TZVP
Level Compared to Experimental Dataa

molecule state CC2 B3LYP MBGFT experiment references

pVP 1 4.53 4.43 4.17 4.12 21
2 4.76 4.76 4.60 4.75 21

pCA 1 4.39 4.13 3.94 4.04b 68
2 4.68 4.51 4.20 4.37c 69

pCA�0 1 3.19 3.05 (2.79) 2.95 2.88 25
pCA�00 1 3.28d 2.62d (2.98) 4.37e 4.36f 20
pCA2� 1 1.89g (1.86) 1.99 (1.81) 3.73h 3.69f 20
TMpCA� 1 2.91 2.94 (2.90) 2.80 2.78i 66
pCT� 1 2.94 2.85 (3.00) 2.75 2.70 20
pHBDI+ 1 3.10 3.26 2.93 2.84,j 2.99 24, 58
pHBDI� 1 2.73 2.45 (2.73) 2.67 2.59, 2.76 70, 71
pHBDI 1 3.63 3.44 3.17 3.51j 58
PSBT+ 1 2.14 2.26 2.03 2.00 22, 26

2 3.32 3.11 3.10 3.22 22
PSB11Me2

+ 1 2.15 2.25 2.04 2.03 22
2 3.30 3.10 3.01 3.18 22

aThe pc-B3LYP/aug-TZVP and pc-CC2/aug-TZVP values are given in
parentheses. The excitation energies obtained at the many-body Green0s
function theory (MBGFT) level by Ma et al.27 are also reported. All
experimental values that have not been recorded in the gas phase are
printed in italics. b For the methyl ester, the experimental and CC2/aug-
TZVP values are 4.0621 and 4.46 eV. cMeasured for the methyl ester, the
CC2/aug-TZVP value is 4.73 eV. dThe excitation energy of the lowest
excited state. The fourth excitation energy is 3.45 eV (CC2), 2.87 eV
(B3LYP), and 3.58 eV (pc-B3LYP). eThe fourth excitation energy of the
MBGFT calculation. fMeasured in solvents. The value for pHBDI,
measured in the protein, is 3.12 eV.57 gThe excitation energy of the
second state is 2.00 eV (CC2), 2.11 eV (B3LYP), 2.59 eV (pc-CC2), and
2.31 eV (pc-B3LYP). hThe second excitation energy of the MBGFT
calculation. iMeasured in the protein. jVacuum value extrapolated from
measurements in solution.
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For pCA, the two lowest excitation energies have large oscillator
strengths,making the comparison to experimental results easier. The
excitation energy of the second state is measured only for themethyl
ester. However, CC2 calculations show that pCA and its methyl
ester have similar excitation energies. TheCC2 excitation energies of
pCA are 4.39 and 4.68 eV as compared to the experimental values of
4.04 and 4.37 eV.TheB3LYP excitation energies of 4.13 and 4.51 eV
also agree well with experimental values.
For pCA�0, the CC2 excitation energy of 3.19 eV is 0.3 eV

larger than the experimental value. The B3LYP calculation
without point charges yields the bright excitation at 3.34 eV.
However, this value is larger than the HOMO energy for pCA�0,
indicating that the B3LYP calculation might suffer from ioniza-
tion problems. The pc-B3LYP calculation yields an excitation
energy of 3.42 eV for the bright state, which is the second excited
state in the calculation. For pCA�00 and pCA2�, the pc-B3LYP
and pc-CC2 calculations do not yield any bright states among the
five lowest excited states. The calculated excitation energies for
pCA2� are 1�2 eV smaller than the experimental value of
3.69 eV, measured in the solvent.20 The excitation energy of
3.67 eV obtained for pCA2� at the CC2 level using the QZVP
basis sets agrees well with the experimental result, suggesting that
the solvent molecules mainly prevent the expansion of the
electron density due to Coulomb repulsion. Thus, it seems to
be possible to simulate the solvated dianion by omitting very
diffuse basis functions in the CC2 calculation. The present study
shows that CC2 generally overestimates the gas-phase values for
the PYP chromophores by 0.24�0.39 eV.
The excitation energies for pCA�00, pCA2�, and pHBDI

cannot be directly compared to experimental values because
they were obtained from measurements in solvents. The excita-
tion energies for TMpCA� and pHBDI were deduced from
UV�vis spectra measured for the chromophores embedded in
the protein. Comparison of the calculated excitation energies for
TMpCA� with the result from the measurement on the protein
indicates that the protein shift is small. The CC2 and pc-B3LYP
calculations yielded values of 2.91 and 2.90 eV as compared to
the experimental value of 2.78 eV.66 However, the first excited
state at the B3LYP level has a very small oscillator strength. The
first bright transition at the pc-B3LYP level occurs at 3.26 eV.
GFP Chromophores. Lammich et al. measured the electronic

excitation spectra for pHBDI+ in the gas phase, since neutral
molecules cannot be studied in storage ring experiments.24 Their
idea was that the cation might have very similar excitation energies
as neutral pHBDI, because of the large distance between the
positive charge and the light-absorbing part of the chromophore.
The present calculations show that this assumption is wrong. The
lowest excitation energies of pHBDI+ and pHBDI at the CC2 level
differ by 0.53 eV, whereas the corresponding difference obtained at
the B3LYP level is 0.18 eV. The good agreement between
calculated and measured excitation energies for pHBDI+ suggests
that the CC2 excitation energy obtained for pHBDI is also
accurate, whereas the B3LYP value has a larger uncertainty.
Furthermore, recent CASPT2 calculations on the pHBDI
chromophore19 yield an excitation energy in close agreement with
the present CC2 value. Comparisons of the calculated excitation
energy for pHBDI with those measured in the protein and in
solution indicate that the solvent shift of the excitation energy is
very small, whereas the protein shift is about 0.4 eV.
Retinal Chromophores. The two lowest excitation energies for

the retinal models, PSBT+ and PSB11Me2
+, have recently been

measured in the gas phase.22,26 The combined experimental and

computational study suggests that the observed spectrum is a
mixture of the ones for 6-cis and 6-trans retinal.26 The presentCC2
calculations on the 6-cis conformation yield values in very close
agreement with the earlier experimental values,22 indicating that
the two lowest states are well described by low-order excitations
from the ground state. The CC2 calculations also indicate that the
recent interpretation of themeasured spectrum should be carefully
investigated. The photochemical properties of the protonated
Schiff base retinals significantly differ from those of polyenes.5,67

The obtained CC2 excitation energies for the retinal models
deviate less than 0.15 eV from experimental values. The two
lowest excitation energies calculated at the B3LYP level agree
within 0.08�0.26 eV with experimental values. The first excita-
tion energy is slightly larger than that obtained experimentally,
whereas the second excitation energy is smaller than the experi-
mental value. Comparing gas-phase experiments to our extra-
polated CC2/aug-QZVP results yields a good agreement for the
rhodopsin and GFP chromophores with a maximum deviation of
only 0.14 eV.

’CONCLUSIONS

This work gives an overview on the performance of the CC2
and the B3LYP/TDDFT methods applied to excited states of
chromophore model systems of the photoactive yellow protein
(PYP), the green fluorescent protein (GFP), and rhodopsin. The
CC2 method is a black box ab initio method that allows the
assessment of basis set requirements for the five lowest singlet
excited states of the chromophoremodels up to extrapolated aug-
QZVP basis sets, thus yielding accurate benchmark data for
comparison with experimental results.

The CC2 basis set requirements are fulfilled up to 0.15 eV at
the triple-ζ level, except for the studied anions and for Rydberg
states of the neutral chromophores. The excitation energies
compare well to the experimental values, especially for the
rhodopsin and GFP chromophore models. The excitation en-
ergies of the PYP chromophore models are not particularly well
described at the CC2 level, with deviations up to 0.4 eV, when
experimental gas-phase values are available.

B3LYP/TDDFT calculations show a similar performance with
deviations of 0.2�0.3 eV from experimental results for the GFP
and rhodopsin chromophore models. However, the anionic PYP
chromophores are problematic at the B3LYP level, possibly due
to the unphysically low ionization potential predicted at the DFT
level. Stabilization of the anions with positive point charges
seems to reduce this problem, while it still does not produce
completely satisfactory results, when calculated intensities are
taken into account.

The present work is the first compilation of accurately bench-
marked excitation energies at the black box ab initio CC2 level,
comprising themost important and experimentallymost thoroughly
investigated biochromophores. All molecules in our study are
challenging for contemporary quantum chemical methods, and
we provide an accurate benchmark with respect to all entering
parameters. We hope that this work will serve as a reference point in
the discussion of other computational methods where the assess-
ment of parameter dependence is limited by computational costs.
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ABSTRACT:We have applied the constricted variational density functional method (CV(n)-DFT) to nf π* transitions in which
an electron is moved from an occupied lone-pair orbital n to a virtual π* orbital. A total of 34 transitions involving 16 different
compounds were considered using the local density approximation (LDA), Becke, three-parameter, Lee�Yang�Parr (B3LYP), and
BHLYP functionals. The DFT-based results were compared to the “best estimates” (BE) from high-level ab initio calculations. With
energy terms included to second order in the variational parameters (CV(2)-DFT), our theory is equivalent to the adiabatic version
of time-dependent density functional theory (DFT). We find that calculated excitation energies for CV(2)-DFT using LDA and
BHLYP differ substantially from BE with root-mean-square-deviations (rmsd) of 0.86 and 0.69 eV, respectively, whereas B3LYP
affords an excellent fit with BE at rmsd = 0.18 eV. Resorting next to CV(∞)-DFT, where energy terms to all orders in the variational
parameters are included, results in all three functionals in too high excitation energies with rmsd = 1.69, 1.14, and 0.93 eV for LDA,
B3LYP, and BHLYP, respectively. Adding in orbital relaxation considerably improves the results with rmsd = 0.54, 0.30, and 0.48 eV
for LDA, B3LYP, and BHLYP, respectively. It is concluded that CV(∞)-DFT with orbital relaxation is a robust method for which
the accuracy is less functionally dependent than that of CV(2)-DFT or adiabatic TDDFT.

1. INTRODUCTION

Time-dependentDFT (TDDFT) in its adiabatic formulation1�7

has emerged as an efficient tool for the study of excited states.
Extensive benchmarking of adiabatic TDDFT8�12 has revealed that
the calculated excitation energies are in fair agreement with experi-
ment. It is thus to be expected that adiabatic TD-DFT will be used
increasingly as a reasonable compromise between accuracy and
computational cost in many applications.8�12 However, the ex-
tensive benchmarking has revealed some systematic errors8�14 in
the calculated excitation energies when use is made of the general-
ized gradient approximation (GGA) as well as the popular approx-
imate hybrid functionals containing fractions of exact Hartree�
Fock exchange. The largest deviations8�14 are found for transitions
where electrons are moved between two separated regions of space
[charge-transfer (CT) transitions] or between orbitals of different
spatial extend (Rydberg transitions).10�14

We have in some recent studies15�18 analyzed the reason for
the deviations between experimental CT excitation energies and
estimates obtained from TDDFT applications. It was found that
the deviations for a large part can be traced back to the simple
approach taken in standard TDDFT, where terms depending on
the linear orbital response parameter set U only are kept to
second order in U for the energy expression.15�18 While this
simple linear response approach is adequate for the correspond-
ing Hartree�Fock time-dependent formulation where self-inter-
action is absent,17 it is inadequate for TDDFT applied to most
approximate functionals where self-interaction terms are
present.15�18 In those cases, higher-order terms in U must be
included into the energy expression.15�18

With the intention of including higher-order terms, we have
developed a constricted variational density functional approach
(CV(n)-DFT) to the calculation of excitation energies and excited-
state properties.18�20 In its second-order formulation (CV(2)-
DFT) this theory coincides with adiabatic TD-DFT when use is
made of the popular Tamm�Dancoff approximation21 within both
theories. However, in the general formulation of CV(n)-DFT
terms to any order in Un are included.

The objective of the current study is to consider another
category of excitations in addition to CT where electrons are
moved between orbitals of different spatial extent, namely the n
f π* transitions. In this case an electron is excited from an in-
plane doubly occupied lone-pair orbital n to a π* orbital situated
perpendicular to the molecular plane. Obviously there will be
only a modest overlap between the densities of n and π*,
although it might be larger than the overlaps for the densities
of πA andπB* in the CT transitionπAfπB*, where A and Bmight
be several angstroms apart.

We shall in the present study apply the pure LDA22 functional
as well as the hybrids23 B3LYP and BHLYP to the n f π*
transitions. As these transitions in all the considered cases turned
out to be true one-orbital transitions where an electron is
transferred from n f π*, we shall also make use of the self-
consistent field ΔSCF scheme,24 where one carries out Kohn�
Sham SCF calculations on the (n)2 and nπ* configurations. For
the simple one-orbital nf π* transitions studied here theΔSCF

Received: April 15, 2011
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scheme can be considered as equivalent to the SCF-CV(∞)-
DFT method20 discussed in Section 3. We shall compare our
calculated DFT-based excitation energies to those obtained in a
recent benchmark study by Schreiber10 et al. based on high level ab
initio methods10 and termed “best estimates” (BE) by the authors.
The 16 molecules investigated here are shown in Figure 1.

2. COMPUTATIONAL DETAILS

All calculations were based onDFT as implemented in the ADF
program version 2010.25 Our calculations employed a standard
triple-ζ Slater-type orbital (STO) basis with one set of polarization
functions for all atoms.26 Use was made of the local density approx-
imation in the Vosko, Wilk, and Nusair (VWN) parameteri-
zation22 as well as the B3LYP and BHLYP hybrid functionals by
Becke.23 All electrons were considered as valence. The parameter
(ACINT) for the precision of the numerical integration was set
to 5.0. Use was made of a special auxiliary STO basis to fit the
electron density in each cycle for an accurate representation of
the exchange and the Coulomb potentials. All CV(2)-DFT18 and
CV(∞)-DFT20 calculations were carried out with a developers
version of ADF-2010. The Cartesian coordinates of the 16 bench-
mark molecules shown in Figure 1 were taken from the Supporting
Information of ref 10. The ground-state geometries of these
molecules were optimized at the MP2/6-31G* level of theory.10

3. CV(N)-DFT

We have recently introduced a variational approach based on
density functional theory for the description of excited states.18,20 In
CV(n)-DFTwe carry out a unitary transformation20 amongoccupied
{ϕi; i = 1,occ} and virtual {ϕa; a = 1,vir} ground-state orbitals:

Y
jocc

jvir

 !
¼ eU

jocc

jvir

 !
¼ ∑

∞

n¼ 0

ðU2Þn
2n!

 !
jocc

jvir

 !

¼ j
0
occ

j
0
vir

 !
ð1Þ

Here ϕocc and ϕvir are concatenated column vectors contain-
ing the sets {ϕi; i = 1,occ}and {ϕa; a = 1,vir}, whereas ϕocc0 and ϕvir

0

are concatenated column vectors containing the resulting sets {ϕi0; i =
1,occ} and {ϕa

0 ; a = 1,vir} of occupied and virtual excited-state
orbitals, respectively. The unitary transformation matrix Y is in eq 1
expressed in terms of a skew symmetric matrix U as

Y ¼ eU ¼ I + U +
U2

2
+ 3 3 3 ¼ ∑

∞

n¼ 0

Un

n!

¼ ∑
∞

n¼ 0

ðU2Þn
2n!

+ U ∑
∞

n¼ 0

ðU2Þn
ð2n + 1Þ! ð2Þ

Here Uij = Uab = 0 where “i,j” refer to the occupied set {ϕi; i = 1,
occ}, whereas “a,b” refer to {ϕa; a = 1,vir}. Further, Uai is the
variational mixing matrix elements that combines virtual and
occupied ground-state orbitals in the excited state with Uai =�Uia.
Thus, the entire matrix U is made up of occ � vir independent
elementsUai that also can be organized in the column vectorUB. For
a givenUBwe can, with the help of eq 2, generate a set of “occupied”
excited-state orbitals:

j
0
i ¼ ∑

occ + vir

p
Ypijp ¼ ∑

occ

j
Yjijj + ∑

vir

a
Yaija ð3Þ

that are orthonormal to any order in Uai.
In the simple CV(2)-DFT theory,18 the unitary transforma-

tion of eq 2 is carried out to second order in U. We thus obtain
the occupied excited-state orbitals to the second order as

j
0
i ¼ ji + ∑

vir

a
Uaija �

1
2∑

occ

j
∑
vir

a
UaiUajjj ð4Þ

from which we can generate the excited state Kohn�Sham
density matrix to the second order as

F0ð1, 10Þ ¼ Fð0Þð1, 10Þ +ΔF0ð1, 10Þ ¼ Fð0Þð1, 10Þ
+ ∑

occ

i
∑
vir

a
Uaijað10Þj�

i ð1Þ + ∑
occ

i
∑
vir

a
U

�
aij

�
að1Þjið10Þ

+ ∑
occ

i
∑
vir

a
∑
vir

b
U

�
aiUbijað10Þj�

bð1Þ

� ∑
occ

i
∑
occ

j
∑
vir

a
UaiU

�
ajjið10Þj�

j ð1Þ ð5Þ

Figure 1. Molecules investigated in this study.
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Next the expression for F0(1,10) makes it possible to write down the
correspondingexcited stateKohn�Shamenergy to the secondorder as

EKS½F0ð1, 10Þ� ¼ EKS½F0� + ∑
ai
UaiU

�
aiðε0a � ε0i Þ

+ ∑
ai
∑
bj
UaiU

�
bjKai, bj +

1
2∑ai ∑bj

UaiUbjKai, jb

+
1
2∑ai ∑bj

U
�
aiU

�
bjKai, jb +O½Uð3Þ� ð6Þ

Here EKS[F0] is the ground-state energy and “a,b” run over virtual
ground-state canonical orbitals, whereas “i,j” run over occupied ground-
state canonical orbitals. Further

Kru, tq ¼ KC
ru, tq + K

XC
ru, tq ð7Þ

where

KC
ru, tq ¼

Z Z
j
�
r ð1Þjuð1Þ

1
r12

j
�
t ð2Þjqð2Þdv1dv2 ð8Þ

whereas

KXCðHFÞ
ru, tq ¼ �

Z Z
j
�
r ð1Þjqð1Þ

1
r12

j
�
t ð2Þjuð2Þdv1dv2 ð9Þ

for Hartree�Fock exchange correlation and

KXCðDFTÞ
ru, tq ¼ δðmsr ,msuÞδðmst ,msqÞ

Z
j
�
r ð rB1Þjuð rB1Þ

�½ f ðmsr ,mstÞðF0Þ�j�
t ð rB1Þjqð rB1Þd rB1 ð10Þ

forDFTexchange correlation. In eq10msr=1/2 for a spinorbitalϕr(1)
of R-spin, whereas msr = �1/2 for a spin orbital ϕr(1) of β-spin. In
addition the kernel f(τ,υ)(F0) is the second functional derivative ofEXC
with respect to FR and Fβ:

f τ,υðF0R, F0βÞ ¼ δ2EXC
δFτδFυ

 !
0

τ ¼ R, β; υ ¼ R, β ð11Þ

Finally εi
0 and εa

0 in eq 6 are the ground-state orbital energies of
respectively ϕi(1) and ϕa(1).

In CV(2)-DFT18 we seek points on the energy surface EKS[F0]
such that ΔEKS[ΔF0] = EKS[F0] � EKS[F0] represents a transi-
tion energy. Obviously, a direct optimization of ΔEKS[ΔF0]
without constraints will result in ΔEKS[ΔF0] = 0 and U = 0.
We18 now introduce the constraint that the electron excitation
must represent a change in density ΔF0, where one electron in
eq 5 is transferred from the occupied space represented by
ΔFocc =�∑ijaUaiUaj*ji(10)jj*(1) to the virtual space represented
by ΔFvir = ∑iabUaiUbi*ja(10)jb*(1). An integration of ΔFocc and
ΔFvir over all space affords�Δqocc = Δqvir = ∑aiUaiUai* . We shall
thus introduce the constraint ∑aiUaiUai* = 1. Constructing next
the Lagrangian L = EKS[F0] + λ(1 � ∑aiUaiUai* ) with λ being a
Lagrange multiplier and demanding that L be stationary to any
real variation in U results in the eigenvalue equation:

ðAKS + BKSÞ UBðIÞ ¼ λðIÞ UB
ðIÞ ð12Þ

where

AKS
ai, bj ¼ δabδijðε0a � ε0i Þ + KKS

ai, bj; BKSai, bj ¼ KKS
ai, jb ð13Þ

We can now from eq 12 determine the sets of mixing coefficients
{UB(I);I = 1,occ � vir} that make L stationary and represent
excited states. The corresponding excitation energies are given by

λ(I), as it can be seen by substituting UB(I) into eq 6 and making
use of the constraint and normalization condition UB(I)+UB(I) = 1
after multiplying on both sides with UB(I)+.

Within the Tamm�Dancoff approximation21 eq 12 reduces to

AKS UB
ðIÞ ¼ λðIÞ UB

ðIÞ ð14Þ
which is identical in form to the equation one obtains from
TDDFT in its adiabatic formulation1�6 after applying the same
Tamm-Dancoff21 approximation.

Having determined UB(I) from either eq 12 or 14 allows us20

now to carry out the unitary transformation of eq 1 to all orders.
The resulting occupied excited-state orbitals are given by20

ϕ
0
j ¼ cos½ηγj�ϕoj + sin½ηγj�ϕvj ; j ¼ 1, occ ð15Þ

herejj
o andjj

v are according to the corresponding orbital theory
of Hall and Amos27 eigenvectors to, respectively, Docc and Dvir

with the same eigenvalues γi where (Docc
2 )ij = ∑a

virUaiUaj and
(Dvir

2 )ab= ∑i
occUaiUbi. Herejj

o is a linear combination of occupied
ground-state orbitals, whereas jj

v is a linear combinations of
virtual ground-state orbitals. Thus in the corresponding orbital
representation27 only one occupied orbital jj

o mixes with one
corresponding virtual orbital jj

v for each occupied excited-state
orbital j0

j when the unitary transformation is carried out to all
orders according to eq 1. Martin28 has used the representation of
corresponding orbitals to analyze excitations described by
TDDFT and TDHF. In his interesting analysis {jj

o(1), jj
v(1)}

are referred to as natural transition orbitals (NTO).
The change in the density matrixΔF(∞) due to a one-electron

excitation takes on the compact form of

ΔFð∞Þð1, 10Þ ¼ ∑
occ

j
sin2½ηγj�½ϕvj ð10Þϕvj ð1Þ � ϕoj ð10Þϕoj ð1Þ�

+ ∑
occ

j
sin½ηγj� cos½ηγj�½ϕvj ð1Þϕoj ð10Þ + jv

j ð10Þϕoj ð10Þ�

ð16Þ
when the unitary transformation in eq 1 is carried out to all orders.
In eqs 15 and 16 the scaling factor η is introduced to ensure that
ΔF(∞)(1,10) represents the transfer of a single electron from the
occupied orbital space density, sin2[ηγj]jj

o(10)jj
o(1) to the virtual

orbital space density∑j
occ sin2[ηγj]jj

v(10)jj
v(1) or

∑
occ

j
sin2½ηγj� ¼ 1 ð17Þ

Here the constraint of eq 17 is a generalization of the corresponding
second-order constraint ∑aiUaiUai* = 1 used to derive eqs 13 and 14.

We finally get for the excitation energy including terms to all
orders in U:

ΔEð∞Þ ¼ E∞KS½F0 +ΔFð∞Þ� � EKS½F0� ¼ � ∑
occ

j
sin2½ηγj�FKSjojo ½F0 +

1
2
ΔFð∞Þ�

+ ∑
occ

j
sin2½ηγj�FKSjv jv ½F0 +

1
2
ΔFð∞Þ�

+ ∑
occ

j
cos½ηγj� sin½ηγj�Fjojv F0 +

1
2
ΔFð∞Þ

� �

+ ∑
occ

j
cos½ηγj� sin½ηγj�Fjv jo F0 +

1
2
ΔFð∞Þ

� �
+O½3�ðΔFð∞ÞÞ ð18Þ

Here eq 18 is derived by Taylor expanding29 EKS
∞ [F0 + ΔF(∞)]

and EKS[F0] from the common intermediate density F0 + 1/
2ΔF(∞). Further, FKS[F0 + 1/2ΔF(∞)] is the Kohn�Sham Fock
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operator defined with respect to the intermediate Kohn�Sham
density matrix F0 + 1/2ΔF(∞), whereas Fpq

KS[F0 + 1/2ΔF(∞)]
is a matrix element of this operator involving the two or-
bitals ϕp, ϕq. The expression in eq 18 is exact to the third
order inΔF(∞), which is usually enough.29 However it's accuracy can
be extended to any desired order in ΔF(∞).29

The energy expression in eq 18 is perturbative in the sense that
we make use of a U matrix optimized with respect to the second-
order energy expression of eq 6. We refer to this method as
CV(∞)-DFT.20 We might alternatively optimize U directly with
respect to the energy expression of eq 18 in a self-consistent
fashion. Such a procedure termed SCF-CV(∞)-DFT has been
formulated20 but not yet implemented. We shall in the present
study of n f π* transitions make use of the ΔSCF scheme24,30

which is equivalent to SCF-CV(∞)-DFT when, as in the current
case, the excitation can be described by a single orbital transition.

4. RESULTS AND DISCUSSION

We sample in Table 1 the calculated n f π* excitation
energies based on LDA and B3LYP for 34 transitions. For each
functional, results are given for CV(2)-DFT,18 CV(∞)-DFT,20

and ΔSCF.24,30 We compare further the DFT-based results with

the “best estimate” by Schreiber10 et al. based on high-level ab
initio wave function methods. Please note that the CV(2)-DFT
results in Table 1 are identical to those based on TD-DFT after
use has been made of the Tamm�Dancoff approximation.21

LDA. The LDA results compiled in Table 1 are also shown in
Figure 2 where we plot the calculated excitation energies due to
CV(2)-DFT, CV(∞)-DFT and ΔSCF relative to BE.10

In the single orbital transition n f π* we can represent the
resulting singlet excited states asΨnfπ*

S = 1/(2)1/2[|nπ̅*| + |π*n|].
In adiabatic TDDFT or CV(2)-DFT the corresponding singlet
transition energy is given by2,15

ΔEð2ÞS ¼ επ� � εn + 2Knπ�, nπ� � Knπ�, nπ� ð19Þ

within the Tamm�Dancoff21 approximation.
We see from Figure 1 where we plot ΔES

(2) relative to BE10

that LDA systematically underestimates the excitation energies at
the CV(2)-DFT level with a rmsd of 0.86 eV, see Table 1. This
can be attributed to the fact that the highest occupied molecular
orbital�lowest unoccupied molecular orbital (HOMO�LUMO)
gap επ*� εn for pure functionals typically is much smaller than the
HOMO to LUMO excitation energy. Further, Knπ*,nπ*, Knπ*,n̅ π̅ *

although positive are rather small, since n and π* are in different

Table 1. Vertical nfπ* Singlet Excitation Energiesa

LDA(VWN) B3LYP

molecule state bestb CV(2)c CV(∞)d ΔSCF CV(2)c CV(∞)d ΔSCFe

imidazole A0 0 6.81 5.79 9.51 6.59 6.53 8.01 6.47
pyridine B1 4.59 4.30 6.30 4.58 4.92 5.91 4.69

A2 5.11 4.35 7.22 4.94 5.17 7.13 5.15
pyrazine B3u 3.95 3.52 3.68 3.45 4.09 3.94 3.85

Au 4.81 3.91 5.01 4.16 4.74 5.40 4.63
B2 g 5.56 5.03 5.59 5.10 5.67 5.72 5.48
B1g 6.6 5.40 7.40 5.87 6.40 7.84 6.38

pyrimidine B1 4.55 3.73 4.61 3.87 4.37 4.81 4.14
A2 4.91 3.93 5.22 4.21 4.68 5.35 4.54

pyridazine B1 3.78 3.10 4.63 3.29 3.74 4.38 3.55
A2 4.31 3.41 5.49 3.84 4.26 5.62 4.15
A2 5.77 4.97 5.78 5.06 5.55 5.80 5.35

s-tetrazine B3u 2.29 1.83 2.04 1.75 2.41 2.29 2.15
Au 3.51 2.73 3.58 2.95 3.59 3.98 3.49
B1g 4.73 4.01 4.27 3.91 4.88 4.72 4.56
Au 5.5 4.55 4.78 4.50 5.20 5.06 4.97
B2g 5.2 4.72 5.04 4.82 5.40 5.18 5.17

formaldehyde A2 3.88 3.64 4.65 3.73 3.93 4.48 3.52
acetone A2 4.4 4.16 5.44 4.33 4.41 5.11 4.02
p-benzoquinone B1g 2.76 1.86 2.18 1.88 2.54 2.55 2.40

Au 2.77 2.00 2.62 2.11 2.69 2.90 2.55
B3u 5.64 4.29 6.36 4.67 5.47 6.69 5.40

formamide A0 0 5.63 5.33 7.23 5.66 5.58 6.75 5.28
acetamide A0 0 5.69 5.31 7.33 5.67 5.59 6.84 5.31
propanamide A0 0 5.72 5.34 7.30 5.67 5.60 6.82 5.34
cytosine A0 0 4.87 3.74 10.04 4.64 4.78 7.49 4.83

A0 0 5.26 4.41 7.89 5.12 5.17 7.19
thymine A0 0 4.82 4.04 6.95 4.57 4.74 6.64 5.59

A0 0 6.16 4.75 9.07 6.06 5.83 8.43 6.15
uracil A0 0 4.8 3.91 7.22 4.52 4.66 6.73 4.54

A0 0 6.1 4.69 9.26 6.03 5.75 7.98 6.07
A0 0 6.56 5.15 8.84 5.58 6.14 6.75

adenine A0 0 5.12 4.22 5.78 4.47 5.01 5.73 4.91
A0 0 5.75 5.00 6.01 5.16 5.69 5.86

rmsd(n f π*) 0.86 1.69 0.54 0.18 1.14 0.30
a In eV. bTheoretical best estimates from ref 10. cCV(2)-DFT singlet transition energy from eq 19 where the Tamm�Dankoff approximation21 has
been used. dCV(∞)-DFT singlet transition energy from eq 22. eΔSCF24,30 excitation energies from eq 23.
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regions. The situation is quite similar to that of the πAf πB* CT
transitions, where pure functionals also underestimate the ex-
citation energies at the CV(2)-DFT level.15 In that case the
underestimation is even larger as KπAπB*,πAπB* is negligible due to
the physical separation of A and B.
Turning next to the CV(∞)-DFT level of theory, we have in

the case of the single orbital transition nσ f π* one set of
corresponding orbitals (n,π*) for which γ = 1, whereas γ ≈ 0 for
all other corresponding pairs. In this case eq 16 affords ΔF(∞) =
π*(1)π*(1) � n(1)n(10), where we have made use of eq 17. The
related excitation energy of eq 18 gives

ΔEð∞Þ
n f π� ¼ EKS½jπ�n̅j� � EKS½jnn̅j�

¼ επ� � εn + 1=2Knn, nn + 1=2Kπ�π�,π�π� � Knn,π�π�

ð20Þ
where EKS[|nn|] and EKS[|π*n|] are the KS energies of the ground-
statedeterminant |nn| andexcited-statedeterminant |π*n|, respectively.
For the singlet excitation energy corresponding toΨnfπ*

S = 1/(2)1/2-
[|nπ̅*| + |π*n|], use can be made of the Slater sum rules24 to obtain

ΔEð∞Þ
S ¼ 2EKS½jnπ�j� � EKS½jnπ�j� � EKS½jnn̅j�

¼ 2ΔEð∞Þ
n f π� �ΔEð∞Þ

n f π� ð21Þ
We thus get from eq 20 and the corresponding expression for
Enfπ̅*
(∞) that

ΔEð∞Þ
S ¼ επ� � εn + 1=2Knn, nn + 1=2Kπ�π�,π�π�

+ 2Knn,π�π� � Knn,π�π� ð22Þ
The expression for ΔES

(2) of eq 19 appears to be quite different from
ΔES

(∞) of eq22.However,wenote that if use ismadeofpureHartree�
Fock exchange then Kπ*π*,π*π*

HF = Knn,nn
HF = 0, whereas Knn,π*π*

HF =
�Knπ*,nπ*

HF and Knn,π̅*π̅*
HF = �Knπ̅*,nπ̅ *

HF . Thus, in this case ΔES
(2)HF =

ΔES
(∞)HF. As a consequence, for Hartree�Fock the excitation energy

of a single orbital transition is fully determined by ΔES
(2)HF, and

higher-order terms are zero. However, this is not the case for LDA,
where Kπ*π*,π*π*

LDA 6¼ Knn,nn
LDA 6¼ 0, whereas Knn,π*π*

LDA 6¼ �Knπ*,nπ*
LDA and

Knn,π̅ *π̅ *
LDA 6¼ �Knπ̅ *,nπ̅ *

LDA . In this case the calculated excitation energies

are quite different depending on whether ΔES
(2) or ΔES

(∞) is used.
This is also the case for functionals based on the GGA.
The calculated singlet energiesΔES

(∞)LDA are plotted in Figure 2
relative to the BE.10 It follows from the figure that CV(∞)-DFT in
general affords too high excitation energies with a rmsd of 1.69 eV.
This is opposite to CV(2)-DFT, where ΔES

(2)LDA systematically
was too low. The contributions in eq 22 responsible for the high
excitation energies are Kπ*π*,π*π*

LDA and especially Knn,nn
LDA, which are

both positive as the Coulomb contributions Kπ*π*,π*π*
C , Knn,nn

C in
absolute terms and are larger than the exchange contributions
Kπ*π*,π*π*
XC(LDA ), Knn,nn

XC(LDA). The lack of cancellation between Coulomb
and exchange terms has been termed “self-interaction error” because
the cancellation must be complete for a one-electron system.
However, cancellation is not required to apply for many-electron
systems where the term self-interaction error might be a misnomer.
It is perhaps not surprising thatΔES

(∞)LDA is too high when we
note in eq 20 that the orbital set used is optimized with respect to
the ground state |nn| but not with respect to |nπ*| and |nπ̅ *|. A
more balanced description would result if the orbital sets were
optimized separately for the ground state and each excited state,
as suggested in the SCF-CV(∞)-DFT theory.20 Such an opti-
mization becomes especially simple for one-orbital excitations,
such as nfπ*, where we can employ the ΔSCF procedure24,30

and write

ΔEðΔSCFÞS ¼ 2EKSSCF½jnπ�j� � EKSSCF½jnπ�j� � EKSSCF½jnn̅j� ð23Þ
In eq 23 ESCF

KS[|nπ̅ *|], ESCF
KS [|nπ*|] are the energies from SCF

KS calculations on the configurations nπ̅ * and nπ*, respectively,
whereas ESCF

KS [|nn|] is the SCF KS ground-state energy. We plot
in Figure 2 ΔES

(ΔSCF)LDA relative to BE.10 It is apparent that
ΔES

(ΔSCF)LDA represents a clear improvement overΔES
(2)LDA and

especiallyΔES
(∞)LDA, with a rmsd of 0.54. It is interesting to note

thatΔES
(ΔSCF)LDA gives rise to a considerable lowering in energy

compared to ΔES
(∞)LDA for those cases (1, 2, and 10�15

of Figure 1), where ΔES
(∞)LDA is much too high, whereas

ΔES
(ΔSCF)LDA hardly changes compared to ΔES

(∞)LDA in those
cases (3, 6, and 9 of Figure 1) , where ΔES

(∞)LDA is close to BE.
Obviously for the pure functional LDA theΔSCF procedure24,30

is the more accurate procedure . We note further that (1, 2, and

Figure 2. Difference between CV(2)-LDA, CV(∞)-LDA,ΔSCF-LDA, and best estimate10.
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10�15) correspond to systems where n is localized on a single
heteroatom leading to high values for Knn,nn

LDA , whereas n in (3, 6,
and 9) is delocalized over two or more heteroatoms resulting in
much smaller values for Knn,nn

LDA .
B3LYP.The B3LYP excitation energies are all given in Table 1.

We plot further the calculated excitation energies due to CV(2)-
DFT, CV(∞)-DFT, and ΔSCF relative to BE10 in Figure 3. It is
to be noted that ΔES

(2)B3LYP for the various molecules is of a
higher energy thanΔES

(2)LDA. It is further inmuch better agreement
with BE10 affording a rmsd of only 0.18 eV, Table 1. We attribute
the increase inΔES

(2)B3LYP compared toΔES
(2)LDA to the larger gap

in επ* � εn introduced by the 20% exact HF-exchange that is part
of the B3LYP functional. We have in the evaluation of ΔES

(2)B3LYP

according to eq 19 employed theTamm�Dancoff approximation.21

Without this approximation one10 obtains quite similar results with
rmsd of 0.22 eV. For CV(∞)-DFTwe find again that the calculated
excitation energies ΔES

(∞) are larger than for that of ΔES
(2). This is

especially the case for those systems (1, 2, and 10�15), where n is
located on a single heteroatom (N or O). However compared to
LDA, the difference ΔES

(2) � ΔES
(∞) has decreased in the case of

B3LYP, and the rmsd is now 1.14 eV, Table 1. The reductions stem
from the fact that the 20%HF-exchange inB3LYPdonot contribute
to ΔES

(2) � ΔES
(∞) as argued previously. Introducing finally ΔSCF

leads, as in the case of LDA, to a considerable improvement with a
rmsd of 0.30 eV, which is only slightly larger than for ΔES

(2)B3LYP

with rmsd of 0.18 eV. For the nf π* transitions studied here, the
B3LYP proves to afford excitation energies closest to BE10 for both
ΔES

(2) and ΔES
(∞). Unfortunately, in a few cases we were unable to

obtain SCF convergence for the ΔSCF method. These cases are
marked by blank entries in Table 1.
GGA, MO6-L, BHLYP, and MO6. Exploratory calculations

with standard functionals based on the GGA revealed that that
these functionals afford results quite similar in quality to LDA. A
possible exception is the meta-GGA functional MO6-L,34,35

which has been applied by Jacquemin et al. for the same sample
of excitation shown in Table 1 yielding a rmsd of 0.45 eV. We have
also carried out a full investigation employing the BHLYP func-
tional with 50% HF exchange. The results are not reported in
details as they follow the same trends as B3LYP. Thus, for CV(2)-

DFT the excitation energies are somewhat overestimated with a
rmsd of 0.69 eV using the Tamm�Dancoff approximation21 and
0.62 eV without.10 Introducing CV(∞)-DFT increases the excita-
tion energies evenmore with a rmsd of 0.93 eV. Finally relaxing the
orbitals inΔSCF leads to a substantial improvement with a rmsd of
0.48 eV. It is apparent from the BHLYP results given in Table S1 of
the Supporting Information that a considerable increase in the
fraction of exact exchange in B3LYP from 20% leads to a poorer
agreement with BE.10 We should note that the MO6 functional by
Zhao and Truhlar8 with 27% HF-exchange for the sample of
excitations in Table 1 affords a rmsd of 0.24 eV.

5. CONCLUDING REMARKS

We have carried out a theoretical study of nf π* transitions
based on constricted variational density functional theory
(CV(n)-DFT)18,20 as a natural extension of a previous study
on πA f πB* CT transitions.15 In both types of excitations an
electron is moved between two regions of space with little
overlap where the regions are defined by the density of the
orbitals involved. In CV(n)-DFT we carry out a unitary trans-
formation exp[U] of eq 1 between the occupied {ϕi; i = 1,
occ}and virtual {ϕa; a = 1,vir} ground-state orbitals to any
desired order n in U to produce a new set of occupied {ϕi

0; i =
1,occ}and virtual {ϕa0 ; a = 1,vir} excited state orbitals.

20 Here the
matrix U consists of occ � vir independent variational para-
meters that are determined in such a way as to minimize the
excitation energies under the constraint that the change in
density due to an excitation represents the transfer of one
electron from the density space spanned by {ϕi; i = 1,occ} to
the density space spanned by {ϕa; a = 1,vir}.18,20

For the CV(2)-DFT level of theory we recover within the
Tamm�Dancoff approximation21 the adiabatic TDDFT theory1,2

of eq 14. It was shown in our previous study on πA f πB* CT
transitions15 that the energy expression (ΔES

(2)) for CV(2)-DFTor
adiabatic TDDFT is unable even qualitatively to describe CT
transition energies. Further, for such transitions, ΔES

(2) leads to a
severe underestimation of the excitation energies. In the case of the
nf π* type of transitions the error forΔES

(2) is much smaller and

Figure 3. Difference between CV(2)-B3LYP, CV(∞)-B3LYP,ΔSCF-B3LYP, and BE.10
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for B3LYP, we find thatΔES
(2)B3LYP is in close agreement with BE10

leading to a rmsd of only 0.18 eV.
For the CT transitions πAf πB* the inclusion of energy terms

to all orders in U (CV(∞)-DFT) leads to a qualitative correct
energy expression ΔES

(∞) which contains the “self-interaction”
terms KπAπA,πAπA

, KπB*πB*,πB*πB*. Further, combining the energy
expression ΔES

(∞) with a relaxation of {ϕi; i = 1,occ} and
{ϕa; a = 1,vir} gives rise to excitation energies (ΔES

(ΔSCF)) in
excellent agreement with experiment even for LDA where the
rmsd was 0.20 eV [15]. In the case of n f π* transitions, the
inclusion of terms to all orders followed by orbital relaxation as
accomplished in the ΔSCF procedure24,30 results for LDA and
BHLYP in a better agreement with BE10 than ΔES

(2). However,
for B3LYP ΔES

(2) and ΔES
(ΔSCF) are quite close with rmsd values

of 0.18 and 0.30 eV, respectively. The orbital relaxation achieves
in many ways the same as the introduction of double displace-
ments through frequency dependent kernels.31

The nfπ* transitions discussed here are of a special kind that
can be described by a single orbital transition. This considerably
simplifies the self-consistent optimization ofU through the use of the
ΔSCF procedure.24,30 For the general transition involving many
orbital transitions the self-consistent optimization of U has been
formulated but not yet implemented.20 We finally note that we have
modified the name of our approach from constrained variational
theory in the previous study15 to constricted variational theory in
the present investigation. This is done in order not to confuse our
CV(n)-DFT approachwith other constrained variationalmethods in
the literature.32,33 In the method by Van Voorhis,32 charge is con-
strained to certain regions of Cartesian space, whereas our method
constricts the charge to certain regions of orbital space.
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ABSTRACT: We compare the performance of explicitly time-dependent density functional theory (DFT) with time-dependent
configuration interaction (TDCI) to achieve the control task of a population inversion in LiCN. We assume that if a given pulse
achieves the control task when used in TDCI, then there should be a pulse with similar frequency and intensity that achieves the task
in time-dependent DFT (TDDFT). The present investigation indicates that this is not the case, if standard functionals are used in
the adiabatic approximation.

1. INTRODUCTION

Time-dependent density functional theory (TDDFT)1 is one
of the most successful and popular approaches for the calculation
of excited-state properties of molecules, as well as to describe the
real-time (RT) dynamics of many electron systems. Its computa-
tional efficiency has made it one of the first electronic structure
methods (after time-dependent Hartree�Fock, TDHF2) to be
generalized to the real-time domain.3,4 Much experience about
the strengths and limitations of TDDFT has been gained through
applications to a wide range of phenomena. Rubio et al.5 studied
as diverse processes as high harmonic generation, Coulomb
explosion, and laser-induced photodissociation. The same group
also developed the real-space code Octopus,6�8 one of the most
widely used implementations of TDDFT. Other successful appli-
cations were to the nonlinear dynamics of electrons in metal
clusters9,10 and molecules.11�14 Less satisfactory were attempts
to describe the nonsequential double ionization of atoms such as
He or Ne, especially with respect to the famous “knee” structure
in the yield as a function of laser fluence.15,16 There are various
reasons for this mixed success of explicitly time-dependent DFT.
First of all, there is the so-called adiabatic approximation;17 i.e.,
the time-dependent density F(t) is inserted into standard
ground-state exchange-correlation (xc) functionals. Obviously,
there is no guarantee that these functionals will generate the
correct dynamics, although they have been found to be useful in a
number of applications mentioned above. Also, some authors
have argued that a proper density functional for quantum dyna-
mics should contain a memory term.18�21 These problems have
not yet been fully solved, so that most work is being done using
the adiabatic approximation mentioned above. Recently, some
significant progress22 has been made to combine TDDFT with
coherent control, or more precisely quantum optimal control
theory.23�25

In this paper, we want to study the suitability of TDDFT for
a simple control task: a state-to-state transition using a so-called
π-pulse. An estimate of the necessary laser pulse parameters
can be obtained from a configuration interaction (CI) calcula-
tion, described in the following sections. Our test molecule will
be LiCN, because this has been used in a similar study before.26,46,47

It also has the advantage that the transition is accompanied
by a strong change in the dipole moment, which can serve as a

criterion when comparing TDCI27�29 and TDDFT calculations.
If TDDFT provides a correct description of the correlated
electron dynamics, then a pulse similar to the one that worked
for TDCI should also work for TDDFT. Similarity between laser
pulses is defined here as having a similar carrier frequency and
intensity. The pulse duration and carrier-envelope phase will be
kept fixed.

In section 2 we give some computational details of our
simulations and discuss the extent of deviations of molecular
properties of LiCN if different electronic structure methods
are used. Section 3 presents the main results of this work, and
section 4 concludes the paper. Atomic units will be used if not
stated otherwise.

2. COMPUTATIONAL DETAILS

The TD Kohn�Sham (KS) equations are given by

i
∂jiðr, tÞ

∂t
¼ �∇2

2
þ veff ½FðtÞ�

" #
jiðr, tÞ ð1Þ

where the effective potential

veff ½FðtÞ�ðr, tÞ ¼ vextðr, tÞ þ vH½FðtÞ�ðr, tÞ
þ vxc½FðtÞ�ðr, tÞ ð2Þ

consists of external vext, Hartree vH, and exchange-correlation
vxc contributions. The external potential contains the electron�
nuclear attraction and the laser�electron interaction in the
dipole approximation

vextðr, tÞ ¼ vNeðrÞ � μfðtÞ cos½ωðt � tpÞ� ð3Þ
with the envelope

fðtÞ ¼
f 0 cos2

π

2σ
ðt � tpÞ

� �
if jt � tpj < σ

0 else

8>><
>>: ð4Þ
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Here, tp is the time at which the pulse is maximal, σ is the full
width at half-maximum (fwhm), and f0 is the polarization and
maximum pulse amplitude.

We performed TDDFT calculations using the program
packages Octopus6,7 and Parsec,30,31 both of which employ a
real-space uniform grid representation using the finite difference
approach. For the real-space grid, a simulation sphere of radius
8 a0, and a grid spacing of 0.4 a0 are used except for exact-
exchange optimized effective potential (OEP-X) calculations,
where the radius of simulation sphere was 15 a0 and the grid
spacing was 0.7 a0. In all calculations, we used norm-conserving,
nonlocal, ionic Troullier�Martins32 pseudopotentials to model
the interactions of valence electrons with core electrons. In this
scheme, the 1s shells of all three atoms Li, C, and N were treated
as the core. In the density functional calculations using the program
Parsec, we employed the xc functionals according to the local-
density approximation (LDA) with the Perdew�Zunger
parametrization33,34 (CA-PZ), and generalized gradient approxima-
tion (GGA) of Perdew�Burke�Ernzerhof (PBE).35 We further
carried out GGA-PBE, and hybrid-DFT PBE0,36 extended hybrid
functional combined with Lee�Yang�Parr correlation functional
(X3LYP),37 and OEP-X calculations using the programOctopus.

The TDKS equations (eq 1) are solved by direct numerical
integration in real time. For this purpose, Parsec38 uses a fourth-
order Taylor approximation, whereas Octopus uses an exponen-
tial midpoint rule combined with the Lanczos exponential
approximation.39 We have used an electronic time step of 0.24

as (0.01 au) with a total propagation time of 50 fs, and an
x-polarized laser pulse has been employed throughout unless
stated otherwise.

Because we want to compare different explicitly time-dependent
methods, we will present first some molecular properties from
time-independent calculations, like CIS and linear response (LR)-
TDDFT and LR-TDHF, in order to assess how much these values
change from one method to another. We computed the dipole
moments of the ground and selected excited states of LiCN along
with the corresponding transition dipole moments and excitation
energies. For the LR-TDDFT calculations we employed LSDA,40

PBE, and PBE0 xc functionals using Gaussian 09.41 We also
performed more accurate correlated calculations such as CISD
(10,15) (all singles, doubles restricted to a (10,15) active space)
using our own code,42,43 and EOM-CCSD calculation using the
program Molpro.44 The former, somewhat unusual method is
included, because in a later section we report time-dependent
results on this level of theory. In all of the above calculations we
employed the polarized double-ζ basis set 6-31G*.45

From the study of Klamroth et al.,26 we adopted the equilib-
rium geometry of LiCN; i.e., rLi�C = 3.683a0 and rC�N = 2.168a0
(with orientation along the z-axis). For the ground-state electro-
nic configuration, the HF method predicted the HOMO to
be doubly degenerate C(2px/y)�N(2px/y) π-type MOs and
the penultimate MO (i.e., HOMO-1) to be a C(2pz)�N(2pz)
σ-type MO. On the other hand, in the Kohn�Sham DFT cal-
culations, this order is reversed and the σ-type MO forms the
HOMO except for OEP-X calculation, where, the HF ordering of
ground-state MOs is preserved. This trend in the ordering of the
occupied MOs in DFT calculations has been predicted by both
grid-based and basis set approaches. Both in HF and DFT
approaches the LUMO is essentially the Li (2s) orbital with a
weak σ* character; see Figure 1.

Table 1 summarizes dipole moments, transition dipole mo-
ments, and the excitation energies. The transition we are inter-
ested in, CN(π) f Li(σ*), is from the ground state (S0) to the
second or third excited states of LiCN (S2 or S3). These
degenerate states can be accessed selectively by laser pulses
polarized along the x or y direction. A complete population
transfer to these excited states will switch the z-component of the
dipole moment from μ0,0;z ≈ � 3.5 ea0 to μ2(3),2(3);z ≈ +2 ea0,
with comparatively small deviations between various quantum
chemical methods. In all our LR-TDDFT calculations, done
using Gaussian 09,41 the permanent dipole moments, μ0,0;z and
μ2(3),2(3);z, are predicted to be in good agreement with the EOM-
CCSD values; however, the transition dipole moments are

Figure 1. HOMO-1, HOMO, and LUMO molecular orbitals of LiCN
along with their orbital energies computed at the GGA-PBE level using
Parsec.

Table 1. Selected Ground- and Excited-State Properties of LiCN Computed Using Linear Response (LR) Theories along with
EOM-CCSDa

methods μ0,0;z μ2(3),2(3);z μ0,2;x μ0,2;y μ0,3;x μ0,3;y ΔE0f2(3)

LR-HFb �3.7080 1.8329 0.2682 0.1503 0.1503 �0.2682 6.57

CISb �3.7080 1.8450 0.3075 0.0258 0.0258 �0.3075 6.58

CIS(D)c �3.7082 2.7952 0.3084 0.0095 0.0095 �0.3084 6.13

CISD(10,15)d �3.4662 1.8338 0.2981 0.0902 0.0902 �0.2981 6.77

EOM-CCSDe �3.5502 2.0315 0.3833 0.0 0.0 �0.3833 6.28

LR-LSDAb �3.4193 2.2172 0.2675 0.0933 0.0933 �0.2675 4.77

LR-PBEb �3.3951 2.1553 0.2442 0.0890 0.0890 �0.2442 4.31

LR-PBE0b �3.5114 2.0748 0.2628 0.0123 0.0123 �0.2628 5.13
aGround- and excited-state dipoles, transition dipolemoments (μi,j;q, ea0) and excitation energies (ΔE, eV) are given.

bUsingGaussian 09. c From ref 26.
dOwn code. eUsing Molpro.
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slightly underestimated to lie in the range of 0.244�0.268 ea0,
close to the LR-TDHF value.

Before we present results of our quantum dynamical calcula-
tions, it is worthwhile also to compare the different implementa-
tions of TDDFT in Parsec and Octopus. We do so by showing
the excitation energy and dipole moment of LiCN computed
using these two programs at the GGA-PBE level with a laser
frequency (ω) of 6.3 eV and a field strength of 0.004 928 Eh/ea0;
see Figure 2. Although the results are qualitatively the same, they
are not identical. The size of the grid, the grid spacing, and the
pseudopotentials were the same in both programs. We can only
speculate that internal differences in either the propagation
scheme or the treatment of the Coulomb singularity are respon-
sible for the differences, which become amplified by the non-
linearity of the equations of motions. Alternatively, a bug in one
of the implementations cannot be ruled out completely.

3. RESULTS

3.1. Dipole Switching.The full population inversion from the
ground to the second excited state can be achieved by a π-pulse.
For laser pulses with a cos2 envelope, the condition for the
amplitude is

jf 0j ¼ π

σjμi, j;qj
ð5Þ

whereμi, j;q is the transition dipolemoment between states i and j,
and q indicates the polarization. Also, a π-pulse requires that the
laser pulse is long enough to be resonant with the desired
transition and that no energetically close states are present which
have a significant transition dipole moment, too. Using this
condition for TDCIS and TDCISD(10,15), together with the
information from Table 1, we achieve a controlled switching
of the z-component of the dipole moment and excitation
energies; see Figure 4. Because the transition dipole moments
are similar for both methods, the pulses are similar too, and
they can serve as a starting point when looking for laser pulses

suitable for TDDFT. The total propagation time is 50 fs, or
σ = 25 fs in eq 4.
The π-pulse condition can be readily applied to TDCI

calculations, because a time-independent many-body basis exists.
In other words, the Slater determinants made of Hartree�Fock
orbitals span always the same Hilbert space. It has been shown
already for MCTDHF48�50 that a time-dependent basis leads to
a time-dependent electronic structure, making the concept of a
resonant transition questionable. Moreover, the linear-response
values of TDDFT given in Table 1 cannot easily be translated to
the explicitly time-dependent, nonlinear regime. On the other
hand, if TDDFT provides a realistic approximation to the true
dynamics of the system, then a pulse similar to those used in
TDCI should perform a similar task. Looking for this “similar
pulse”, we pursued the following strategy for a variety of density
functionals. First, we scanned a range of laser frequencies (ω)
between 4.9 and 6.5 eV (4�7 eV for PBE). We identified
promising frequencies, to which the system reacts strongly,
which indicates proximity to a resonance. For the two TDCI
based methods this is simply the excitation energy given in
Table 1, whereas TDDFT calculations show the resonances at
6.1, 6.3, 5.3, 5.5, and 6.1 eV using the xc functionals LDA,
PBE, PBE0, X3LYP, and OEP-X, respectively, and for TDHF
ω = 6.9 eV. Next, an optimal field strength has to be found. This
posed a somewhat bigger problem, because several criteria could
be applied. On the one hand, the dipole switching as described
by TDCI is a one-photon absorption process. On the other
hand, one would like to achieve a final state, which is as close to
stationary as possible. We have attempted both and report the
results in the following.
Figure 3 shows the energy uptake and time-dependent dipole

moments of LiCN, if the field strengths are adjusted to a one-
photon absorption. For TDCIS (f0,x = 0.009 377 Eh/ea0) and
TDCISD(10,15) (f0,x = 0.010 198 Eh/ea0), the field strengths
follow from the π-pulse equation (eq 5), while for TDDFT and
TDHF a scan over pulse amplitudes is necessary. For TDDFT
calculations the field strengths are 0.0371, 0.0392, 0.0182,
0.021 57, and 0.0261 Eh/ea0 using the xc functionals LDA,
PBE, PBE0, X3LYP, and OEP-X, respectively, and for TDHF
f0,x = 0.045 Eh/ea0. The density functional based methods and
Hartree�Fock obviously require a much larger fluence, than the
CI based methods. Clearly a multitude of excited states is popu-
lated, leading to oscillating wave packets, that have no similarity
with dipole switching.
The results obtained from the second criterion, which focuses

on stationarity of the dipole moment at late times, are shown
in Figure 4. TDCIS and TDCISD(10,15) use the same field
strengths as used in the case of one-photon absorption calcula-
tions. TDDFT calculations use the field strengths of 0.004 928
Eh/ea0 for LDA, PBE, and X3LYP functionals and 0.003 and
0.009 856 for PBE0 and OEP-X functionals, and for TDHF
f0,x = 0.009 919 Eh/ea0. The results for all five functionals and
HF are qualitatively the same: the dipole moment changes by
about 1 ea0, instead of about 5.5 ea0 as in TDCI.
How can this failure of real-time TDDFT, using standard

functionals in the adiabatic approximation, be explained? It is
well-known that linear-response TDDFT has problems describ-
ing charge transfer. But, in our case, the charge transfer is only on
a small length scale, and is not ameliorated by hybrid functionals.
Also the use of exact exchange does not improve the results. To
emphasize this point, we included TDHF in the list of methods
above. Further, in the LR-TDDFT theory, Tozer and co-workers

Figure 2. Time evolution of dipole moments and energies computed at
the GGA-PBE level using Parsec and Octopus programs: dipole signal
of LiCN upon laser excitation (top); time-dependent relative energy
(with respect to ground electronic state energy at t = 0 fs) (bottom).
ω = 6.3 eV, field strength 0.004 928 Eh/ea0 polarized along x,and total
propagation time = 50 fs.
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proposed51,52 a weighted overlap parameter which can be con-
sidered as an indirectmeasure for the probability of charge transfer.
They suggested that a small overlap indicates less sharing of similar
regions of space between the corresponding orbitals involved in
the excitation, which restricts the CT excitation. In our study, we
simply considered the spatial overlap between the π and σ* states,
Oπσ*, computed as

Oπσ� ¼
Z

jjπðrÞj jjσ�ðrÞj dr ð6Þ

For this quantity,Oπσ*, we found a value of 0.18 fromLDA-CA-PZ
and GGA-PBE calculations which implies a weak overlap between
the fragment orbitals CN(π) and Li(σ*). This is a small value,
but probably not small enough to account for the failure of all
functionals. The origin of the problem is probably indeed related
to the fact that TDDFT and TDHF (as to some degree
MCTDHF) use a time-dependent basis. We assume that this
leads to an effective time-dependent excitation energy between
S0 and S2 so that resonant excitation cannot take place. Similar
observations have been made with regard to Rabi oscillations by

Figure 3. Time evolution of dipole moments and energies for one-photon absorption computed using different theoretical methods: dipole
z-component as a function of time (top); time-dependent relative energy (with respect to ground electronic state energy at t = 0 fs) (bottom). Laser
parameters (f0,x in Eh/ea0 andω in eV) for A: (HF) f0,x = 0.045, w = 6.9; (CIS) f0,x = 0.009 377,ω = 6.6; (CISD) f0,x = 0.010 198,ω = 6.8; (LDA) f0,x =
0.0371,ω = 6.1; (PBE) f0,x = 0.0392,ω = 6.3. Laser parameters for B, including the same CIS and CISD values: (PBE0) f0,x = 0.0182,ω = 5.3; (X3LYP)
f0,x = 0.02157, ω = 5.5; (OEP-X) f0,x = 0.0261, ω = 6.1. Total propagation time = 50 fs.

Figure 4. Time evolution of dipole moments and energies computed using different theoretical methods: dipole z-component as a function of time
(top); time-dependent relative energy (with respect to ground electronic state energy at t = 0 fs) (bottom). Laser parameters (f0,x in Eh/ea0 andω in eV)
for A: (HF) f0,x = 0.009 919, ω = 6.9; (CIS) f0,x = 0.009 377, ω = 6.6; (CISD) f0,x = 0.010 198, ω = 6.8; (LDA) f0,x = 0.004 928, ω = 6.1; (PBE) f0,x =
0.004 928, ω = 6.3. Laser parameters for B, including the same CIS and CISD values: (PBE0) f0,x = 0.003, ω = 5.3; (X3LYP) f0,x = 0.004 928, ω = 5.5;
(OEP-X) f0,x = 0.009 856, ω = 6.1. Total propagation time = 50 fs.
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other groups.53,54 The paper of Rubio et al.53 suggests a new
constraint on standard functionals is required to prevent this
detuning. It should also be noted that it is quite difficult to quantify
by how far the target state has been missed. In this paper we
used the energy and dipole moment as measure, but this provides
only restricted information. Simulations for model systems, where
difference densities and currents can be evaluated much easier
are under way. This will also provide insight whether the quan-
tum systems are taking the same “path” from the initial to the
final state. While terms such as ÆS0 |μ| S2æ in TDCI produce the
desired population transfer, there is no analogue when time-
dependent orbitals are used. The operation of μ on an orbital
does not guarantee that the orbitals will change in the physically
correct way.
3.2. Ultrashort Laser Pulse Excitation. Finally, we discuss a

different aspect of the problem at hand. The task in the previous
subsection was to populate a state which was orthogonal to the
initial ground state. This turned out to be surprisingly difficult
but does not say anything about the performance of TDDFT if
the perturbation is smaller. Therefore, we excited the LiCN
molecule with an ultrashort laser pulse with σ = 0.5 fs, ω = 6 eV,
and a field strength/polarization of f0 = (0.002, 0.002, 0.002)
Eh/ea0. This pulse gives a “kick” to the electron system so that
they start to oscillate. We recorded the time-dependent dipole
moment for 20 fs and calculated the Fourier transform to obtain
the absorption spectrum. Figure 5 shows the excitation energy
spectra calculated from Æμzæ(t) for various explicitly time-depen-
dent methods. The TDHF spectrum is almost identical to the
TDCIS spectrum, and TDCISD(10,15) shifts the results only
marginally. The two TDDFT spectra are superficially similar
to those from wave function based methods. The peaks at 6 and
8 eV are both shifted somewhat to lower energies but not
more than can be expected if the electronic structure method
is changed. Even the relative height of these two dominant
peaks is semiquantitatively correct. However, the peaks at
higher energies come out too strong. Overall, TDDFT performs
rather well in this case. This finding might indicate that there
is a relation between the performance of real-time TDDFT
with standard functionals and in the adiabatic approximation
on one side, and the distance between initial and final states,
measured in energy or as a distance in Hilbert space, on the
other side.

4. CONCLUSIONS

We compared the performance of explicitly time-dependent
DFT with TDCI to achieve the control task of a population
inversion in LiCN. We found that no pulse similar to the one
used for TDCI will perform the task in TDDFT, if standard
functionals and the adiabatic approximation are used. Similarity
of pulses is defined here as similarity in laser frequency and field
strength. Maybe the introduction of a chirp or a pulse sequence
would have allowed TDDFT to achieve the task, but probably for
a physically wrong reason. The use of hybrid functionals or exact
exchange did not improve the results. This indicates that results
obtained from a combination of TDDFT in its standard im-
plementation and coherent control schemes have to be taken
with care.
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ABSTRACT:With the aim of defining the spatial extent associated to an electronic transition, of particular relevance in the case of
charge-transfer (CT) excitations, a new index, evaluated only from the computed density for the ground and excited state, is here
derived and tested on a family of molecules that can be considered as prototypes of push�pull chromophores.The index (DCT)
allows to define the spatial extent associated to a given transition as well as the associated fraction of electron transferred. By
definition of centroids of charges associated to the density increase and depletion zones upon excitation, a qualitative and easy to
visualizemeasure of the spatial extent of the donor and the acceptormoieties within a givenmolecular system is also given. Finally, an
index (t) allowing to define the presence eventually pathologic CT transitions for time-dependent density functional theory
treatment in conjunction with standard generalized gradient approximation or hybrid functional, that is through space CT, is
disclosed.

1. INTRODUCTION

Push�pull systems made up of an electron donor (D) and an
electron withdrawing (A) groups covalently connected are one
of the most pursued families of compounds when aiming at
obtaining intense—and solvatochromic—optical transitions in
the visible spectral region.1 The latter are basically associated to
the formation of an excited state corresponding to the transfer of
an electron from the donor to the acceptor, that is to the
formation of a [D+�A�]* excited state.2

Clearly, this simple representation of the excited state and of
the electron transfer process is modulated and strongly depends
both on the type of chemical link present between the donor and
the acceptor subunits (normally defined as spacer) and on their
intrinsic nature.

In most of the real cases, both the length and the magnitude of
the electron transfer due to the excitation are far from ideal
(that is one electron transferred from the donor and localized on
the acceptor).3 Depending on the intramolecular geometrical
and electronic coupling, the transferred electron is, in some cases,
delocalized from the region of the molecule nearby the donor to
one in the vicinity of the acceptor.4

This effect can be qualitatively inspected by the analysis of the
density distribution at the ground and the excited state.5 Never-
theless, even regions of the molecule not presenting a net change
in total density can show an alternation of excess and depletion of
density as a consequence of the electronic transition, thus making
difficult to use directly the density distribution maps to follow
and quantify the charge-transfer (CT) phenomena.5,6

Obtaining a more quantitative measure of the length and
magnitude of the CT is far from trivial both from the experi-
mental and the theoretical point of view.

At the theoretical level, quantifying the magnitude of the
charge transferred on a given spatial region implies to transform
the known electron distribution over space computed for the
ground and excited states to a condensed, that is localized, index,
therefore implying the use of a (arbitrary) localization scheme.

Any measures derived in such a way will thus depend both on the
model, level of theory, used to compute the excited and ground
state densities and on the localization procedure applied.

The basic idea of the simple model here proposed is to define a
measure of the length of a CT excitation solely on the basis of the
total electronic density computed for the ground and excited
states. This method is thus applicable to any quantum chemical
method supplying densities for the ground and excited states,
providing in principle a very simple way to qualitatively compare
the outcomes of post-Hartee�Fock (HF) and density functional
theory (DFT)-based approaches. To this end, the following steps
will be considered:
• Definition of the barycenters of the density depletion and

the density increment zones associated with the electronic
transition and computed over a grid of points.

• Definition of the CT length as distance between the
barycenters.

• Definition of the transferred charge by integration of the
density depletion function over all space.

• Calculation of the associated dipole moment.
None of these steps is either time or resources demanding so

that our method can be applied to screen and analyzed any kind
of molecular system for which ground and excited densities on a
grid can be computed. Furthermore, none of the previous steps
requires defining a subdomain in the molecule, thus it does not
introduce any arbitrary localization scheme.

Next, in order to provide a simple way to visualize the spatial
extent of the transition, inspired by literature works aimed at
giving a mathematical definition to the concept of size of an
electron pair,7,8 we propose to define two centroids of density
corresponding to the density depletion and the density incre-
ment regions. A qualitative measure of the overlap between the

Received: May 4, 2011
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centroids is then used to quantify the through-space character
associated to a computed CT excitation.

Overall, the model here developed is finally aimed to be used to
qualitatively screen push�pull compounds belonging to different
chemical families in terms of length and magnitude of charge
transferred in order to provide useful insights for experimental
chemists. Besides it can also be shown that a simple qualitative
diagnostic index for through-space CT excitations, of interest at
time dependent DFT (TD-DFT) level, may be easily derived.

The paper is organized as follows: After a description of the
method (Section 2) and the computational details (Section 3),
the results obtained at a fixed level of theory for a family of
molecules experimentally characterized are discussed in Section
4. Finally, in Section 5 some general insights about the applic-
ability of these indexes to identify pathological behavior of time-
dependent (TD)-DFT for the treatment of through-space CT
transitions are given.

2. THE MODEL

Defining FGS(r) and FEX(r) as the electronic densities asso-
ciated to the ground and excited states, the density variation
associated to the electronic transition is given by

ΔFðrÞ ¼ FEXðrÞ � FGSðrÞ ð1Þ
Two functions, F+(r) and F�(r), defining the points in space

where an increment or a depletion of the density upon absorp-
tion is produced (ΔF(r)) can be defined as follows:

FþðrÞ ¼ ΔFðrÞ if ΔFðrÞ > 0
0 if ΔFðrÞ < 0

(
ð2Þ

F�ðrÞ ¼ ΔFðrÞ if ΔFðrÞ < 0
0 if ΔFðrÞ > 0

(
ð3Þ

The barycenters of the spatial regions defined by F+(r) and
F�(r), referred in the following as R+ and R�, can thus be defined
[for instance discretizing it on a three-dimensional (3D) grid
around the molecule] as

Rþ ¼

Z
rFþðrÞdrZ
FþðrÞdr

¼ ðxþ, yþ, zþÞ ð4Þ

R� ¼

Z
rF�ðrÞdrZ
F�ðrÞdr

¼ ðx�, y�, z�Þ ð5Þ

The spatial distance between the two barycenters of density
distributions can thus be used to “measure” the CT excitation
length DCT as

DCT ¼ jRþ � R�j ð6Þ
Integrating over all space F+ (F�), the transferred charge

(qCT) can be defined. For one electron excitation, qCT can
assume values between 0 and 1. Analogously, a variation in
dipole moment between the ground and the excited states (μCT)

can be defined, and its norm is computed by the following
relation:�����μCT

����� ¼ DCT

Z
FþðrÞdr ¼ �DCT

Z
F�ðrÞdr

¼ DCTqCT ð7Þ
This value has to be identical to the difference between the dipole
moments computed for the ground and the excited states, that is
ΔμES�GS. In order to lighten notations, the )μCT ) term will be
replaced in the following by μCT.

For visualization purposes, it is also interesting to define two
centroids of charges associated to the positive and negative
density regions. To this end, first the root-mean-square devia-
tions along the three axis (σaj, j = x, y, z; a = + or �) are
computed as

σa, j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑iFaðriÞðji � jaÞ2

∑iFaðriÞ

s
ð8Þ

The two centroids (C+ and C�) can then simply be defined as

CþðrÞ ¼ Aþe �ðx� xþÞ2
2σ2þx

� ðy� yþÞ2
2σ2þy

� ðz� zþÞ2
2σ2þz

 !
ð9Þ

C�ðrÞ ¼ A�e �ðx� x�Þ2
2σ2�x

� ðy� y�Þ2
2σ2�y

� ðz� z�Þ2
2σ2�z

 !

ð10Þ
The normalization factors (A+ and A�) can be chosen so as to

impose the integrated charge on the centroid to be equal to the
corresponding density change integrated in the whole space:

Aþ ¼

Z
FþðrÞdrZ

e �ðx� xþÞ2
2σ2þx

� ðy� yþÞ2
2σ2þy

� ðz� zþÞ2
2σ2þz

 !
dr

ð11Þ

A� ¼

Z
F�ðrÞdrZ

e �ðx� x�Þ2
2σ2�x

� ðy� y�Þ2
2σ2�y

� ðz� z�Þ2
2σ2�z

 !
dr

ð12Þ

This definition has been used throughout in the present work. By
definition this normalization imposes also the physical constrain
that

R
F�(r)dr = �RF+(r)dr

For purposes of analysis of rod-like dyads, it may be of interest
to define an index (named H) as half of the sum of the centroids
axis along the D�A direction. For instance, if the D�A direction
is along the x axis, H is defined by the relation:

H ¼ σþx þ σ�x

2
ð13Þ

ForHg DCT, an overlap between the centroids along this axis is
thus expected.

Finally, the t represents the difference between DCT and H:

t ¼ DCT �H ð14Þ
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3. COMPUTATIONAL DETAILS

At the ground state, the structure of all systems was optimized
at DFT level using the hybrid PBE09 functional and the 6-31
+G(d) basis set.10 All calculations were performed using the
Gaussian package,11 and bulk solvent (ethanol, EtOH) effects
were taken into account using a continuum solvation model (C-
PCM).12,13 When not differently specified, vertical excitations
energies and associated excited state densities were computed at
TD-DFT at the same level of theory. Five excited states were
computed for all systems analyzed. Using PBE0 ground-state
structures, the first five excited states were also computed at CIS
level and (using the TD-DFT approach) also using the Perdew,
Burke, and Ernzerhof (PBE)14 and LC-PBE15 functional, always
keeping the 6-31+G(d) basis set.

In this work, densities (for both the ground and the excited
states) were computed on a grid of points using the cubegen
utility (and associated default options) provided by the Gaussian
package.11 All density derived quantities were computed using
numerical integration procedure by using internally developed
software. The consistency of the size of the box used has been
checked computing the net fraction of escaped electrons (δesc),
that is

δesc ¼ N �
Z

boxF
boxðrÞdr ð15Þ

whereN is the total number of electrons in the molecule and F(r)
is the total ground-state density.

4. A TEST CASE: A SIMPLE D-Π-A FAMILY OF
MOLECULES

4.1. Structural and Electronic Properties. In order to test the
performance of our index, we considered the family of molecules
depicted in Figure 1, which can be considered as prototypes of
donor�acceptor systems (dyads) expected to show a significant
intramolecular CT character for the first excitation. In these
molecules, spectroscopically characterized,16 the length of CT

from the donor (amino, NH2 noted D) to the acceptor (nitro,
NO2 noted A) group is modulated by the presence of an
increasing number of conjugated phenyl spacers (πn, n = 1�5).
In the following these dyads will therefore be labeled as Pn, where
n represents the number of phenyl spacers present in the
molecule.
The main structural parameters corresponding to the opti-

mized structures at PBE0/6-31+G(d) level are reported in
Table 1, while the computed excitation energies and oscillator
strengths associated to the first five transitions are collected in
Table 2. As can be noted all Pn molecules present a staggered
conformation of the phenyl rings, with an inter-ring dihedral
angle going from ca. 31� for the shortest molecules to ca. 35� for
Pn systems with ng 4 and a practically constant carbon to carbon
inter-ring bond (between 1.471 and 1.478 Å). The coupling of
the donor and acceptor groups to the phenyl spacer, which is
ruled both by the Nx�C distances and the Θx dihedral angles
(x = A, D), is also comparable for all the systems analyzed
(Table 1). Therefore we can reasonably assume that from a
purely geometrical point of view the same kind of coupling is
present in all Pn systems and that the only relevant geometrical
parameter is the increase in distance between the donor and
acceptor units. In this respect, they constitute an ideal benchmark
for our purposes.
The CT excitation for all systems corresponds basically to an

one-electron highest occupied molecular orbital�lowest unoccu-
pied molecular orbital (HOMO�LUMO) excitation. The com-
puted vertical excitation energies (Table 2) are strongly under-
estimated at PBE0 level for all systems but P1. Only for P1, the
error on computed transition energies (0.10 eV) is in line with
what was expected at this level of theory when neglecting direct

Figure 1. The family of molecules considered in the present work
(right) and their labeling scheme (right), n = 1�5.

Table 1. Computed (PBE0/6-31+G(d)/PCM-EtOH) Structural Parameters (angles in �, distances in Å) for the Pn Systemsa

n dNDNA ΘA d(NAC) ΘD d(NDC) Θ1 d(C�C)1 Θ2 d(C�C)2 Θ3 d(C�C)3 Θ4 d(C�C)4 Θ5 d(C�C)5

1 5.579 0.05 �12.15 � � � � �
1.429 1.355

2 9.933 0.37 �23.82 �31.23 � � � �
1.447 1.380 1.471

3 14.262 0.47 �25.27 �33.83 33.31 � � �
1.451 1.386 1.475 1.476

4 18.585 0.28 �25.98 �35.14 35.01 �34.40 � �
1.452 1.388 1.476 1.478 1.477

5 22.906 0.22 �25.91 �35.03 35.23 �35.24 34.07 �
1.452 1.388 1.477 1.478 1.478 1.477

a For labeling refer to Figure 1. The phenyl spacers are numbered going from A to D, d(CC)x distances represent the distance between carbon atoms
belonging to the x and x + 1 phenyl groups.

Table 2. Computed (PBE0/6-31+G(d)/PCM-EtOH) and
Experimental Transition Energies (in nm) Associated to the
First Excitation for the Pn Systems along with the Corre-
sponding Computed Oscillator Strengths and Experimental ε
Values (in M�1

3 cm
�1 from ref 16)

N λcalc fcalc λexp εexp(10
�4)

1 362 0.65 372 (EtOH) 1.68

2 460 0.69 377 (EtOH) 1.38

3 483 0.54 358 (EtOH) 1.65

4 478 0.38 340 (DMF) 3.7

5 470 0.27 � �
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solute solvent interactions (hydrogen bonding) that may be of
importance in the case of EtOH.17 Indeed, if a good spatial
proximity between the donor (HOMO) and the acceptor
(LUMO) orbitals is computed for P1 (Figure 2) starting from
the P2 system, only a weak overlap can be evidenced between the
donor and the acceptor units (Figure 2).
The very large errors on computed transition energies ob-

tained for Pn systems (n = 2 to 5, Table 2) are thus not surprising,
since the underestimation and the collapse of through-space CT
transition energies when using TD-DFT with nonasymptotically
corrected exchange correlation functionals or in absence of
correction to the linear response approach is very well docu-
mented in literature (see for instance refs 18�31). Fixing to the
standard LR-TD-DFT, the use of range separated functionals,
such as LC-PBE should cure this problem although vertical
excitation energies computed at this level of theory may not be
quantitative agreement with experimental data.32�36

4.2. CT Indexes at PBE0 Level. In this paragraph the indexes
obtained at PBE0 level will be discussed in order to show their
potential interest for the description of the nature of the CT
states. Indeed, the real nature of the excited states, which are
better described using range-separated hybrids, will be discussed
in the following sections.
Using the total density computed for the ground and excited

states, it is possible to evaluateΔF, F+, and F� on a grid of points
around the molecule as defined by eqs 1�3. The density
variation upon excitation (ΔF), computed for the first electronic
transition at PBE0 level, is graphically depicted in Figure 3, the
green and red zones corresponding to F+ and F�, respectively.

As expected the density depletion zones (red, Figure 3) are
mostly located on the NH2 donor group but actually quite
delocalized on the phenyl(s) directly connected to it. This
finding is consistent with a weak donor character of the phenyl
ring. On the other hand the regions of density increment (green,
Figure 3) look more localized on the acceptor moiety, formally
corresponding to the nitro (NO2) group and, only to a minor
extent, to the phenyl ring directly connected to it.
The use of the barycenter of charge (R+ and R�, eqs 4 and 5)

allows to quantify these qualitative observations. In fact, while the
R� barycenter is very close to the NO2 group (Figure 3) in the
case of R+ a displacement toward the phenyl rings closer to the
amino group is clearly computed, thus highlighting their donor
character.
As a consequence, the length of CT (DCT) does not corre-

spond to the distance between the donor and the acceptor groups
(d(NAND)) as clearly evident from the data collected in Table 3
and in Figure 4. In practice, due to the delocalization of mainly
the donor group, while the physical distance between A and D
increases ca. 4.33 Å for each phenyl unit added, the correspond-
ing increase inDCT is only of ca. 2.36 Å. Indeed, the length of the
CT, DCT, increases more slowly than the distance d(NAND)
when phenyl spacers are added. This results in an A coefficient
lower than 1 in Figure 4.

Figure 2. Computed (PBE0/6-31+G(d)/PCM)) HOMO and LUMO
orbitals for the P1 (top) and P2 (bottom) systems. Isocontour value
0.005 au.

Figure 3. Computed (PBE0/6-31+G(d)/PCM)) difference in total density computed for the ground and excited states (ΔF(r) = FEX(r) � FGS(r),
isocontour value 0.001 au), graphical representation of DCT, and centroids of charge (C+(r)/C�(r), isocontour value 0.001 au).

Table 3. Computed (PBE0/6-31+G(d)/PCM-EtOH) Dis-
tances between Donor and Acceptor Groups (d(ND�NA), in
Å), Length, Charge and DipoleMoment (DCT, qCT and μCT in
Å, |e�| and Debye, respectively) Associated to the CT
Excitation Together with the Computed Fraction of Escaped
Electron (δesc, in |e�|) and the Difference between Ground-
and Excited-State Dipole Moments (ΔμGS�ES, in Debye)a

PBE0

N d(ND�NA) DCT qCT μCT ΔμGS�ES δesc H

1 5.58 2.6 0.5 6.6 6.6 0.07 2.0

2 9.93 4.9 0.85 20.1 20.1 0.06 3.1

3 14.26 7.2 1.0 36.4 36.4 0.00 4.3

4 18.59 9.5 1.2 52.9 53.0 0.04 5.4

5 22.91 11.9 1.2 69.9 69.9 0.17 6.6
aThe last column (H, in Å) represents the half sum of the centroids axis
length along the D�A direction.
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By integration of F+ (F�) over all space, the transferred charge
can be evaluated, and the numerical values are reported in
Table 3. Clearly, if for the P1 system the transition has still a
local character (DCT and qCT being only 2.5 Å and 0.5 |e�|,
respectively) the transition computed for the P2 dyad shows a
net CT character, the computed qCT value being 0.8 |e�|. Of
note, for the larger systems (P4 and P5) unphysical, that is larger
than 1, values of qCT (of the order of 1.2�1.3 |e�|) are
computed. This finding is related to the accuracy of the sampling
of the density over a grid. As a matter of fact, the integration
volume (box) chosen for these systems is too small, as demon-
strated by the computed escaped density, which leads to
0.04�0.22 |e�| computed to be out of our integration grid
(δesc in Table 3). The value of the escaped charge for the excited
state is, in the present case, strictly equivalent to that computed
for the ground state. The computed change in dipole moment
between the ground and excited states is evaluated using either
DCT and qCT by eq 7 (μCT, Table 3) or as expectation values over
the density of the ground and excited states (ΔμGS�ES, Table 3)
that are thus numerically equivalent. Nevertheless, in general
cases particular care should be taken when using diffuse orbitals
which may contribute more to the description of the excited
states, thus determining a larger value for the escaped charge at
the excited state.
It is worth noting that none of the quantities discussed up to

now (DCT, qCT, and μCT) depend on an arbitrary localization
scheme but only on the quality of the density used for the ground
and the excited state. Therefore, they could be used to fairly
compare different levels of theory used to evaluate the ground-
and excited-state densities. This point will be addressed in the
next section.
In order to visualize the spatial extent and the overlap between

the regions of density depletion and increment, two centroids of
charge have been defined using eq 9 and 10. The computed
centroids are reported in Figure 3. Using this arbitrarily con-
densed function, on one hand, it is much easier to identify the
spatial extent of the “real” donor and acceptor moieties and,
on the other hand, to visualize the presence (or not) of overlap
between the F+ and F� regions. In particular, it is clear that
starting from P2, a very weak spatial proximity between the
donor and the acceptor units is computed at PBE0 level.

More quantitatively, starting from P2, DCT becomes much
larger than H thus pointing out the presence of a through-space
CT, which, as reported in literature, could introduce artifacts in
computed transitions when using TD-DFT in conjunction with
nonasymptotically corrected functionals.19�27

5. CT INDEXES AND PERFORMANCE OF DIFFERENT
FUNCTIONALS: A DIAGNOSTIC TOOL?

In order to clarify if the previously defined indexes can also be
used as a diagnostic tool for the functional behavior in the
reproduction of CT excitations, the first five transitions for
systems P1�P4 were computed at different levels of theory,
namely at TD-DFT (using the PBE, PBE0, LC-PBE functionals)
and post-HF (CIS) levels.

In this context, it should be noted that although the origin of
the failure of standard functionals in the description of CT
excited state has been largely debated, explained, and pointed
out, for the time being, practically only one efficient diagnostic
index can be found in literature. This index (Λ), introduced by
Tozer in 200837and varying between 0 and 1, defines the spatial
overlap between orbitals involved in a given electronic excitation
computed using a single reference formalism (TD-DFT or CIS,
for instance). Whenever the overlap is small, a through-space CT
is predicted, and thus a significant error is expected when using
standardGGA or hybrid functionals. Several papers by Tozer and
collaborators37�39 have confirmed the validity of such a diag-
nostic index, applying it to different molecular systems. As a
general conclusion it seems that for transitions characterized by a
small Λ, both standard GGA and hybrid functionals will yield
extremely large errors. Indeed,Λ alone, contrary to DCT, cannot
be used to identify if a given transition is a CT one or not, since
CT excitations with substantial overlap will both be correctly
predicted at the TD-DFT level and give a large Λ.37�39

Although our index is not aimed at being a quantitatively
diagnostic tool, its first aim being related to the definition of the
spatial extent and magnitude of a CT transition, here we would
like to test ifDCT and the centroids already both could be used to
screen the CT character and as a first indicator of TD-DFT
failures, at no extra computational cost.

To this end, the transition energies, oscillator strengths, and
character of the first five transitions computed at different levels of
theory are compared and collected in Table 4. The CT indexes of
selected transitions, discussed in the text and graphically depicted in
Figure 5, are reported in Table 5.

From the data reported in Table 4 several points concerning
functional performances could be clearly derived. In particular,
for P1 all methods provide a reasonable description of both the
transition energies and their character. At all levels of theory, the
most intense transition, the first one, corresponds to a CT
excitation from the NH2 to NO2 groups (in the following noted
as NN), with computed energies ranging from 406 (PBE) to
306 nm (CIS), the best agreement with experiment being obtained
at PBE0 level (360 versus 372 nm experimentally determined).

From the analysis of the CT indexes reported in Table 5, it is
also clear that for P1 all levels of theory predict a CT transition
with substantial overlap between the centroids of charge repre-
senting the zones of increase and decrease of electron density
upon excitation, with the computed value ofDCT being very close
to the H value.

This means that for P1, this intense transition, although having
a CT character, is indeed not a through-space one, and it is

Figure 4. Normalized DCT (DCT/dphenyl, dphenyl being the average
phenyl length set to 4.33 Å) as a function of the number of phenyl
spacer, n.
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therefore expected to be well predicted using standard GGA or
hybrid functional, as it is in the present case. The computed
centroids (graphically depicted in Figure 5) provide a simple
pictorial representation of this concept.

By analysis of Table 4 it could also be noted that, starting from
P2, a clearly different behavior of PBE and PBE0 with respect to
LC-PBE and CIS is observed. In particular, for P2, although all the
approaches predict a NN type excitation, while PBE and PBE0
predict a significant decrease in transition energies going from P1 to

P2 (of the order of 1.12 and 0.73 eV for PBE andPBE0, respectively),
this energy is computed as almost constant in the case ofCIS andLC-
PBE, in better agreement with the experimental trend.

The absolute error in transition energy computed for P2 at
both PBE and PBE0 level is indeed extremely large (1.36 and
0.59 eV, respectively) when compared to their standard perfor-
mances for organic molecules.17

The situation gets even worst when going to P3 and P4. Again,
not only the transition energy computed at PBE and PBE0 levels

Table 4. Computed Transition Energies (in nm), Oscillator Strengths, and Character for the Pn Class of Compounds
(n = 1�4)a

PBE PBE0 LC-PBE CIS

n λ f type n λ f type n λ f type n λ f type

P1
1 406 0.55 NN 1 362 0.65 NN 1 312 0.75 NN 1 306 1.10 NN

2 349 0.00 NO2 2 315 0.00 NO2 2 303 0.00 NO2 2 237 0.00 NO2

3 323 0.01 PN 3 282 0.01 PN 3 259 0.01 NO2 3 226 0.01 PN

4 288 0.00 NO2 4 267 0.00 NO2 4 248 0.01 � 4 218 0.00 �
5 280 0.06 NP 5 253 0.11 NP 5 215 0.14 � 5 208 1.14 �

P2
1 641 0.49 NN 1 460 0.69 NN 1 312 1.09 NN 1 312 1.57 NN

2 403 0.01 PN 2 319 0.00 NO2 2 305 0.09 NO2 2 241 0.00 NO2

3 356 0.00 NO2 3 303 0.01 PN 3 265 0.00 NO2 3 240 0.71 �
4 348 0.01 � 4 298 0.03 PN 4 253 0.08 � 4 234 0.06 �
5 342 0.01 NN 5 279 0.01 NN 5 250 0.01 � 5 226 0.01 �

P3
1 839 0.28 NN 1 483 0.54 NN 1 306 0.08 NO2 1 303 2.03 PN/NN

2 440 0.00 PN 2 334 0.52 PN 2 299 1.64 NN/PN 2 255 0.06 �
3 439 0.42 PN 3 319 0.03 NO2 3 266 0.01 NO2 3 242 0.00 NO2

4 414 0.02 PN 4 308 0.56 NP 4 253 0.07 NN/PN 4 242 1.16 �
5 384 0.44 NN 5 306 0.00 PN 5 253 0.05 � 5 240 0.01 �

P4
1 940 0.13 NN 1 478 0.38 NN 1 305 0.02 NO2 1 298 2.44 PN

2 526 0.35 PN 2 371 0.66 PN 2 295 2.25 PN 2 271 0.18 �
3 456 0.00 PN 3 332 0.88 NP 3 266 0.00 NO2 3 242 0.00 NO2

4 437 0.00 PN 4 319 0.00 NO2 4 265 0.17 NN 4 242 1.12 �
5 436 0.54 NP 5 304 0.00 PN 5 253 0.07 � 5 240 0.27 �

aThe following notation is used: NN = NH2 to NO2 CT; NO2 = NO2 centered excitation; PN = phenyl to NO2 excitation; NP = NH2 to phenyl
excitation; � = π�π* excitation.

Table 5. Computed CT indexes for Pn systems (n = 1 to 5) for selected transitions at different level of theory. Experimental values
from ref.16 λ is nm and other indexes are in Å

P1 P2 P3 P4

λ DCT H t λ DCT H t λ DCT H t λ DCT H t

PBE 406 2.5 2.0 0.5 641 5.0 3.2 2.8 839 7.7 4.3 3.4 940 10.2 5.5 4.7

439 7.1 4.0 3.1 526 7.8 4.8 3.0

PBE0 362 2.6 2.0 0.6 460 5.0 3.1 2.9 483 5.9 4.0 1.9 478 9.5 5.5 4.0

334 4.6 3.0 1.6 371 7.6 5.2 2.4

LC-PBE 312 2.5 2.0 0.5 312 3.7 3.2 0.5 299 3.8 4.2 �0.4 295 3.4 5.0 �1.6

CIS 306 2.1 2.0 0.1 312 3.0 3.0 0.0 303 3.0 5.1 �2.1 298 2.6 5.45 2.85
expt 372 377 358 340
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decreases with the increase of the length of the bridge, contrary to
LC-PBE and CIS, which show a constant or slightly increasing
energy in qualitative agreement with experimental data, but also
and more severely the character of the most intense transition
changes as a function of the method considered. In particular,
while at CIS and LC-PBE levels, a CT excitation showing a
significant contribution on the phenyl group linked to the NO2

group is found (PN/NN), PBE and PBE0 still predict a full CT
excitation from the donor to the acceptor (NN-type) at very low
energies (839 and 483 nm for P3 and 940 and 478 nm for P4) and
a second excitation, of PN-type, occurring at higher energies
(439 and 334 nm for P3 and 526 and 371 nm for P4). These two
transitions are both intense although, increasing n, thePN transition
gains in intensity with respect to the, lower in energy, NN one.

As a consequence, going from P1 to P4, the CT length (DCT)
associated to the first transition always increases for PBE and
PBE0 (and linearly correlates with the NO2 to NH2 distance, as
discussed in Section 4.2), while it does not for CIS and LC-PBE
(refer to Table 5).

In particular, for these latter two methods, a ‘saturation’ of the
CT length is computed starting from P2, and even a slight
contraction of DCT is computed when going from P3 to P4. This
finding qualitatively correlates with the experimentally observed
transition energies only slightly increasing going from P1 to P3,
although neither LC-PBE nor CIS provides transitions energies
in quantitative agreement with the experiment, as expected.17,32

Physically, it also corresponds to the fact, while the acceptor
keeps localized nearby the NO2 group for all systems, the donor,
primarily represented by the NH2 group, actually delocalizes to
the phenyl groups when increasing the bridge length and when
starting from a three phenyl units bridge, is actually represented
only by phenyl groups, as evident from the analysis of the
centroids of charge (Figure 5).

Only at LC-PBE and CIS levels, going from P2 to P4, also the
acceptor moiety shifts from the NO2 group to the phenyl linked
to it, thus finally giving rise to a very short-range CT transition
(Figure 5). Analysis of the centroid allows also to easily visualize
the tendency toward delocalization of GGA functional (larger
centroids) with respect to the more localized character of hybrid
and range-separated functionals.

As a consequence, analyzing the CT indexes computed at
different levels of theory (Table 5), it could be noted that at
both the CIS and LC-PBE levels, the CT length (DCT) only
slightly increases going from P1 to P2, keeping constant from
P2 to P3 and slightly contracting while passing from P3 to P4.
This behavior closely parallels the experimentally observed
transition energies. As a consequence, for all systems the CT
length is computed between 2.5 Å (P1) and 3.8 Å (P3) at
LC-PBE level and between 2.1 Å (P1) and 3.0 Å (P3) at
CIS level.

On the other hand, PBE and PBE0 predict a much larger DCT

associated to the first intense transitions for all systems, except P1
for which all methods yield the same picture.

Indeed, it could be noticed that already starting from P2, both
at PBE and PBE0 level for the first transition DCT.H, thus
implying the presence of a through-space CT. Not surprisingly
starting from P2 the computed transition energies associated
with the first electronic transition do not follow both the
experimental and the LC-PBE or CIS trends.

The difference between DCT and H, noted t (eq 14 and
Table 5), seems thus a reasonable diagnostic index for TD-DFT
transitions. From the data collected for the family of molecules
currently investigated, a t > 1.6 Å points out a potentially
problematic transition for standard GGA and hybrid functionals.

Of note this rule of thumb, derived from the analysis of the first
transition, also applies to the second intense transition computed

Figure 5. Computed transition wavelength and corresponding centroids for the highlighted transitions of Table 4 (isocontour value 0.001 au).
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at PBE and PBE0 level for P3 and P4, which indeed has the same
PN character as that predicted at LC-PBE or CIS. Indeed, only in
the case of P3 computed at PBE0 level, the t criteria is satisfied,
thus pointing out that for P4, both PBE and PBE0 should in
principle provide very large errors also for the second transition,
which is actually the case.

6. CONCLUSIONS

A new simple index (DCT) aimed at giving a measure of the
length of the electron transfer associated to an electronic transi-
tion has been introduced and tested on a family of push�pull
molecules derived from the 1-amino-4-nitrobenzene.

The index, based only on the computed electronic density for
the ground and excited states, quantifies the charge-transfer
(CT) length as the distance between the barycenters of the
density increment and depletion regions upon electronic excita-
tion. As a consequence, it could be computed at any level of
theory providing both ground- and excited-state densities.
Clearly this index will be exactly zero for any centrosymmetric
system. In such a case the index should be evaluated on the
corresponding symmetry irreductible subunits.

The definition of centroids of charges associated to the density
increase and depletion zones centered on the barycenters of
charge previously defined allows to visualize and quantify the
spatial extent of the donor and acceptor groups within a given
molecular system. For this reason both DCT and the centroids
can be of help for the design and the description of new
push�pull systems at both the theoretical and the experimental
levels.

Finally the possibility of using a quantity related to the overlap
between the centroids (namely, t) has been tested as a diagnostic
tool to point out the pathological behavior of TD-DFT for the
description of through-space CT transitions. From the results
obtained for the classes of molecule analyzed it seems that t can
be used to highlight the through-space character of a given
electronic transitions and, thus, as a first warning for possible TD-
DFT failures.

As a consequence, the combined uses of DCT and t will allow
to define the character (CT or not) and the magnitude (in term
of spatial extent, i.e., the length of transition) of a given transition
and to be a first indicator of eventual CT pathologic cases for
DFT. Further work is in progress in this direction in our group.
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Ab Initio Trajectory Study on Triplet Ketene Photodissociation via
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ABSTRACT: Triplet ketene exhibits a steplike structure in the experimentally observed dissociation rate, but its mechanism is still
unclear despite many theoretical efforts. A previous surface-hopping simulation at the CASSCF level suggests that nonadiabatic
transition from the S0 to T1 states creates the T1 species in a highly nonstatistical manner, which raises the question of whether the
use of statistical rate theory is valid in itself for the T1 state. Here, we study this problem by performing ab initio trajectory simulation
at the multireference second-order M€oller�Plesset perturbation (MRMP) level of theory. Since theMRMP theory is too expensive
for such a trajectory calculation, we first construct dual-level potential energy surfaces (PESs) for the S0 and T1 states by calibrating
the PESs at the B3LYP level with a limited set of MRMP energies. We then introduce the assumption of vibrational equilibrium on
the S0 surface and characterize the S0 f T1 crossing points using the conditional microcanonical distribution on the S0/T1 seam
surface. The latter distribution is obtained by running a constrained trajectory on the seam surface by use of an efficient SHAKE-like
method. Subsequently, we propagate a number of T1 trajectories from the seam surface to obtain the dissociation rate. The result
shows that (i) the S0f T1 crossing points are localized mainly in the T1 reactant region; (ii) the lifetime on the T1 surface is about
30 ps at the MRMP level, which is 2 orders of magnitude greater than the previous estimate obtained from the surface-hopping
simulation at the CASSCF level (∼100 fs); and (iii) the calculatedT1 dissociation rate agrees reasonably well with classical transition
state theory. These results suggest that the T1 dissociation is rather statistical, given that the T1 trajectories are initiated from the
conditional microcanonical distribution on the seam surface.

I. INTRODUCTION

In the early 1990s, Kim et al.1,2 performed an experimental
study on the photodissociation of triplet ketene, CH2CO f
CH2 + CO. In their experiment, the ketene molecule in the S0
state was first excited to the S1 state via a UV laser, and the
excited ketene underwent nonadiabatic transition to lower
electronic states, followed by intersystem crossing from S0 to
T1 states; see Figure 1 for a schematic of relevant potential
energy surfaces (PESs). An interesting observation here is that
the dissociation rate of triplet ketene, k(E), exhibits a steplike
structure as a function of total energy E near the dissociation
threshold. The steplike structure in k(E) was interpreted as
arising from vibrationally quantized states at the transition state
(TS). On the basis of this interpretation, the observed steps in
k(E) were discussed in terms of energy levels of vibrational
modes orthogonal to the reaction coordinate, and semiquanti-
tative agreement was obtained between the width of the
observed steps and the level spacing of orthogonal modes at
the transition state.2

However, a subsequent quantum dynamical study by Gezelter
andMiller3 demonstrated that if one takes into account tunneling
effects along the reaction coordinate, the steps in k(E) should be
eliminated (or “washed out”) by tunneling, which results in a
nearly structureless profile of k(E). The situation can be de-
scribed more clearly by considering the microcanonical rate
expression for unimolecular dissociation:4,5

kðEÞ ¼ NðEÞ
2πpFðEÞ ð1Þ

where N(E) is the cumulative reaction probability (CRP) and
F(E) is the density of reactant states. For the present system, the
CRP can be approximated accurately as follows:6

NðEÞ≈ ∑
i
kðE� E‡i Þ ð2Þ

where Ei
‡ is the energy of the ith vibrational level at the TS and

k(E) is the one-dimensional transmission probability calculated
along the reaction coordinate. In the classical limit, k(E) reverts
to the Heaviside step function, k(E� Ei

‡)fΘ(E� Ei
‡), and the

N(E) always exhibits a steplike structure. In the quantum case,
k(E � Ei

‡) increases gradually from 0 to 1 when passing E = Ei
‡,

and if the width of k(E� Ei
‡) is greater than the level spacing Ei

‡

� Ei�1
‡ , one can no longer observe a steplike structure in N(E).

By utilizing the accurate PES at the CCSD level obtained by
Schaefer and co-workers,7 Gezelter et al. demonstrated that the
width of k(E � Ei

‡) is actually much greater than the spacing of
energy levels Ei

‡ � Ei�1
‡ , resulting in a structureless profile of

k(E). They also suggested that in order for the steps to appear in
k(E), the imaginary frequencyω‡ at the TS needs to be less than
∼100 cm�1, which is 3�4 times smaller than the result at the
CCSD level (379 cm�1).7 Recently, we have also carried out an
ab initio calculation of triplet ketene at the multireference levels
of theory,6,8 but the obtained ω‡ was about 300 cm�1, and thus
the steps in k(E) were not reproduced. Here, it is worth noting
that a similar discrepancy exists between theory and experiment
for the photodissociation of triplet acetaldehyde.9,10 In the latter
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case, the imaginary frequency estimated from the experiment is
60 cm�1, whereas accurate quantum-chemical calculations pre-
dict 300�500 cm�1.

As such, possible mechanisms other than vibrational quantiza-
tion at the TS were also explored for explaining the observed
steps. Cui and Morokuma performed an extensive ab initio study
on nonadiabatic interactions among the relevant PESs.11 Their
study suggested that S1f S0 internal conversion is very efficient,
while the direct S1 f T1 pathway is negligible due to the
extremely small spin�orbit coupling as well as the high location
of the S1/T1 minimum seam crossing (MSX) point. As a result,
they concluded that S1 f S0 f T1 is the dominant pathway for
the triplet dissociation. Subsequently, Kaledin et al.12 performed
a direct surface-hopping trajectory calculation at the state-
averaged (SA) CASSCF level. They propagated a trajectory,
starting at the Franck�Condon geometry on S1, and branched it
out into many child trajectories every time the propagating PES
crossed with another PES. Their calculation suggested that (1)
the S0�T1 nonadiabatic transition creates the T1 species non-
statistically at restricted regions of phase space and (2) a large
fraction of the T1 species thus created dissociates almost
immediately (within 120 fs), thus leaving no time for equilibra-
tion on the T1 surface. Those observations suggest that the
dissociation dynamics on the T1 surface are highly nonstatistical,
which raises the question of whether equilibrium-based rate
theories [such as eq 1] are valid in themselves for describing
the T1 dissociation.

It should be pointed out, however, that the surface-hopping
simulation by Kaledin et al.12 was not without limitation (which
is essentially due to the limited computational power available in
2001). First, they utilized the CASSCFmethod to describe the S0
and T1 surfaces, but in fact the latter method is not very accurate
for describing the dissociation profile (see section II.A). Speci-
fically, the dissociation barrier height on the T1 surface is
predicted to be 16 kcal/mol at the CASSCF level, while that at
the multireference level of theory is 29 kcal/mol. The significantly
smaller barrier height at the CASSCF level may be partly respon-
sible for the fast dissociation observed in ref 12. Second, the surface-
hopping simulation was performed with the “ant” method.13,14

However, the relatively small number of propagated trajectories
(about 10) makes it difficult to assess the statistical significance of
the results, particularly considering that the S0 f T1 transition

probability is very small (on the order of 10�5).12 Third, the
trajectory calculation was performed in planar Cs�II symmetry
with the torsional angleϕ set at zero (see Figure 2). This is based on
the observation that all of the important geometries (including the
S0/T1 MSX point) belong to planar Cs�II symmetry. However,
the minimum energy profile on the S0 surface is known to be of

Figure 1. A schematic of S0, S1, and T1 potential energy surfaces of
triplet ketene. Dashed arrows indicate possible pathways of nonadiabatic
transition. In this paper, we assume that the molecule reaches a
vibrational equilibrium on the S0 surface prior to the intersystem
crossing to the T1 surface. The direct S1 f T1 pathway is neglected
throughout this paper.

Figure 2. Transition state geometry of triplet ketene. R is the CC bond
length, θ is the CCO bending angle, and ϕ is the torsional angle.

Figure 3. Minimum energy profiles of the S0 and T1 surfaces obtained
with (a) MRMP and (b) CASSCF methods. Internal coordinates other
than R are optimized at each value of R. The minimum energy path on
the S0 surface is of nonplanar Cs�I symmetry, while that on the T1

surface is of planar Cs�II symmetry. The green line with label “S0-
(Cs�II)” represents the S0 potential energy curve calculated along the
T1 minimum energy path.
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nonplanar Cs�I symmetry,7 and therefore it is desirable that no
restriction on ϕ is applied in the trajectory calculation.

The purpose of this paper is thus to perform an ab initio
trajectory calculation of triplet ketene by lifting some of the
limitations mentioned above, while describing the relevant PESs
more accurately with the multireference second-order M€oller�
Plesset perturbation (MRMP) theory. Specifically, we first con-
struct dual-level PESs for the S0 and T1 states by combining the
accuracy of the MRMP theory and the efficiency of the B3LYP
method (section II.A). We then introduce the assumption of
vibrational equilibrium on the S0 surface and characterize the
S0 f T1 crossing points using the conditional microcanonical
distribution on the S0/T1 seam surface (section II.B). The latter
distribution is obtained by running a constrained trajectory on
the seam surface via use of an efficient SHAKE-like method.15,16

Subsequently, we propagate a number of T1 trajectories starting
from the seam distribution thus obtained and calculate the disso-
ciation rate on the T1 surface. We emphasize that the present
study does not make the assumption of vibrational equilibrium
on the T1 surface; rather, we assume that the molecule reaches a
vibrational equilibrium on the S0 surface prior to S0 f T1

intersystem crossing. As such, comparison of the present trajec-
tory result with statistical rate theory (based on a vibrational
equilibrium on the T1 surface) provides useful insight into the
statistical degree of the T1 dissociation (section III.B).

II. METHOD

II.A. ConstructionofDual-Level Potential Energy Surfaces.
To perform an ab initio trajectory calculation, one needs to select
an appropriate level of electronic structure theory that is not too
expensive yet provides a sufficient accuracy for the relevant PESs.
To do so, we first compare in Figure 3 several one-dimensional
potential profiles calculated at the CASSCF and MRMP levels.
Here, both the CASSCF and MRMP calculations were per-
formed with the cc-pVTZ basis set,17 and the active space was
constructed by distributing 14 electrons in 11 molecular orbitals.
The minimum energy profiles of the S0 and T1 states in Figure 3
are obtained from energy minimization at fixed R. As noted
above, the reaction path on the T1 surface is of planar Cs�II
symmetry, while that on the S0 surface is of nonplanar Cs�I
symmetry. Figure 3 also displays the S0 potential energy profile
calculated along the T1 reaction path, which crosses the T1

minimum energy profile at around R = 1.5 Å. This is consistent
with the fact the S0/T1 MSX point is located near the T1

minimum geometry.11 The dissociation barrier height on the
T1 surface is calculated to be 16.3 and 29.3 kcal/mol at the
CASSCF andMRMP levels, respectively. The MRMP result is in
excellent agreement with theT1 barrier height at the UCCSD(T)
level7 (29.8 kcal/mol), while the CASSCF result is significantly
smaller than the MRMP or UCCSD(T) result. This fact under-
lines the importance of dynamic electron correlation in the TS
region.6 Furthermore, we compare in Figure 4 the minimum
energy profiles obtained at the (U)B3LYP/6-31G* level with the
CASSCF and MRMP results. We see that the B3LYP method
gives a rather accurate PES for the S0 state, whereas it is less
accurate for the T1 state.
In the following, we construct an approximate dual-level PES

in order to combine the accuracy of the MRMP theory and the
efficiency of the B3LYP method. (For previous applications of
this type of method, see refs 18 and 19, for example.) Here, we
choose the CC bond length R as the reaction coordinate and

consider the functional form

UDLðrÞ ¼ ULLðrÞ þ Umin
HL ðRÞ �Umin

LL ðRÞ ð3Þ
Here, r is the Cartesian coordinates of the molecule andUHL

min(R)
and ULL

min(R) are the minimum energy profiles of high- and low-
level potential functions denoted as UHL(r) and ULL(r). We
suppose that the latter are calculated with theMRMP and B3LYP
methods, respectively. The minimum energy profiles of UHL(r)
and ULL(r) are defined here as

Umin
LL ðRÞ ¼ min

q
ULLðR, qÞ ð4aÞ

Umin
HL ðRÞ ¼ min

q
UHLðR, qÞ ð4bÞ

where q denotes the internal coordinates other than R. ULL
min(R)

and UHL
min(R) are obtained from energy minimization at fixed R.

The minimum energy profiles are then fit analytically with the
following function:

Umin
HL ðRÞ �Umin

LL ðRÞ = ΔU∞f1� ∑
4

k¼ 1
ck exp½ � ðR� RkÞk�g

ð5Þ
where {ck} and {Rk} are adjustable parameters obtained from a
least-squares fit. ΔU∞ represents the energy difference of the

Figure 4. Minimum energy profiles calculated at the MRMP, CASSCF,
and B3LYP levels (solid line): (a) S0 state, (b)T1 state.Minimum energy
profiles of the MRMP::B3LYP and CASSCF::B3LYP potential func-
tions are plotted with cross symbols, which agree almost exactly with
the underlying MRMP and CASSCF ones.
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products between the high- and low-level theories. Due to the
definition in eq 3, the minimum energy profile of the dual-level
PES coincides exactly with that of the high-level PES, i.e.,

min
q

UDLðrÞ ¼ Umin
HL ðRÞ ð6Þ

This property ensures the good accuracy of the dual-level PES in
the vicinity of the minimum energy path. On the other hand, the
accuracy ofUDL(r) in the direction of q is determined by the low-
level theory [see eq 3]. Since the B3LYPmethod often provides a
good description of bound degrees of freedom, we expect that
UDL(r) also behaves reasonably well as a function of q (see below
for numerical tests). The stationary points on the dual-level PES
are determined by the condition

∂UDLðR, qÞ
∂R

¼ 0 ð7aÞ

∂UDLðR, qÞ
∂q

¼ ∂ULLðR, qÞ
∂q

¼ 0 ð7bÞ

The second equation gives the optimized value of q as a function
of R, which will be denoted as q*(R). The latter is obtained by
minimizing the low-level potential at fixed R. Insertion of q*(R)
into the first equation gives

∂UDLðR, q�ðRÞÞ
∂R

¼ dUmin
HL ðRÞ
dR

¼ 0 ð8Þ

which states that the stationary value of R coincides with that of
the minimum energy profile of the high-level PES. As for the
Hessian matrix of the dual-level PES, we have

∂
2UDLðR, qÞ

∂R2
¼ ∂

2ULLðR, qÞ
∂R2

þ ∂
2UcðRÞ
∂R2

ð9aÞ

∂
2UDLðR, qÞ
∂R∂q

¼ ∂
2ULLðR, qÞ
∂R∂q

ð9bÞ

∂
2UDLðR, qÞ
∂q∂q

¼ ∂
2ULLðR, qÞ
∂q∂q

ð9cÞ

with Uc(R) = UHL
min(R) � ULL

min(R). The Hessian matrix is thus
largely determined by the low-level theory, while the element in
the direction of R is determined by the high-level theory.
Hereafter, we will denote the dual-level potential function thus

obtained as MRMP2::B3LYP, where a pair of high- and low-level
theories are denoted with double colons. For comparison, we
also constructed a dual-level CASSCF::B3LYP potential func-
tion. We calculated high-level potential energies using the
GAMESS program package,20 while low-level energies are calcu-
lated with the Firefly package.21 This is because the Firefly
package provides a significant acceleration of computational
speed (typically by a factor of 4) over the standard GAMESS
program for the B3LYP method. To construct the MRMP::
B3LYP PES, we calculated the minimum energy profile UHL

min(R)
approximately using the minimum energy path at the CASSCF
level. This is because analytical gradients for the MRMP method
are not available in the GAMESS program.20 We emphasize,
however, that the property in eq 6 holds even if we calculate
UHL
min(R) approximately.
We now assess the accuracy of the dual-level potential

functions thus obtained. First, we display in Figure 4 the

minimum energy profiles obtained with the MRMP::B3LYP
and CASSCF::B3LYP functions for the S0 and T1 states
(shown as cross symbols). It is seen that the latter agrees
almost exactly with the minimum energy profiles of the high-
level theory (solid line), which is ensured by the property in
eq 6. As another test, we calculated the stationary points and
normal frequencies on the dual-level PES, which are summar-
ized in Tables 1�3. Here, the stationary points on the
(original) CASSCF PES are determined by using analytical
gradients, while the stationary points on the MRMP PES are
obtained from a local least-squares fit.6 Tables 1 and 2 show
that the agreement between the dual-level PESs and the
underlying CASSCF and MRMP PESs is satisfactory consid-
ering the limited accuracy of the B3LYP method. As for
normal frequencies, we see that the agreement is better for
high-frequency modes while it is slightly worse for low-
frequency modes. To improve the accuracy, one could employ
a more complicated functional form for the dual-level poten-
tial. However, we did not enter this complexity and instead
utilized the simple functional form in eq 3.
II.B. Propagation of ab Initio Trajectory on the Seam

Surface. As mentioned in the Introduction, we assume a
dynamical model in which the molecule stays for a long time

Table 1. Equilibrium Geometry on the S0 Surface
a

MRMP(DL) CASSCF(DL) CASSCF

CC 1.312 1.307 1.309

CH1 1.084 1.084 1.073

CH2 1.084 1.084 1.073

CO 1.176 1.176 1.164

—HCH 120.0 120.0 120.0

—HCC 120.0 120.0 120.0

—CCO 180.0 180.0 180.0
aMRMP(DL) and CASSCF(DL) stand for the dual-level MRMP::
B3LYP and CASSCF::B3LYP potential functions, respectively. Bond
lengths are in Ångstroms, and angles are in degrees.

Table 2. Equilibrium and TS Geometries on the T1 Surface
a

MRMP(DL) MRMPa CASSCF(DL) CASSCF

equilibrium geometry

CC 1.463 1.461 1.470 1.466

CH1 1.089 1.083 1.089 1.075

CH2 1.083 1.077 1.083 1.069

CO 1.203 1.203 1.202 1.194

—HCH 119.3 120.1 119.5 120.0

—HCC 120.4 120.0 120.5 120.2

—CCO 126.6 126.2 126.7 128.6

transition state

CC 2.311 2.312 2.000 2.000

CH1 1.084 1.079 1.085 1.075

CH2 1.082 1.077 1.082 1.069

CO 1.147 1.148 1.162 1.150

—HCH 132.8 132.3 126.4 126.1

—HCC 115.1 113.6 117.1 117.7

—CCO 115.3 113.8 118.5 118.4
aReference 6. a See the caption of Table 1 for the notation.
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on the S0 surface prior to the S0 f T1 intersystem crossing.
This is based on the observation11,12 that the nonadiabatic
transition probability from the S1 to S0 surface is on the order
of 10�2, while that from the S0 to T1 surface (via spin�orbit
coupling) is on the order of 10�5. We thus expect that the
molecule undergoes a large number of vibrations on the S0
surface, and thus intramolecular vibrational energy redistribu-
tion (IVR) proceeds. On the basis of this consideration, we
assume that the S0 species is described by the microcanonical
distribution

fS0ðr, pÞ ¼ δ½E�HS0ðr, pÞ� ð10Þ

where (r,p) are the coordinates and momenta of the molecule,
HS0(r,p) is the Hamiltonian of the S0 species, and E is the total
energy. The S0 species crosses to the T1 surface via the S0/T1

seam surface, which is given by σ(r) = 0 with

σðrÞ ¼ US0ðrÞ �UT1ðrÞ ð11Þ

In this paper, we assume that the surface hopping occurs
precisely on the seam surface (i.e., the weak-coupling limit of the
intersystem crossing). This indicates that the phase space points
crossing to the T1 surface are characterized by the conditional
microcanonical distribution on the seam surface

fseamðr, pÞ � δ½E�HS0ðr, pÞ� δ½US0ðrÞ �UT1ðrÞ� ð12Þ

(see Appendix A for more rigorous definitions). Our strategy
here is to first statistically sample the S0 f T1 crossing points
from the seam distribution in eq 12 and then propagate them
on the T1 surface. In this paper, we perform the first task by
running a constrained trajectory on the seam surface via the
use of a SHAKE-like method. In usual molecular-dynamics

(MD) simulations, the SHAKE method is used to constrain
geometric coordinates such as bond lengths. In the present
case, we wish to constrain the energy gap between the S0 and
T1 surfaces. However, if the original SHAKE method is used
for this purpose, the calculation becomes quite expensive
because it involves iterative solution of σ(r) = 0 at every
MD step [note that the calculation of σ(r) in eq 11 requires ab
initio calculation of S0 and T1 potential energies]. To avoid
this, we consider developing an approximate yet more efficient
version of the SHAKE method. In the absence of the con-
straint, the equation of motion is given by

mi
d2

dt2
riðtÞ ¼ �∇iUS0 ½rðtÞ� � Fi½rðtÞ� ð13Þ

where r = (r1, ..., rN) and Fi[r(t)] is the potential force for the
S0 surface. One can discretize eq 13 using the velocity Verlet
(VV) integrator

viðt þ Δt=2Þ ¼ viðtÞ þ Δt
2mi

Fi½rðtÞ� ð14aÞ

riðt þ ΔtÞ ¼ riðtÞ þ viðt þ Δt=2ÞΔt ð14bÞ

viðt þ ΔtÞ ¼ viðt þ Δt=2Þ þ Δt
2mi

Fi½rðt þ ΔtÞ� ð14cÞ

where the three steps are evaluated sequentially. Given that
the system is ergodic at total energy E, the VV integrator in
eq 14 produces the microcanonical distribution in eq 10. In
the presence of the constraint σ(r) = 0, the equation of motion
is given by

mi
d2

dt2
riðtÞ ¼ Fi½rðtÞ� � λðtÞ∇iσ½rðtÞ� ð15Þ

where the second term represents the constraint force and
λ(t) is the Lagrange multiplier. The corresponding VV inte-
grator reads15,16

viðt þ Δt=2Þ ¼ viðtÞ

þ Δt
2mi

fFi½rðtÞ� � λR∇iσ½rðtÞ�g ð16aÞ

riðt þ ΔtÞ ¼ riðtÞ þ viðt þ Δt=2ÞΔt ð16bÞ

viðt þ ΔtÞ ¼ viðt þ Δt=2Þ þ Δt
2mi

fFi½rðt þ ΔtÞ�

� λV∇iσ½rðt þ ΔtÞ�g ð16cÞ

where λR and λV are discretized analogs of λ(t). The original
SHAKE method determines the λR by requiring that the
constraint condition is satisfied exactly at time t + Δt, i.e.,

σ½rðt þ Δt; λRÞ� ¼ 0 ð17Þ
This is an implicit equation for the unknown λR, which is
solved via iteration in the original SHAKE method. This
iterative solution requires repeated evaluation of σ, which is

Table 3. Normal Mode Frequencies (in cm�1) at the Equi-
librium and TS Geometries on the T1 Surface

a

MRMP(DL) MRMPa CASSCF(DL) CASSCF

equilibrium geometry

CC-str 992 911 1009 950

asym-CH-str 3268 3355 3268 3419

sym-CH-str 3123 3188 3123 3258

CO-str 1785 1679 1789 1832

CH2-scissor 1464 1418 1468 1548

CH2-rock 1067 1019 1101 1098

CH2-wag 786 727 785 687

CCO-bend 453 455 451 492

torsion 396 337 394 386

transition state

CC-str 339i 328i 513i 556i

asym-CH-str 3369 3431 3350 3428

sym-CH-str 3144 3162 3146 3235

CO-str 2119 2060 2009 2014

CH2-scissor 1136 1123 1219 1348

CH2-rock 390 344 634 555

CH2-wag 264 308 403 427

CCO-bend 203 184 305 286

torsion 147 108 191 175
aReference 6. a See the caption of Table 1 for the notation.



2512 dx.doi.org/10.1021/ct200367y |J. Chem. Theory Comput. 2011, 7, 2507–2519

Journal of Chemical Theory and Computation ARTICLE

expensive in the present case. We thus solve eq 17 approxi-
mately by expanding σ[r(t +Δt)] up to the first order in terms
of r(t + Δt) � r(t) about r(t), namely

σ½rðt þ ΔtÞ� = σ½rðtÞ�
þ ∑

i
∇iσ½rðtÞ� 3Δt vui ðt þ Δt=2Þ�

� Δt
2mi

λR∇iσ½rðtÞ�
�

� 0 ð18Þ

where vi
u(t + Δt/2) is the unconstrained velocity at t + Δt/2

vui ðt þ Δt=2Þ ¼ viðtÞ þ Δt
2mi

Fi½rðtÞ� ð19Þ

The above approximation gives

λR ¼
σ½rðtÞ� þ Δt∑

i
∇iσ½rðtÞ� 3 vui ðt þ Δt=2Þ

ðΔt2=2Þ∑
i
f∇iσ½rðtÞ�g2=mi

ð20Þ

It is important to note that σ[r(t)] in eq 20 should be retained
explicitly in order to allow small fluctuations of σ[r(t)] while
suppressing its systematic drift from zero. On the other hand,
the second Lagrange multiplier λV in eq 16 can be determined
exactly by requiring the velocity constraint at t + Δt:

σ_½rðt þ ΔtÞ� ¼ ∑
i
∇iσ½rðt þ ΔtÞ� 3 vui ðt þ ΔtÞ

n

� Δt
2mi

λV∇iσ½rðt þ ΔtÞ�
�

� 0 ð21Þ

where vi
u(t + Δt) is the unconstrained velocity at t + Δt

vui ðt þ ΔtÞ ¼ viðt þ Δt=2Þ þ Δt
2mi

Fi½rðt þ ΔtÞ� ð22Þ

The obtained λV is

λV ¼
∑
i
∇iσ½rðt þ ΔtÞ� 3 vui ðt þ ΔtÞ

ðΔt=2Þ∑
i
f∇iσ½rðt þ ΔtÞ�g2=mi

ð23Þ

With the above procedure, one can propagate a constrained
trajectory with only a single evaluation of σ perMD step. Since
σ in eq 11 is obtained from the S0 and T1 potential energies,
the computational cost for propagating a constrained trajec-
tory is identical to that of an unconstrained trajectory.
Before proceeding, it is useful to make some comments on the

above integrator. First, because λR is evaluated only approxi-
mately, the discretization error is slightly greater than in the case
where λR is evaluated exactly (see below for comparison). To
reduce the error, we additionally perform a velocity scaling at
eachMD step so that the energy is conserved exactly. Second, we
note that the constrained trajectory gives the following phase-
space distribution:22,23

fshakeðr, pÞ � δ½E�HS0 �δ½σ�δ½σ_� ð24Þ

The fshake(r,p) above differs from fseam(r,p) in eq 12 in that the
velocity constraint factor δ[σ

·
] is present. The latter factor

reflects the fact that the velocity of a constrained trajectory is

always tangent to the constraint surface, σ(r) = 0. Since we are
interested in generating fseam(r,p) rather than fshake(r,p), we need
to correct for the above difference. This correction can be made
in a manner similar to the bluemoon sampling method23 (see
Appendix A). Third, since we are running a classical trajectory for
statistical sampling, the so-called quasi-ergodicity24 may become
a problem. To examine this, we performed periodic resampling of
velocities during the trajectory propagation. We find that the
results obtained with velocity resampling are very similar to those
without velocity resampling, which indicates that the quasi-
ergodicity problem is not of serious concern for the present
system (we note, however, that for low-energy systems such as
van der Waals clusters, statistical sampling via classical trajec-
tories can be more problematic; see ref 24).
Using the SHAKE-like method described above, we propa-

gated a constrained trajectory on the seam surface with a time
step of 0.5 fs up to a maximum time of 10 ps. Figure 5a displays
the time evolution of the total energy with or without velocity
scaling applied at each MD step. We see that the energy drift is as
small as 0.1 kcal/ps even without velocity scaling applied (green
line). Nevertheless, in the following calculations we always apply
the velocity scaling to conserve the total energy exactly. Figure 5b
displays the time evolution of the energy gap σ(r) = US0 � UT1

.
As seen, the σ(r) remains close to zero with a maximum
deviation of 0.2 kcal/mol. This indicates that the first-order
expansion of σ(r) in eq 18 does not introduce a significant error
into the trajectory propagation. In the next section, we will utilize

Figure 5. (a) Total energy of the seam trajectory as a function of time.
When the velocity scaling is not applied, the total energy exhibits a slight
drift on the order of 0.1 kcal/mol/ps (green line). With velocity scaling
applied, the total energy is conserved exactly (red line). (b) The
difference between the S0 and T1 potential energies, σ = US0 � UT1

,
calculated along the seam trajectory.
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the above approximate integrator to obtain the conditional
microcanonical distribution on the seam surface.

III. RESULTS AND DISCUSSION

In the following, we consider three simulation conditions
regarding the type of dual-level PES and the total energy of the
system. First, under the “MRMP” simulation condition, we study
the dynamics using the MRMP::B3LYP PES at a total energy of
97.1 kcal/mol (as measured from the S0 minimum). The latter
total energy is equal to the dissociation threshold on the T1

surface at the MRMP2 level (81.8 kcal/mol) plus the sum of
zero-point energies at the T1 TS geometry (15.3 kcal/mol). The
above condition is intended to match most closely with the
experimental condition2 (we recall that the steplike structure in
k(E) was observed in the T1 dissociation threshold region). In
the following, we will refer to the total energyminus the potential
energy of the TS geometry as the TS excess energy. With this
definition, the excess energy in the MRMP condition is simply
equal to the ZPE at the TS geometry. Second, in the “CASSCF”
simulation condition we study the dynamics using the CASSCF::
B3LYP PES at a total energy of 97.1 kcal/mol (which is identical
to that in theMRMP condition). The TS excess energy under the
CASSCF condition (28.5 kcal/mol) is significantly larger than
that under theMRMP condition (15.3 kcal/mol). This is because
the dissociation barrier height on the T1 surface is considerably
small at the CASSCF level (16.3 kcal/mol) compared to that at
the MRMP level (29.3 kcal/mol). Third, under the “CASSCF(K)”
simulation condition, we study the dynamics using the CASSCF::
B3LYP PES at a total energy of 82.8 kcal/mol. This condition is
intended to match most closely with the surface-hopping study by
Kaledin et al.,12 where the total energy is set equal to the S0 f S1
vertical excitation at the SA-CASSCF level. The TS excess energy
under the CASSCF(K) condition is 14.2 kcal/mol, which is again
close to the experimental condition.
III.A. Statistical Distribution on the Seam Surface. Figure 6

displays the statistical distribution of (R,UT1
) on the seam surface

obtained from the constrained trajectory calculation (section II.
B). Here, R is the CC bond length and UT1

denotes the T1

potential energy as measured from the T1 equilibrium geometry.
Under the MRMP simulation condition [Figure 6a], the value of
UT1

is broadly distributed up to 40 kcal/mol, which roughly
corresponds to the total energy of the trajectory (as measured
from theT1 minimum). The CC bond length is distributed in the
range 1.25 < R < 1.85 Å, which is essentially localized in the T1

reactant region. The sampled values of UT1
are generally greater

than the corresponding value of the T1 minimum energy profile
[Figure 4b] at the same value of R. This is because the internal
coordinates other than R may be excited vibrationally on the
seam surface. At the MRMP level, the stationary values of R for
the T1 minimum, S0/T1 MSX, and T1 TS geometries are 1.46,
1.52, and 2.31 Å, respectively. Since the value of R is distributed
only up to 1.85 Å, it follows that the phase-space points on the
seam surface are located in the vicinity of the S0/T1 MSX point
(R= 1.5 Å), and the seam trajectory hardly accesses the TS region
(R = 2.3 Å). Figure 6b displays the distribution of (R,UT1

)
obtained with the CASSCF simulation condition. As seen, the
overall shape of the distribution is rather close to that in the
MRMP condition. This is probably because the topography of
the T1 PES in the reactant region (R < 1.75) is very similar
between the CASSCF and MRMP results, despite the fact
that they are significantly different in the TS and product region

[see Figure 4b]. Under the CASSCF condition, we frequently
observed that the seam trajectory escaped from the reactant
region and dissociated to the product region. An example of such
a trajectory is shown in Figure 4b with R > 1.9 Å. This is to be
expected because the TS excess energy under the CASSCF
condition is very large (28.5 kcal/mol) compared to that under
the MRMP condition (15.3 kcal/mol). Another factor that
facilitates the dissociation is the closeness of the TS geometry
at the CASSCF level to the reactant region. This is seen from the
stationary values of R at the CASSCF level for the T1 minimum,
S0/T1 MSX, and T1 TS points, which are 1.47, 1.53, and 2.00 Å,
respectively. Figure 6c displays the result for the CASSCF(K)
condition. Since the total energy under the latter condition is
smaller by 14 kal/mol than that in the MRMP condition, the
value of UT1

is distributed only up to 30 kcal/mol (as measured
from theT1minimum). Figure 6c shows that the seamdistribution

Figure 6. Statistical distribution of (R,UT1
) on the S0/T1 seam surface

calculated under the MRMP, CASSCF, and CASSCF(K) simulation
conditions. R is the CC bond length, and UT1

is the T1 potential energy
measured from the T1 minimum.
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is again localized in the reactant region, exhibiting no dissociating
trajectory. This indicates that the region R > 1.9 Å has little
contribution to the conditional microcanonical distribution on the
seam and that the S0fT1 surface crossing occursmainly in theT1

reactant region.
Figure 7 displays the distribution of (R,θ) obtained under the

individual simulation conditions. Here, θ denotes the CCO
bending angle (see Figure 2). Under the MRMP condition, the
θ is widely distributed in the range 110� < θ < 145� and roughly
centered at the S0/T1 MSX point (R = 1.490 Å and θ = 124.5�).
Under the CASSCF and CASSCF(K) conditions, the distribu-
tion of θ is somewhat more localized compared to the MRMP
condition. In Figure 7, the values of θ tend to increase with R,
which indicates that the molecule assumes a more linear geom-
etry of the CCO moiety as R is increased. This trend is in

qualitative agreement with the previous study by Cui and
Morokuma,11 which obtained partially optimized geometries
on the seam surface at several values of R. To obtain further
insight, we display in Figure 8 the two-dimensional map of the S0
andT1 surfaces at theMRMP level. Here, the T1 potential map in
panel b is obtained by adiabatically optimizing the internal co-
ordinates other than (R,θ) on the T1 PES, whereas the S0 potential
map in panel a was obtained by using the same coordinate set as
that used in panel b. Those potential maps indicate that the S0
surface favors a more linear geometry with θ= 180�, while the T1
state favors a more bent geometry with θ = 130�. The energy
difference between the two potential maps is plotted in panel c,
which exhibits a seam line running fromR= 1.2 Å andθ= 100� to
R = 2.0 Å and θ = 180�. A comparison between Figures 7 and
Figure 8c shows that the phase-space points are roughly centered
around the seam line thus obtained.
Figure 9 displays the distribution of (R,ϕ) on the seam surface.

We recall that the torsional angle ϕ is 0� for planar Cs�II
symmetry and 90� for nonplanar Cs�I symmetry. Previous
studies have shown7,11 that the important geometries such as
the T1 minimum and the S0/T1 MSX point are of planar Cs�II
symmetry. Nevertheless, we see from Figure 9 that ϕ is widely

Figure 7. Statistical distribution of (R,θ) on the S0/T1 seam surface
calculated under the MRMP, CASSCF, and CASSCF(K) simulation
conditions. R is the CC bond length, and θ is the CCO bending angle.

Figure 8. Two-dimensional potential map as a function of (R,θ)
calculated with the MRMP::B3LYP potential functions. Panel b is
obtained by optimizing the internal coordinates other than (R,θ) on
the T1 PES. Panel a displays the S0 potential energy calculated with the
same coordinate set as used in panel a. Panel c displays the energy
difference between panels a and b. The red, thick line in panel c is the
seam line defined by U(S0) = U(T1). The symbols M0, M, and TS
indicate the location of the S0 minimum, T1 minimum, and T1 TS
geometries, respectively. Energies are in kcal/mol and measured from
the S0 minimum.
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distributed over 0 < ϕ < 180�, indicating that the molecule is not
limited to planar Cs�II geometries upon surface crossing. A
closer look at Figure 9 reveals that the distribution of ϕ is bimodal
and centered at around 40� and 140�, which are of neither Cs�I
nor Cs�II symmetry. Several factors may be responsible for the
above observation. First, the distribution on the seam tends to get
delocalized by the effect of kinetic energy. Second, since Figure 9
is obtained by projecting out the internal coordinates other than
(R,ϕ), the two-dimensional distribution reflects the accessible
number of states (or phase-space volume) of the projected
coordinates at individual values of (R,ϕ). Third, the ϕ depend-
ences of the S0 and T1 PESs are rather different. To illustrate this,

we plot in Figure 10 the adiabatically optimized potential curves
as a function of ϕ for the S0 and T1 states [here, the values of
(R,θ) are fixed at the S0/T1 MSX geometry]. As seen, the
equilibrium values of ϕ are different between the S0 and T1

states, which seemsmost responsible for the broad distribution of
ϕ in Figure 9 . For further information, Figure 11 displays the

Figure 9. Statistical distribution of (R,ϕ) on the S0/T1 seam surface
calculated with the MRMP, CASSCF, and CASSCF(K) simulation
conditions. R is the CC bond length, and ϕ is the torsional angle.

Figure 10. Potential energy profiles of the S0 and T1 surfaces as a
function of the torsional angle ϕ obtained with the MRMP::B3LYP
potential functions. Internal coordinates other than (R,θ) are optimized
at each value of ϕ. The values of R and θ are fixed at the S0/T1 MSX
geometry (R = 1.491 Å and θ = 124.5�). Note that the minima of the S0
potential are slightly off the Cs�I symmetry because θ is frozen at the
MSX geometry.

Figure 11. Two-dimensional potential map as a function of (R, ϕ)
calculated with the MRMP::B3LYP potential functions. See the caption
of Figure 8 for computational details.
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two-dimensional map of the S0 and T1 potentials as a function of
(R,ϕ). The seam line runs from around R = 1.5 Å and ϕ = 0� to
R = 1.6 Å and ϕ = 90�, and it is again seen that the phase-space
points are distributed roughly around the seam line.
III.B. Dissociation Rate on the T1 Surface.We now calculate

the dissociation rate by propagating a number of trajectories on
the T1 surface. To do so, we assume the weak-coupling limit of
intersystem crossing, and accordingly a trajectory is propagated
adiabatically on the T1 surface.

25 To prepare the initial state of
the trajectory, we picked up 500 points randomly from the seam
distribution obtained in section III.A, followed by an appropriate
resampling of velocities (see Appendix A). The initial phase-
space points thus obtained were propagated on the T1 surface
until they dissociated or the integration time exceeded 9 ps. The
progress of the reaction was monitored by calculating the time-
dependent survival probability defined by

PsurvðtÞ ¼ Æjυ^jPNAðυ^ÞΘðR‡ � RtÞæseam
Æjυ^jPNAðυ^Þæseam

ð25Þ

Here, Æ...æseam denotes an ensemble average over the initial phase-
space points on the seam surface, Θ(R‡ � Rt) is the Heaviside
step function, and υ^ is the component of the velocity vector
normal to the seam surface (see Appendix A for more details).
The PNA(υ^) in eq 25 is the nonadiabatic transition probability
calculated with the Landau�Zener formula:26�28

PNAðυ^Þ ¼ 1� exp �2π
p

H2
SO

jΔFυ^j

" #
ð26Þ

Here, HSO is the S0�T1 spin�orbit coupling and ΔF is the
normal component of the difference gradient vector 3(US0 �
UT1). In this paper, we approximatedHSO to be constant and set
it to 43 cm�1 (calculated at the CASSCF level). By fitting the
survival probability to a single exponential form

PsurvðtÞ = expð � ktÞ ð27Þ
we estimated the dissociation rate k and the associated lifetime
τ = 1/k on the T1 surface.
Figure 12 displays the survival probability thus obtained for

individual simulation conditions. Table 4 lists the corresponding
dissociation rate k and lifetime τ. Under the CASSCF conditions,
the dissociation is very fast, with τ = 1.4 ps, which is clearly due to
the large excess energy (28.5 kcal/mol) at the TS geometry.

Under the MRMP and CASSCF(K) conditions, the reaction
proceeds much slower than under the CASSCF condition. The
calculated values of τ are 36.2 ps for the MRMP condition and
14.8 ps for the CASSCF(K) condition. A critical observation here
is that the latter values are significantly greater than that obtained
in the previous trajectory study by Kaledin et al.12 In the latter
study, half the trajectories dissociated within ∼120 fs after
making a transition to the T1 surface (or within ∼260 fs after
S0f S1 vertical excitation). This means that the dissociation rate
under the MRMP and CASSCF(K) conditions are about 2
orders of magnitude smaller than obtained in ref 12. This is
somewhat surprising because the CASSCF(K) condition has the
same total energy and level of electronic structure theory as
employed in ref 12. The marked difference in the dissociation
rates is thus attributed to the different ways of preparing the T1

trajectories. Specifically, in ref 12, the parent trajectory was first
evolved on the S1 surface (after initial vertical excitation), and it
was allowed to branch every time the S1 surface crossed the S0
surface. At the branching point, the parent trajectory continued
to be propagated on the S1 surface, whereas the child trajectory
started to evolve on the S0 surface. A similar procedure was
applied to obtain child trajectories on the T1 surface. A critical
point here is that the propagation time of the S0 trajectory was
rather short (up to ∼300 fs), and the number of the S0 and T1

trajectories was relatively small (a total of 10). This indicates that
theT1 trajectories may be affected considerably by the short-time
dynamics of the S0 trajectories after vertical excitation. Since the
molecule is vibrationally excited in the CC stretching and CCO
bending modes upon vertical excitation, the dissociation may be
facilitated to some extent by selective excitation of those vibra-
tional modes (we recall here that the CC stretch plays the role of
reaction coordinate for this system). By contrast, in the present
calculation, we have assumed a vibrational equilibrium on the S0
surface and propagatedT1 trajectories starting from the conditional
microcanonical distribution on the seam surface. We expect that
the above different ways of preparing the T1 trajectories are mainly
responsible for the different rates obtained in the present study and
in ref 12.
Another question to be asked here is whether the dissociation

dynamics on the T1 surface may be regarded as statistical or not.
This is because the previous rate calculations2,3,6 relied on
statistical rate theories that assume a vibrational equilibrium on
the T1 surface. Those calculations are thus reliable only when the
IVR on the T1 surface proceeds considerably prior to the
dissociation. To examine this, we have calculated the RRKM rate
for the T1 dissociation. Here, it should be noted that the usual
RRKM rate refers to a quantum mechanical unimolecular reaction
rate, which cannot be compared directly to the present classical

Figure 12. Time-dependent survival probability Psurv(t) on the T1

surface calculated under the MRMP, CASSCF, and CASSCF(K)
simulation conditions.

Table 4. Dissociation Rate k on the T1 Surface (in ps�1)
Obtained from the Trajectory Calculationsa

MRMP CASSCF CASSCF(K)

RRKM (p = 1.00) 0.0017 (590) 2.59 (0.39) 0.057 (17.5)

RRKM (p = 0.50) 0.0462 (21.6) 3.48 (0.29) 0.223 (4.5)

RRKM (p = 0.25) 0.0656 (15.2) 3.69 (0.27) 0.353 (2.8)

RRKM (p = 0.10) 0.0715 (14.0) 3.75 (0.26) 0.391 (2.6)

trajectory calcd 0.0276 (36.2) 0.710 (1.4) 0.0677 (14.8)
aTheRRKM rates obtained with various values ofp (in atomic units) are
also shown. The corresponding lifetime τ = 1/k (in ps) is given in
parentheses.
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trajectory results. Rather, we need to calculate a classical mechanical
reaction rate assuming a vibrational equilibrium on the T1 surface.
In this paper, we performed this task by calculating the RRKM rate
with decreasing values ofp (see Appendix B for details), the results
ofwhich are summarized inTable 4.We see from this table that the
RRKM rate is fairly converged with p = 0.1 (in atomic units),
which we regard as the “classical” transition state theory (TST)
rate, and it is seen that the latter is in reasonable agreement with
the present classical trajectory result. The deviation between the
trajectory and classical RRKM results is within a factor of 3 for the
MRMP condition and 6 for the CASSCF(K) condition. A possible
reason for the deviation is the so-called recrossing effect of
trajectories over the potential barrier. However, we expect that
the latter effect is minor for the present system because the T1

surface is rather separable in the TS region.6 A more plausible
reason for the above deviation is an inefficient IVR on the T1

surface. Figure 11 indicates that the vibrational coupling betweenR
and ϕ coordinates is fairly small, which may lead to inefficient
energy transfer from ϕ to R and hence the underestimation of the
rate in the trajectory calculation (recall that R plays the role of
reaction coordinate, and thus its activation is essential for the
dissociation). Nevertheless, since the discrepancy between the
trajectory and classical RRKM results is not particularly large
(within a factor of 3 in the MRMP condition), the T1 dissociation
seems to be rather statistical (at least not highly nonstatistical),
given that the trajectory is initiated from the conditional micro-
canonical distribution on the seam surface.

IV. CONCLUDING REMARKS

In this paper, we have revisited the still unresolved problem of
triplet ketene regarding the stepwise structure in the observed
rate.2 In particular, we focused on whether the T1 dissociation
may be regarded as statistical, because this has been the funda-
mental assumption of the previous rate calculations.2,3,6 To
examine this, we have introduced the assumption of a vibrational
equilibrium on the S0 surface and calculated the dissociation rate
by running T1 trajectories from the seam surface. The main
results obtained are the following: (1) The S0 f T1 crossing
points are located mainly in the T1 reactant region. (2) The T1

dissociation rate is significantly smaller than the previous surface-
hopping result by Kaledin et al.12 (3) The present trajectory
result agrees reasonably well with the classical RRKM result. As
noted above, the discrepancy between the present study and ref
12 is probably due to the different ways of preparing the T1

trajectories, rather than the different levels of electronic structure
theory used. This is based on the observation that even under the
CASSCF(K) condition there remains a significant difference in
the rates between the two calculations. We expect that if a
surface-hopping simulation is performed with a very long S0
trajectory and a sufficient number of T1 trajectories, the dis-
crepancy between the two studies would probably be reduced.

While we have studied the T1 dissociation from a statistical
point of view, we cannot make further arguments on the possible
nonadiabatic effect on the steplike structure in k(E). To inves-
tigate the latter, it is desirable that one performs a quantum
dynamical nonadiabatic simulation involving S0 and T1 states.
(Here, we emphasize that the present study as well as the
previous one by Kaledin et al.12 is performed wholly in terms
of classical mechanics, except that ZPE was taken into account to
define the total energy.) An approach to that end is to introduce a
reduced-dimensional model that involves S0 and T1 states, which

is the strategy used previously for the adiabatic dynamics on the
T1 surface.

3,6 The multiconfiguration time-dependent Hartree
method29�32 may also be useful for this purpose. An alternative
approach is to use a trajectory-based simulation method that
includes nuclear quantum effects approximately.33�36 Applica-
tion of those methods to the nonadiabatic dynamics of ketene
may provide more mechanistic insights into the observed steps
in k(E).

’APPENDIX A: CONDITIONAL MICROCANONICAL
DISTRIBUTION ON THE SEAM SURFACE

In this paper, we define the conditional microcanonical
distribution on the seam surface as follows:

fseamðr, pÞ ¼ δðE� T �U0Þ δðσÞj∇σj ðA1Þ
where r = (r1, ..., rN) and p = (p1, ..., pN) are the coordinates and
momenta in mass-weighted coordinates with 3 = ∂/∂r, and T =
p2/2 is the kinetic energy of the molecule. Hereafter, we denote
the potential energies of the S0 and T1 states as U0(r) and U1(r),
respectively, and σ represents the energy gap

σðrÞ ¼ U0ðrÞ �U1ðrÞ ðA2Þ
The |3σ| in eq A1 is a geometric factor that makes fseam(r,p)
invariant to an arbitrary scaling of σ(r), namely, σ(r) f k(r)
σ(r). For simplicity of discussion, we first consider the following
form of the survival probability on the T1 surface

PsurvðtÞ ¼ ÆΘðR‡ � RtÞæseam ðA3Þ
where Æ 3 3 3 æseam is an ensemble average defined by

Æ 3 3 3 æseam ¼

Z
dr
Z

dp fseamðr, pÞð 3 3 3 ÞZ
dr
Z

dp fseamðr, pÞ
ðA4Þ

We evaluate the above average by propagating a constrained
trajectory on the seam surface. To do so, we recall that a micro-
canonical system with a holonomic constraint σ(r) = 0 has the
following phase-space distribution:22

fshakeðr, pÞ ¼ δðE� T �U0Þ δðσÞ δðσ_Þj∇σj2 ðA5Þ
A critical difference between fshake(r,p) and fseam(r,p) is that the
former includes the velocity constraint, σ

·
= rσ 3 v = 0, which

states that the velocity of the constrained system is always
tangential to the constraint surface, σ(r) = 0. Note that such a
velocity constraint is absent in the ensemble of phase-space
points associated with S0/T1 intersystem crossing. To account
for this difference, it is useful to introduce the position distribu-
tion function obtained by integrating over the momenta37

~f seamðrÞ ¼
Z

dp fseamðr, pÞ

¼ const � ½E�U0�ðn � 2Þ=2δðσÞj∇σj ðA6Þ

~f shakeðrÞ ¼
Z

dp fshakeðr, pÞ

¼ const � ½E�U0�ðn � 3Þ=2δðσÞj∇σj ðA7Þ
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where n is the number of degrees of freedom and const
represents a constant independent of (r,p). Note that the
exponent of [E � U0] is different by 1/2 between eqs A6 and
A7, which suggests

~f seamðrÞ ¼ const � ½E�U0�1=2 ~f shakeðrÞ ðA8Þ
The above relation can be used to calculate an ensemble average
over fseam(r,p) by sampling fshake(r,p). To do so, we first rewrite
the ensemble average in eq A3 as follows:

ÆΘtæseam ¼

Z
dr~f seamðrÞÆΘtæpZ

dr~f seamðrÞ
ðA9Þ

whereΘt �Θ(R‡ � Rt), and Æ 3 3 3 æp represents an average over
the momenta defined by

Æ 3 3 3 æp ¼

Z
dp fseamðr, pÞð 3 3 3 ÞZ

dp fseamðr, pÞ
ðA10Þ

By inserting eq A8 into eq A9, we have

ÆΘtæseam ¼ Æ½E�U0�1=2ÆΘtæpæshake
Æ½E�U0�1=2æshake

ðA11Þ

where Æ 3 3 3 æshake is defined by

ÆAðrÞæshake ¼

Z
dr~f shakeðrÞ AðrÞZ
dr~f shakeðrÞ

¼

Z
dr
Z

dp fshakeðr, pÞ AðrÞZ
dr
Z

dp fshakeðr, pÞ
ðA12Þ

where A(r) is an arbitrary function of r. The above average can be
evaluated by running a constrained trajectory (rt,pt) on the seam
surface via use of the SHAKE method:22

ÆAðrÞæshake = lim
Tsf∞

1
T

Z T

0
dtAðrtÞ ðA13Þ

In the present case, A(r) is given by [E � U0]
1/2ÆΘtæp in

eq A12. The factor ÆΘtæp is obtained from an (internal)
average over the momenta sampled randomly from a sphere
of radius |p| = (2(E � U0))

1/2. (In practice, the latter average
can be merged with the trajectory propagation by evaluating
Θt with random momenta rather than with the current
momenta of the trajectory.) We also note that the above
sampling procedure is analogous to the bluemoon sampling
method.23 In the latter case, one samples a conditional
canonical distribution, exp(�βH) δ(σ), while in the present
case we sample a conditional microcanonical distribution,
δ(E � H) δ(σ).

In section III.B, we defined the survival probability on the T1

surface by taking account of the transition probability, i.e.

PsurvðtÞ ¼ ÆÆjυ^jPNAðυ^ÞΘðR‡ � RtÞæseam
ÆÆjυ^jPNAðυ^Þæseam

ðA14Þ

The latter expression can be evaluated analogously by rewriting
it to

PsurvðtÞ ¼ Æ½E�U0�1=2Æjυ^jPNAðυ^Þ ΘðR‡ � RtÞæpæshake
Æ½E�U0�1=2Æjυ^jPNAðυ^Þæpæshake

ðA15Þ
and calculating the average Æ 3 3 3 æshake with the SHAKE method.

’APPENDIX B: RRKM RATE CONSTANT AND ITS
CLASSICAL LIMIT

The RRKM rate for theT1 dissociation, k(E) =N
‡(E)/(2πpF-

(E)), was evaluated via direct count of anharmonic vibrational
states. Specifically, we first approximated F(E) as

FðEÞ = NRðE þ ΔEÞ �NRðE�ΔEÞ
2ΔE

ðB1Þ

whereNR(E) is the number of vibrational states in theT1 reactant
region. The vibrational states at the TS and in the reactant region
were obtained approximately as the direct product of one-
dimensional eigenstates of theHamiltonian for individual normal
coordinates {Qi}:

Ĥi ¼ � p2

2
∂
2

∂Q 2
i
þ ViðQ iÞ ðB2Þ

where Vi(Qi) is the one-dimensional section of the T1 PES in the
direction of Qi. The diagonalization of Ĥi was performed using
the discrete variable representation (DVR). For the torsional
mode ϕ, we used a hindered-rotor Hamiltonian given by

Ĥtors ¼ � p2

2Ieff

∂
2

∂ϕ2
þ Vb

2
½1� cosð2ϕÞ� ðB3Þ

where Ieff is the effective inertia moment and Vb is the torsional
barrier height. Thus, the anharmonicity of the multidimensional
PES is approximately taken into account in F(E) andN‡(E). The
above RRKM calculation was repeated for several different values
of p in order to obtain an approximate classical limit (p f 0). It
should be noted that the number of DVR grid points needs to be
increased with decreasing p. This is because the eigenfunctions
becomes more and more oscillatory for small p and also the
density of states increases with decreasing p. It is also crucial to
optimize the way of calculating NR(E) such that high energy
states are not actually included in multidimensional loops,
because failure to do so makes the calculation too time-consum-
ing for small p.
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ABSTRACT: Although the principle of microscopic reversibility has been studied for many decades, there remain ambiguities in its
application to nonequilibrium processes of importance to chemistry, physics, and biology. Examples include whether protein
unfolding should follow the same pathways and in the same proportions as folding and whether unbinding should likewise mirror
binding. Using continuum-space calculations which extend previous kinetic analyses, we demonstrate formally that the precise
symmetry of forward and reverse processes is expected only under certain special conditions. Approximate symmetry will be
exhibited under a separate set of conditions. Exact, approximate, and broken symmetry scenarios are verified in several ways: using
numerical calculations on toy and molecular systems; using exact calculations on kinetic models of induced fit in protein�ligand
binding; and based on reported experimental results. The analysis highlights intrinsic challenges and ambiguities in the design and
the analysis of both experiments and simulations.

1. INTRODUCTION

What does unbinding indicate about binding? Unfolding
about folding?1,2 Do the reverse steps of a motor simply reverse
the mechanism of the forward steps? In some systems, experi-
ments have verified an overall type of reversibility, such as for
ATP synthese which can either produce ATP driven by a proton
gradient or hydrolyze ATP to pump protons, depending on
conditions.3�5 Similarly, a tethered kinesin motor protein has
been shown to hydrolyze or synthesize ATP depending upon
concentrations of the reactants and products.6 Closer examina-
tion of some reversible processes suggests, however, that the
forward and reverse mechanisms may not always coincide.1,7

In fact, for processes that can occur via multiple mechanisms/
pathways, reversibility entails a fundamental question about
symmetry: Does a pathway occur in the same fraction in the
forward and reverse directions? For systems at equilibrium, the
answer must be in the affirmative.8,9 However, most physiologi-
cal processes take place under nonequilibrium conditions that
can resemble steady states. Experiments which study only a single
direction of a process (at a time), such as folding or binding, are
also out of equilibrium by definition. For such systems, as we will
show, the general principle of “microscopic reversibility” is not
sufficient to determine whether symmetry should hold. Molec-
ular simulations of protein processes foreshadow this point,
having provided ambiguous or conflicting conclusions about
forward�reverse symmetry.10,11

Symmetry issues not only are of fundamental interest, but they
could have broad practical implications for the design and the
analysis of experiments and computer simulations. For example,
reverse steps in molecular motors are much rarer than forward
motion; study of the reverse process would be greatly facilitated if
the forward process could be used as a model. Likewise, in a
computational setting, typically it will be much easier to observe
the unbinding of two molecules, compared to the binding

(e.g., refs 12 and 13). Similarly, unfolding is more readily
simulated than folding.1,14,15

The framework underpinning the question of forward�
reverse symmetry can be made precise. We will consider pro-
cesses which take a system from some “state”A to another state B
as well as the reverse processes. A state will be an arbitrary region
of configuration space (presumably connected although this is
not required by the formalism below). For example, in a
conformational transition in a biomolecule, a state could consist
of all configurations within a specified root-mean-squared devia-
tion from a reference structure or an ‘inherent structure’
basin.16,17 For a process involving multiple molecules (e.g.,
binding, catalysis), states are regions in the full system config-
uration space; a bound state might be defined by a cutoff distance
between molecular centers of mass, possibly augmented by
conformational conditions. Importantly, in our analysis, states
need not correspond to a single energy basin nor even to a set of
rapidly interconverting basins.

More than one dynamical pathway, or “mechanism,” may
connect a pair states A and B as has been suggested for molecular
systems, such as kinesin18�20 and adenylate kinase10,11,21,22 and
as in protein folding.1,23�25 Colloquially, a pathway Γ is a time-
ordered sequence of states through which a trajectory passes going
from A to B. For example, if there are two intermediate states, I1 and
I2, possible pathways include: (i) A�I1�B, (ii) A�I2�B, and
(iii) A�I1�I2�B. Based on the statistical mechanics of dynamical
trajectories, these different pathwayswill have different probabilities26

under a given set of defined conditions, such as equilibrium or
another steady state.

In greater detail, pathways can be understood in terms of
trajectories and projection operators. A trajectory is a sequence ζ

Received: February 6, 2011
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= {rN(t0), r
N(t0 +Δt), r

N(t0 + 2Δt, ...}, in the limitΔtf 0, of full-
system configurations rN through which a system passes at times
ti as it evolves in response to all forces and conditions. Such a
trajectory can immediately be “transcribed” as a sequence of
states, e.g., ζf {A, I1, I1, I2, I1, B }, given predefined states. The
state sequence, in turn, can be queried by a projection operator as
to whether it fulfills a set of conditions specific to a pathway Γ.
The preceding pathway examples (i�iii) correspond to the
conditions: (i) the state sequence includes I1 at least once but
not I2 ; (ii) it includes I2 but not I1; and (iii) it includes both I1
and I2 such that all occurrences of I1 precede all occurrences of I2.

The question of symmetry now can be posed precisely if we let
Γ0 be the reverse of the path Γ. We want to study when the
following symmetry of path probabilities P holds

PðΓiÞ
PðΓjÞ ¼ PðΓ0

iÞ
PðΓ0

jÞ
ð1Þ

for every pair of pathways i and j. Previous work has investigated
this issue of forward�reverse symmetry. For systems with
discrete states, a rather complete treatment was provided by
Krupka et al.8 showing that symmetry in the sense of eq 1 must
hold when A and B are single discrete states. Other work implies
the possibility of symmetric continuum systems, for instance in
the study of protein unfolding processes to obtain potential
folding intermediates.14,15 Some computational studies have
suggested the presence of symmetry,2,11,22 while others appear
to show asymmetry.10 We note that Onsager’s reciprocity
relations do not address the issue of forward and reverse
processes investigated here; moreover, those relations are based
on a linearized theory,27 but no assumption of linear behavior is
made in our general derivation.

Here we report a formal derivation of a symmetry relation for
dynamical processes, along with explicit conditions required for
the symmetry to hold.We find that, in important cases of interest,
such as when states are ill-defined or contain multiple basins,
symmetry may not hold and should not be assumed. On the
other hand, when states can be well-defined, the reverse paths can
indeed be studied using the forward process. This fact can be
exploited when there is one ‘side’ of a process which is intrinsi-
cally better defined—such as the folded state of a protein.

The derivation is based on a novel decomposition of an
equilibrium ensemble of trajectories into two special steady
states. Based on the derived conditions, several symmetric
examples and nonsymmetric counter examples are investigated
in toy andmolecular (numerical) systems. Examples culminate in
the detailed analysis of the balance among “induced fit” and
“conformational selection”mechanisms in protein�ligand bind-
ing, revealing results which appear to be new and fundamental.
We also discuss the case of driven systems, such as when binding
is coupled to catalysis of a regulated substrate, such as ATP. Some
recent experimental results bearing on symmetry are discussed.

2. DERIVATION OF THE CONDITIONS FOR SYMMETRY

This section presents a trajectory-based derivation of the
conditions required for an equilibrium-like symmetry to hold.
An alternative derivation based on a mathematical statement of
microscopic reversibility is given in the Supporting Information.
We highlight the trajectory-based derivation because it yields
additional information about retaining symmetry outside of
equilibrium.

2.1. Preliminaries: Symmetry in Equilibrium. We begin by
considering a situation of equilibrium as sketched in Figure 1,
constructed from a large ensemble of systems undergoing natural
dynamics, following a long equilibration period. For simplicity,
we assume there are two states (A and B) and two distinct
pathways or channels (i and j) connecting the states as shown in
Figure 1, but our discussion is more generally applicable. In a
system obeying detailed balance in equilibrium, both the prob-
ability density and the probability flows are unchanging in time,
reflecting averages over the large ensemble. By invoking detailed
balance, we are assuming that the Hamiltonian and the dynamics
are time invariant.
The ensemble can be usefully decomposed in several ways.

First, if we consider a single point in time, each system in the
ensemble either is in one of the states (A or B) or not. We will
focus on the fraction of systems not in either state, which can be
further classified if we assume complete knowledge of the past
and the future of each system.28 In particular, all systems which
were most recently in state A either will proceed back to state A
or make a transition to state B; call these AA and AB trajectories,
respectively. A similar classification into BB and BA trajectories
applies to systems most recently in B, leading to the schematic
flows shown in Figure 1. These classifications apply for arbitrary
definitions of states A and B—whether physically reasonable
or not.
We now want to consider the relative probabilities of two

pathways or “channels” (which can be arbitrarily defined) such
those schematized as i and j in Figure 1. In equilibrium, there is
no net flow anywhere in configuration space because detailed
balance is obeyed. For instance, along the surface shown as a
straight bar across channel i in Figure 1, there will be an equal
number of forward- (AB) and reverse-moving (BA) trajectories
in the ensemble. (As shown by Crooks,29 detailed balance
requires zero net flow among the set of AA trajectories, and so
these do not enter the discussion—and similarly for BB
trajectories.) The AB�BA balance within a pathway, in turn,
requires that the relative probability of the i and j channels in the
A to B direction must be matched exactly by that in the reverse B
to A direction. If the relative probabilities were different, then a
net flow would occur, violating equilibrium. Thus, the symmetry
relation (eq 1) is established for arbitrary definitions of A and B,
in equilibrium.
2.2. Exact Symmetry in Specially Constructed Steady States.

The first step in understanding implications of equilibrium

Figure 1. Schematic depiction of a system at equilibrium with two
states, A and B. Transitions between the two states occur via two distinct
paths, i and j. Directed lines are used to classify possible paths:
transitioning “AB” trajectories start from A and reach B before coming
back to A, whereas looping “AA” trajectories start in A but come back to
A before reaching B (both shown as solid lines). Oppositely direct “BA”
and “BB” trajectories which start from B are also shown (dashed lines).
At equilibrium, the net flux across any surface, such as the solid bar across
path i, is zero.
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symmetry is to consider two unidirectional steady states which
exactly “sum” to equilibrium. These steady states are schematized in
Figure 2. The “forward” or A to B steady state consists of trajectories
in A, along with AA and AB trajectories, as defined above. To
“complete the circuit” of this steady state, trajectories arriving in B
must be fed back into A. Although there are many ways to feed
trajectories back into A, there is a unique prescription which
precisely mimics equilibrium behavior in the A to B direction;
specifically, as schematized in Figure 2a, trajectories should be
fed back at the surface of A according to the distribution which
would occur in the equilibrium set of BA (i.e., reverse) trajec-
tories, i.e., according to the distribution of entry points, and
momenta if applicable, to state A of BA trajectories. This fully
defines the A to B steady state we wish to consider. If the reverse
or B to A steady is now prepared with a mirrored prescription
(see Figure 2b), then the two steady states together represent an
exact decomposition of equilibrium. To see this in terms of the
ensemble picture, we can say that the original equilibrium
ensemble of systems has been classified into two groups con-
stituting the forward and reverse steady states. Over time, when
a successful transition occurs (either A to B or B to A), then an
individual system switches to the opposite group—which is a
concrete way of visualizing the feedback mechanism prescribed
for the steady states.
To make further discussion more precise, we term the feed-

back procedure just described as “equilibrium-surface-based”
(EqSurf) feedback. In EqSurf feedback, trajectories are initiated
at the surface of a given state (e.g., A) according to the
distribution realized in equilibrium for trajectories entering that
state (A) which last visited the other state of interest (B).
Although most of the present discussion concerns a feedback
procedure in a steady state, we note that the EqSurf distribution
(if known) could be used to construct an initial condition for a
system not in a steady state.
Conditions for Exact Symmetry. We are now in a position to

understand the conditions necessary for equilibrium-like sym-
metry to hold when unidirectional processes (forward and
reverse) are studied separately. Equilibrium-like symmetry im-
plies that path ratios, such as in eq 1, exhibit the same values as in
equilibrium.
The conditions required for equilibrium-like symmetry are

embodied in the steady states described above. By construction,
these nonequilibrium steady states preserve the same pathway
symmetry as equilibrium, i.e., eq 1 with equilibrium probabilities.
Each “initial” state (A in the AB steady state or B in the BA steady

state) experiences trajectory inflow and outflow according to the
EqSurf mechanism, exactly as if equilibrium held. Therefore,
exact equilibrium-like symmetry cannot generally be expected
unless the EqSurf distribution is used to initiate trajectories.
Furthermore, a distribution of paths different from that exhibited
in equilibrium will generally be expected if EqSurf-initiated
trajectories are not used.
The special EqSurf-feedback mechanism, it should be empha-

sized, is not what might be expected. The most natural first
thought would be to feed back trajectories according to the
equilibrium distribution internal to the initial state, which
actually would destroy the equilibrium-like behavior. A specific
example of this is seen below in the study of induced-fit binding.
It is also noteworthy that the alternative derivation based on
microscopic reversibility (Supporting Information) does not
explicitly yield the feedback mechanism required to maintain
symmetry in a steady state.
2.3. Approximate Symmetry Requires Idealized States.

We can inquire whether the conditions for equilibrium-like
symmetry might hold approximately when feedback schemes
for establishing steady states do not exactly replicate equilibrium
or when transition trajectories are generated outside the rubric of
a steady state. In other words, under what conditions are the
precise details of the feedback scheme (or the scheme for
initializing trajectories) unimportant? Such insensitivity should
occur if the A and B states are “reasonably deep” physical basins
of attraction. Here, “deep” means that trajectories which enter
the state are likely to remain there long enough to explore the
basin fully and emerge in a quasi-Markovian way, i.e., to emerge
the way trajectories would in equilibrium regardless of where
they entered. Said another way, approximate symmetry is
expected when intrastate time scales are much less than interstate
transition times, as might be expected. Indeed, continuum
models effectively revert to discrete models in this limit.
The preceding discussion implies care is required for complex

systems where it may be difficult to define states obeying the
quasi-Markovian property just described. In such cases, the
forward�reverse symmetry relation of channel probabilities
should be viewed as an approximate guideline or reference point.
Interestingly, the presence or the absence of the symmetry (in
experimental or computational observations) can be used as a
means to validate physically meaningful state definitions.

3. EXPLORATION OF SYMMETRY: EXAMPLES AND
COUNTER-EXAMPLES

Cases of symmetric and nonsymmetric processes can be
carefully evaluated in several model systems, which serve to
illustrate principles governing more complex systems. We ex-
amine toy models, a molecular example (alanine dipeptide), as
well as the balance of induced fit and conformational selection
pathways in a kinetic model of binding.

The parameters for the toy models, the forcefield parameters
for alanine dipeptide (AD), and the dynamics used to establish
steady state are given in the Supporting Information.
3.1. Two-Dimensional Continuum Models. Continuum toy

models can exhibit a diversity of trajectories which permits illus-
tration of symmetry principles. At the same time, the simplicity of
toy models allows full sampling and enables statisically confident
conclusions. We will use the two-dimensional continuummodels
of Figure 3a�c to illustrate three key cases: (i) exact symmetry;
(ii) symmetry violation; and (iii) approximate symmetry. Each of

Figure 2. An exact decomposition of equilibrium (Figure 1) into
opposing steady states. Panel (a) shows the A to B steady state consisting
of trajectories in state A as well as the “AA” and “AB” trajectories which
were most recently in state A. The open arrowheads in (a) indicate that
trajectories are fed back to the surface of A exactly as they would reach A
from B in equilibrium (see Figure 1). This is termed “EqSurf” feedback;
see Section 2.2. A similar description applies for the reverse transition in
panel b.
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the potentials is studied in a forward (A to B) and a reverse
(B to A) steady state, with different feedback mechanisms
designed to probe symmetry issues. Overdamped Langevin
(“Brownian”) dynamics are used in all cases; details are given in
the Supporting Information along with functional forms for
the potentials.
Trajectories based on the potentials and states of Figure 3 can

exhibit or violate symmetry depending on how they are initiated.
If a steady state is established using EqSurf feedback (Section
2.2), then Figure 3d shows that symmetry between forward and
reverse directions is indeed obtained, as expected. That is, the
fraction of trajectories taking a given path is the same in the A to B
and B to A directions. However, when trajectories are initiated
from a single point after feedback, symmetry is violated as indicated in
the blue traces of Figure 3d. The violation is particularly acute in the
potential of Figure 3a because the states are rather arbitrary and do
not correspond to physical basins.
Although EqSurf feedback leads to exact symmetry, approx-

imate symmetry can be achieved without precise initial condi-
tions or feedback, if suitable states can be defined. In the potential

of Figure 3b, the states correspond to well-defined, single energy
basins. Figure 3e shows that symmetry can be exhibited for such a
system even when the EqSurf feedback procedure is not used. In
the present example, a point feedback scheme is used to initiate
trajectories. For a sufficiently deep basin, the exit point of a
trajectory is uncorrelated with the entry point as might be
expected (Section 2.3).
In a nonsymmetric example, the barrier which is internal to

state A in Figure 3c breaks the quasi-Markovian property in
which a trajectory’s exit point from a state will be uncorrelated
with its entry point. When trajectories are initiated in state A
exclusively on one side of the barrier, Figure 3f shows that
symmetry is violated. In this case, time scales internal to a state
have become significant compared to transitions times, which
may indeed model complex biomolecules that can be expected to
possess significant barriers internal to (hypothesized) states.
3.2. A Molecular System: Alanine Dipeptide.We now show

that a molecular system with well-defined states obeys the
symmetry relation (eq 1) to a good approximation. Figure 4
shows two stable states of an atomistic model of AD. Although

Figure 3. Two dimensional potential energy surfaces (panels a�c), and corresponding fractions of trajectories in a particular transition path (panels
d�f). Each potential energy surface shows two states A and B as well as two transition pathways between the two states. Each potential exhibits
characteristic features: (a) states are not well-defined basins; (b) states are well-defined basins; and (c) states are well-defined basins but state A has an
internal barrier. The positions for point feedback in the respective steady states are denoted by crosses. The corresonding fractions of trajectories in path
2 along both the directions are shown in the right panels. For the potential in panel a, results for equilibrium-based (EqSurf) feedback are also shown.
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AD is a relatively simple biomolecule, transitions between the
two stable states can follow multiple pathways.30�33 We categor-
ize the transition paths into four types, as shown in Figure 4.
Steady-state trajectories were generated using steady-state
weighted ensemble path sampling as described elsewhere.33

Table 1 shows the percentages of trajectories at a temperature of
500 K in the four paths between A and B, as shown in Figure 4. The
error bars represent two standard errors of the mean and are
computed from eight independent simulations. Within errors, each
path occurs with the same fraction in the two directions, i.e.,
symmetry is observed. Trajectories were initiated, after feedback,
from configurations at the centers of the states indicated in Figure 4.
AD illustrates a practical consequence of the symmetry rela-

tion because overall transition rates in the two directions differ by
almost 2 orders of magnitude: 1.5/ns in the A to B direction,
compared to 123/ns in reverse. Thus the “easy” direction can be
used to reveal pathways of the reverse process.
3.3. Symmetry of Induced Fit Processes. The possible

coexistence of both “induced fit” (IF) and “conformational
selection” (CS) pathways in protein�ligand binding has recently
received attention.34,35 The IF mechanism (upper pathway in
Figure 5) entails initial complexation of a ligand L to a weak-
binding conformation W of a receptor, leading to state WL,
followed by fitting to a tightly bound complex TL. In the
conformational selection pathway (lower pathway in Figure 5),
by contrast, the ligand binds directly to the tight-binding con-
formation T, which is in equilibrium with W. We analyze the
balance among these pathways using the kinetic model shown in
Figure 5, which was previously employed by others.34,35 The use
of nontraditional symbols for rate constants reduces the use of
subscripts and superscripts. We note that k, ν, and ω are first-
order rate constants, while σ denotes a second-order rate
constant.

Exact calculation of the ratio of IF and CS pathways confirms
the symmetry relation fully, as described below, and also demon-
strates the predicted dependence of path probabilities on state
definitions. To our knowledge, this latter sensitivity has not been
previously noted. Symmetry can be violated, moreover, if one of
the end states consists of multiple substates and if feedback
(or initialization) is not performed suitably.
We show that the symmetry is preserved for different for-

mulations of the problem (via different state definitions), the first
of which is schematized in Figure 6. In this case, the initial state is
chosen as state W alone, with TL as the final state, yielding the
ratio of pathways:35

PðΓCSÞ
PðΓIFÞ ¼ σTLkWT

σWLνWT

ωWL þ νWT

kTW þ ½L�σTL
ðstate A ¼ WÞ ð2Þ

where [L] is the free ligand concentration. The same result is
found whether the forward or reverse process is considered; see
full details in the Supporting Information.
As an alternative formulation of the problem, it is also natural

to have the initial state A consist of the overall unbound state (i.e.,
both W and T), again with TL as the final state. This scheme,
which we emphasize employs precisely the same kinetic model, is
illustrated in Figure S1 in the Supporting Information. It yields a
different ratio of path probabilities, now concentration independent:

PðΓCSÞ
PðΓIFÞ ¼ σTLkWT

σWLνWT

ωWL þ νWT

kTW
ðstate A ¼ W þ TÞ

ð3Þ
Again, the ratio is the same for forward and reverse process, but
the EqSurf feedback described in our derivation (Section 2.2)
must be used because the initial state consists of two “substates,”
WandT. Importantly, the symmetry-preserving EqSurf feedback
uses the ratio of fluxes from (eq 3), which is not the equilibrium
population ratio [T]eq/[W]eq = kWT/kTW. Details are given in
Supporting Information.
Although the symmetry we find here is not surprising, two

observations appear to be novel: First, the ratio of the two
mechanisms is sensitive to the (subjective) choice of the initial
state and is concentration dependent in one case but not the
other. Second, when the initial state contains more than one
substate (e.g., W and T), symmetry is only obtained exactly if
EqSurf feedback is used. In a discrete system, EqSurf corresponds
to initiating trajectories according to the ratio of fluxes which
enter the substates in equilibrium, which is different from the
equilibrium ratio of substate populations. If EqSurf initiation is
not used, symmetry will hold approximately when the transition
rates among state A’s substates (the rates kWT and kTW) aremuch
faster than other processes, leading to quasi-Markovian behavior

Table 1. Percentage of Transition Trajectories in Four Dif-
ferent Paths (described in Figure 4) at Steady States in the
Two Directions for AD at 500 K

path 1 path 2 path 3 path 4

A to B 46.0 ( 6.1 17.6 ( 1.7 2.7 ( 1.0 33.7 ( 4.4

B to A 47.6 ( 3.8 15.5 ( 2.9 5.5 ( 3.9 31.4 ( 3.0

Figure 5. A standard kinetic model including both IF and CS pathways.
All rate constants are specified.

Figure 4. Ψ�Φ plane of alanine dipeptide, with two stable states,
labeled A and B, shown via circles. Due to periodicity of the system, there
are multiple transitions paths. We divide the paths into four types, as
shown. The dashed rectangle quantifies the path definitions, e.g., for A to
B transition, if the transition trajectory enters the rectangle from the left
of segment ab, the path is classified as path 1.
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as discussed earlier. The presence of second-order kinetics (i.e.,
depending on concentrations) does not impact the symmetry
arguments developed previously, but details of the calculation are
more complicated, not surprisingly; see Supporting Information.

4. DISCUSSION

4.1. Symmetry Considerations in Catalysis-Coupled and
Driven Systems. While symmetry arguments appear to have
broad application, the underlying equilibrium-based assumptions
used above break down for driven systems. Many biological
systems are driven by coupling to a secondary reaction, such as
ATP hydrolysis.36 Interestingly, it is not the hydrolysis per se that
limits the symmetry argument, but rather the fact that the cell
“drives” the process by synthesizing ATP through an unrelated
mechanism. As can be deduced from Figure 7, symmetry
arguments could be applied to a system which couples binding
and catalysis, so long as the entire system is analyzed. However, if
part of the system is excluded (e.g., ATP synthesis through a
mechanism other than reversal of the process shown), then the
fact that the rate constants will differ for pre- and postcatalytic
processes destroys the symmetry. To see this, note that when the
system of Figure 7 is driven to the right, the off-rates from theWP
and TP states can be seen as the rates of feedback to theW and T
states. These postcatalytic off-rates generally will not fulfill the
requirements for preserving symmetry; see the analysis of case 2
in the Supporting Information.
Driven systems in other contexts should also not be expected

to show symmetry, and indeed the term “hysteresis” describes
this textbook fact in the physical sciences. Hysteresis, such
as in magnetic systems, occurs when there is driving (out of
equilibrium) by a magnetic field, often followed by reverse

driving along a different pathway in the “plane” of average
magnetization vs the applied field. Loads applied to motor
proteins can be construed similarly, which will contribute further
to the asymmetry already expected from coupling to ATP
hydrolysis.
4.2. Could Nonequilibrium-Like Symmetry Occur? On a

more fundamental level, one can ask whether it is possible to
construct a process which is the symmetric reversal of an arbitrary
nonequilibrium process. That is, given a “forward” process (e.g.,
protein folding following a quench) in which trajectories are
initiated from some nonequilibrium distribution and in which the
resulting path distribution differs from that in equilibrium, can we
construct a reverse process so that the symmetry of eq 1 is
realized? In principle, one can imagine time-reversing the entire
process by initiating momentum-reversed trajectories from the
target state. However, in practical cases of interest where a
system’s degrees of freedom are coupled stochastically to a
thermal environment, achieving symmetry for a nonequilibrium
process does not seem possible in general. This can be seen by
constructing a counter example: If the reverse process is initiated
from a sufficiently deep basin, emerging trajectories will be
effectively Markovian and will exhibit an equilibrium distribution
of paths regardles of the nature of the forward process. Never-
theless, we cannot rule out the possibility in principle of
processes obeying eq 1 but with ratios different from equilibrium.
4.3. Symmetry Aspects of Related Experimental Results.

The preceding discussion hints at the complexities which con-
front the analysis of experimental results. The apparent clarity of
the “microscopic reversibility” concept ultimately offers little
insight, as our report demonstrates. Most basically it can be
expected that different methods initializing a nonequilibrium
study, which is akin to performing steady-state feedback in
different ways, will lead to different results, as has been noted
in the case of protein folding.1,37,38 A folding experiment can be
understood as a “quench” to a nonequilibrium condition that will
depend on whether the protocol used altered pH, chemical
denaturant, or elevated temperature.1,39,37,40

Asymmetric findings for forward and reverse processes can be
understood in the context of this study. For example, it was
recently reported that the mechanism of a peptide’s insertion
into a lipid bilayer differed dramatically from its exit mechanism.7

This is hardly a violation of microscopic reversibility. Rather, it
reflects the altered driving “force” applied in order to observe the
insertion and exit processes separately, namely, two different pH
values.
4.4. Can Equilibrium-Like Symmetry Be Observed in Sim-

ulations? It seems possible, and even practical, to construct a
simulation protocol for a “forward” process which is guaranteed

Figure 6. Equilibrium is divided into forward (AB) and reverse (BA) steady states to examine the induced fit question. Steady states are shown for the
case when state A is chosen to be W only. (a) In equilibrium, there is an exact balance of flows. (b) In the AB steady state, the feedback from state B
(i.e., TL in this model) to state A (i.e., W) reduces some flows. Open arrows denote flows of probability occurring in equilibrium, and single-line arrows
denote reduced flows occurring in a steady state. (c) In the BA steady state, there is a similar reduction of flows due to feedback fromW to TL. The flows
in the two steady states exactly sum to equilibrium flows by construction. Arrow sizes are not to scale.

Figure 7. Coupling of IF binding to catalysis. The binding model of
Figure 5 is now coupled to catalysis, with ligand relabeled “S” for
substrate, which is catalyzed to product “P.” The postcatalytic processes
shown with dashed arrows will have different rate constants from the
corresponding precatalytic processes. Although equilibrium-based sym-
metry arguments can be applied to this system as shown, an equilibrium
basis is invalid when there is an external source of substrate S.
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to mirror the reverse process. Specifically, if one can achieve
transitions from state A to B (e.g., using a steady-state path
sampling approach)33 then trajectories reaching B can be fed
back to the surface of A using the EqSurf prescription of Section
2.2. The necessary distribution of entry points to state A can be
obtained, using a detailed balance argument, by reversing
(stored) phase-space coordinates at the surface of A of trajec-
tories which later successfully transitioned to B.
4.5. Overview of Symmetry Issues in Observable Systems.

Although systems in equilibrium exhibit forward�reverse sym-
metry by virture of detailed balance, experimental observations of
pathways are almost always made out of equilibrium (e.g., for
protein folding). In other words, the question of symmetry
becomes interesting in cases where standard equilibrium princi-
ples, such as detailed balance, cannot be brought to bear.
This study suggests that for systems not in equilibrium, one

generally should not expect forward and reverse processes to
mirror one another in the sense of eq 1. Exact, equilibrium-like
symmetry (i.e., where the ratios of eq 1 are that of equilibrium)
only can be generally guaranteed using the EqSurf process for
initiating systems, as described in Section 2.2. Approximate
symmetry may be observed in cases where both end states are
deep basins exhibiting the quasi-Markovian propperty (Section
2.3), but it is not clear that such states can typically be identified
for complex systems. It does appear possible, interestingly, to
construct exactly reversed equilibrium-like systems in a simula-
tion context, as described in Section 4.4.
This report has not systematically investigated the issue of

whether an arbitrary nonequilibrium process (exhibiting path
ratios that differ from equilibrium) can be symmetrically re-
versed. However, we speculate in Section 4.2 that such symmetry
is unlikely to be observed for typically complex systems.

5. CONCLUSIONS

We have addressed the question of symmetry for forward and
reverse directions of a wide class of nonequilibrium processes
important in biomolecular contexts, including conformational
transitions, binding, and folding. To what extent does a reverse
process mirror forward events, in terms of the distribution of
pathways? Although the symmetry issue previously has been
addressed for discrete systems,8 the present work contributes a
more encompassing theoretical view applicable to continuum
systems and also establishes a basis for understanding asymmetry
in driven systems. In our trajectory-based derivation of equilib-
rium-like symmetry conditions, the equilibrium state is exactly
decomposed into forward and reverse steady states. The formal
symmetry in the two steady states occurs only under special
conditions which are made explicit: Processes must be initiated
according to a precise prescription (termed “EqSurf”, Section
2.2) in order for exact symmetry to hold and for the pathway
distribution to recapitulate that found in equilibrium. Never-
theless, for systems with well-defined physical states character-
ized by rapid intrastate relaxation, approximate symmetry can be
observed even when the symmetry conditions are violated. It
appears to be an open question, however, whether biomolecular
systems of interest tend to exhibit suitably well-defined states.

From a broader perspective, we have seen that a microscopic
law does not have a direct “macroscopic” corollary. That is,
microscopic reversibility does not directly translate into sym-
metric, reversible, observable processes. Unidirectional processes
observable in experiments cannot be initiated from a precisely

defined phase-space distribution and hence are subject to the
uncertainties described here. The general sensitivity to initial
conditions in complex systems has been noted previously for the
unfolded state of proteins.1,37,38

The implications of the symmetry relation and its conditions
could be wide ranging for both experimental and theoretical/
computational studies. For instance, the symmetry conditions
offer a prescription for when unfolding pathways will mirror
folding, namely, if the folded state is characterized by fast
relaxation processes and if folding is initiated from the EqSurf
distribution described above. Furthermore, the folding and the
unfolding must occur under the same conditions (e.g., tempera-
ture, pH), as has been noted before.1,2 A similar characterization
can be applied to the use of unbinding studies to explore binding.
We have also described a possible computational procedure for
achieving symmetric reversals. Thus, the symmetry discussion
presented here may open new avenues for analysis and produc-
tion of biophysical data.
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ABSTRACT: Twenty-two reaction schemes have been tested, within the cluster-continuum model including up to seven explicit
water molecules. They have been used in conjunction with nine different methods, within the density functional theory and with
second-order Møller�Plesset. The quality of the pKa predictions was found to be strongly dependent on the chosen scheme, while
only moderately influenced by the method of calculation. We recommend the E1 reaction scheme [HA + OH� (3H2O) T A�

(H2O) + 3H2O], since it yields mean unsigned errors (MUE) lower than 1 unit of pKa for most of the tested functionals. The best
pKa values obtained from this reaction scheme are those involving calculations with PBE0 (MUE = 0.77), TPSS (MUE = 0.82),
BHandHLYP (MUE = 0.82), and B3LYP (MUE = 0.86) functionals. This scheme has the additional advantage, compared to the
proton exchange method, which also gives very small values of MUE, of being experiment independent. It should be kept in mind,
however, that these recommendations are valid within the cluster-continuum model, using the polarizable continuum model in
conjunction with the united atom Hartree�Fock cavity and the strategy based on thermodynamic cycles. Changes in any of these
aspects of the used methodology may lead to different outcomes.

’ INTRODUCTION

There is a huge amount of substances that behave as Brønsted
acids or bases in aqueous solution. Proton-transfer equilibriums are
therefore very important for a large variety of chemical compounds
and in particular for pharmaceuticals, which frequently are weak
acids or bases.1 Acid dissociation constants (Ka) not only
characterize the acidity of these compounds but also influence
their reactivity. They are commonly reported as pKas, and their
values are related to numerous properties of drugs, such as
solubility and rate of absorption.2 They are also taken into account
to decide dosage forms and regimes of drugs.3 Therefore the
accurate knowledge of pKas is highly important for practical
purposes as well as for understanding the behavior of chemicals
under different conditions.

There are several experimental techniques that have been
successfully applied to accurately determine pKas. However some-
times this becomes a challenging task,4 for example, for short-
living intermediates and for very weak or very strong acids.5 Thus
a large amount of works have been devoted to obtain pKa values
using theoretical methods.2,5�26 Different calculation strategies
and current trends have been recently and thorougly reviewed by
Ho and Coote.27

Considering all the information gathered so far it becomes
evident that estimating accurate pKas using computational meth-
odologies remains a very complicated problem. The difficulties are
numerous. To start with, deprotonation processes do not con-
serve the number of charged species on both sides of the
equilibrium. Therefore there is no cancellation of errors when
computing energies of reaction. As a result, the accuracy of these
relative energies is not as predictable as for processes where the

number of charged species is conserved. A second problem is that
even though high-level composite methods, such as Gaussian-n
(Gn)28 and complete basis set (CBS)29 variations, are now
available for producing accurate gas phase energies, the
calculations in solution have not reached such level of accuracy
yet. Moreover, Gn and CBS methods are still computationally
unfeasible for moderately large systems, which is the case of most
chemicals. An additional problem, particularly important for
calculating pKas in aqueous solution, is that specific short-range
solute�solvent interactions are not included when continuum
models are used. On the other hand, using discrete models,
including a large enough number of solvent molecules, within ab
initio or density functional theory (DFT) frameworks, would be
so computationally demanding that it is currently an unattainable
option. If we take into account that all the above-mentioned
problems represent sources of error, that do not necessarily
cancel out, and that an error of 1.36 kcal/mol in the Gibbs free
energy of the deprotonation reactions (ΔG) represents an error
of 1 pKa unit, then it becomes evident that producing accurate
pKa values from theoretical calculations is a very challenging task.
In fact it is currently accepted that mean absolute deviations
smaller than 2 units of pKa are reasonably accurate.

27

Albeit a wide variety of strategies that have been developed to
overcome such difficulties, in this work we will focus on those
involving thermodynamic cycles. This approach allows a large
flexibility in designing reaction schemes that maximize systematic
error cancelations.27 Some of them can be designed in such a way
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that the number of charged species is conserved on both sides of
the deprotonation equilibrium. Thermodynamic cycles also
allow obtaining Gibbs free energies in solution ΔGs from Gibbs
free energies in gas phase (ΔGg) and Gibbs free energies of
solvation (ΔGsolv). This seems to be an efficient strategy since
continuum solvation models are parametrized to produce accu-
rate ΔGsolv, but the levels of theory at which they are usually
implemented are not sufficient to accurately reproduce ΔGs.

27

Therefore it is possible to take advantage of using higher levels of
theory to calculateΔGg and therefore to improve the accuracy of
the results. However, as mentioned before, bulk polarization
effects are not necessarily enough to accurately reproduceΔGsolv

because of the short-range solute�solvent interactions. One way
to overcome this issue, without making the calculations compu-
tationally prohibited, is to include a few solvent molecules in
close proximity to the solute, in addition to using a dielectric
continuum model. This hybrid explicit/implicit solvation model
is known as the discrete-continuum,30 the supermolecule-reac-
tion field,31 and the cluster-continuum model.32

Taking into account all the possible levels of theory, solva-
tion methods, reaction schemes and number of explicit solvent
molecules that can be used for calculating pKas with thermo-
dynamic cycles, the amount of variations becomes almost
infinite. Therefore in this work we will focus on levels of theory
that are computationally feasible for relatively large molecules,
mainly within the DFT framework. They are used in combina-
tion with the polarizable continuum model (PCM), which is
currently one of the most widely used for calculating pKas in
aqueous solution. Twenty-two reaction schemes have been
used, some based on those previously reported by other authors
and some proposed for the first time. In addition the cluster-
continuum model has been used, including up to seven explicit
water molecules. To test the resulting strategies we have chosen
four nonsteroidal anti-inflammatory drugs, which are phenolic
derivatives: acetaminophen, profadol, tapentadol, and ketobe-
midone. Then the study has been extended to a larger series of
phenols.

Phenolic compounds are the focus of our study since they are
ubiquitous and versatile substances. They have been identified
to have multiple biological activities, including antioxidant33

and cardioprotective34 effects as well as anti-inflammatory,35

antimicrobial, and antiviral36 activities. They are also used to
prevent and treat cancer37 and neurodegenerative diseases38 and
to prevent skin damage39 and osteoporosis.40 Phenols are even
proposed to have inhibitory effects against obesity.41 All these
biological activities take place within the human body, i.e., at
different pHs depending on the specific site of action. Since their
effects vary depending of their pKa, which rules the fractions of
their acid/base forms under specific conditions, it is vital to know
this data.33f In addition, from a computational point of view,
phenols represent an extra challenge for estimating acid constants,
due to the influence of solvation in the proper description of the
phenoxide anions’ geometry.10 Even though highly accurate
strategies have been proposed for calculating the pKas of
phenols, they involve CBS-QB3 calculations,10 which are com-
putationally unfeasible for most phenolic compounds with
biological activity.

Based on the systematic analysis of the extensive data
obtained, a few strategies are recommended for accurate calcula-
tions of aqueous pKas of relatively large-sized molecules with
phenolic deprotonation sites, at reasonable computational cost.

’COMPUTATIONAL DETAILS

Full geometry optimizations and frequency calculations were
performed with the package of programs Gaussian 03.42 Different
levels of theory have been used: BLYP, B3LYP, BHandHLYP,
PBE, PBE0, PW91, BMK, TPSS, and M05-2x DFT methods and
the MP2 wave function method for some of the smallest systems.
All of them in conjunctionwith the 6-311++G(d,p) basis set. Local
minima were identified by the absence of imaginary frequencies.
The stationary points were first modeled in gas phase (vacuum),
and solvent effects were included a posteriori by single point
calculations using a PCM, specifically the integral equation
formalism (IEF-PCM).43 In PCM calculations, the choice of
the solute cavity is important because the computed energies and
properties strongly depend on the cavity size. In the present
study the cavity has been built using the united atom model for
Hartree�Fock (UAHF) method,44 at HF/6-31+g(d), which is
the recommended approach for predicting free energies of
solvation according to the Gaussian 03 User’s Reference.45

Relative Gibbs free energies in solution ΔGs have been
computed using the Hess law and thermodynamic cycles, as the
sum of the corresponding gas-phase free energyΔGs and the free
energy of salvation (ΔGsolv). They include standard thermal
corrections at 298.15 K. In all the cases the used reference state is
1 M. The aqueous Gibbs free energies for the deprotonation
reactions are in turn used to compute the acid equilibriumconstant
(Ka), according to

Ka ¼ e�ΔGs=RT ð1Þ
Then, the pKa values are obtained using its definition:

pKa ¼ � logðKaÞ ð2Þ
which can also be calculated directly fromΔGs, from expressions
that depend on the particular scheme of reaction used to model
the deprotonation process.
Reaction Schemes. The reaction schemes tested in this work

are reported in Table 1, together with the expressions corre-
sponding to direct calculations of pKa from ΔGs. The latter have
been calculated using the strategy based on thermodynamic
cycles described above. For example for the reaction scheme A,
the cycle is

and the Gibbs free energy of reaction in solutionΔGs is obtained
as the sum of the Gibbs free energy of reaction in vacuum (ΔGg)
and the difference in solvation free energies (ΔΔGsolv):

ΔGs ¼ ΔGg þ ΔΔGsolv ð3Þ
where ΔΔGsolv and ΔGg are calculated as

ΔΔGsolv ¼ ΔGsolvðA�Þ þ ΔGsolvðHþÞ �ΔGsolvðHAÞ ð4Þ

ΔGg ¼ GgðA�Þ þ GgðHþÞ �ΔGgðHAÞ ð5Þ
with ΔGsolv representing the free energies of solvation of each
species.
Scheme A is by far the most frequently used, probably because

of its simplicity. However it involves the proton, and it is known
that computational methods poorly reproduce the solvation
energies of this particular species. Therefore the ΔGg(H

+) and
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ΔGsolv(H
+) values have been derived from experiments. This

constitutes the main disadvantage of using scheme A because the
reported experimental values of the solvation free energy of the
proton range from�259 to�264 kcal/mol.19 Such variation is an
important source of error in the calculation of pKas, i.e., it alone
represents about 3 pKa units. In this workwe have usedΔGg(H

+) =
�4.39 kcal/mol and ΔGsolv(H

+) = �265.89 kcal/mol, based on
the recommendation of Camaioni and Schwerdtfeger.46

A simple strategy to avoid using experimental values ofΔGsolv

is to use a water molecule as a coreactant (scheme B). This
strategy can be extended, within the cluster-continuummodel, by
including more than one water molecule and modeling the proton
and/or the anionic conjugated base explicitly solvated (schemesC
and F). The difference between these two kinds of schemes is
that in C schemes, the proton is solvated with only one water
molecule, while in F schemes, it is solvated by four of them.
Moreover the explicit solvation can also be applied to the acid
(schemes CN and FN). However the number of charged species
on both sides of the equilibrium is not conserved for any of these
schemes.
Scheme D, on the other hand, usually lead to more reliable

values of pKas since the number and the kind, of charged species
is conserved on both sides of the chemical equation. This
particular approach is known as the proton exchange method,
the isodesmic method, or the relative method to calculate pKas.
Themain problemwith this approach is that its outcome strongly
depends on the choice of the reference acid (HRef). Therefore,
the quality of the results would be determined by the structural
similarity between HRef and HA, and also by the accuracy of the
experimental value of pKa(HRef). In this work we have used
phenol as HRef, and its pKa value equal to 10.09.47 From a
theoretical point of view schemes D and A both have the same
drawback, they directly depend on experimental data. Such

experiment dependency weakens the predictive character of
any computational methodology aiming for predicting pKas or
any other chemical property. Thus schemes E and EN have the
advantage of being experiment independent, and at the same time,
they conserve the number and kind of charged species on both
sides of the equilibrium. The variations among them (E1�E3
and EN1�EN3) differentiate only on the number of the explicit
water molecules and on the explicit solvation of the different
species involved in the equilibrium.
It should be noticed that for those reaction schemes that

explicitly includes water molecules, it is necessary to correct for
the standard state of liquid water, i.e., 55.55 mol/L. In fact it has
been previously demonstrated that ignoring such correction leads
to systematic errors.48,49

’RESULTS AND DISCUSSION

General Considerations. Three of the nonsteroidal anti-
inflammatory drugs studied in this work (profadol, tapentadol,
and ketobemidone, Figure 1) have a tertiary amine site. There-
fore, they may have more than one pKa, and it is necessary to
assess the relative acidity of these sites. To that purpose, we have
modeled the protonated species and estimated the deprotona-
tion energies from both acid sites. The formed products are the
nonionic (deprotonation from the amino site) and the zwitterion
(formed by deprotonation from the phenol site). The zwitter-
ionic forms were found to be 10.63, 11.08, and 20.57 kcal/mol
higher in Gibbs free energy than the nonionic form for ketobe-
midone, profadol, and tapentadol, respectively, in aqueous solu-
tion. Therefore the zwitterionic forms of these compounds have
been ruled out. In addition, for acetaminophen, we have esti-
mated the relative ease of deprotonation from the �NH
and �OH groups and confirmed that the Gibbs free energy of

Table 1. Reaction Schemes and the Corresponding Expressions to Directly Calculate pKa Values From ΔGs

scheme equilibrium pKa =

A HA T H+ + A� ΔGs/RT ln (10)

B HA + H2O T H3O
+ + A� ΔGs/RT ln(10) � log[H2O]

C1 HA + 2H2O T H3O
+ + A�(H2O) ΔGs/RT ln(10) � 2log[H2O]

C2 HA + 3H2O T H3O
+ + A�(2H2O) ΔGs/RT ln(10) � 3log[H2O]

C3 HA + 4H2O T H3O
+ + A�(3H2O) ΔGs/RT ln(10) � 4log[H2O]

D HA + ref� T A� + HRef ΔGs/RT ln(10) + pKa(HRef)

E1 HA + OH�(3H2O) T A�(H2O) + 3H2O (ΔGs)/RT ln(10) + 14+ 3log[H2O]

E2 HA + OH�(3H2O) T A�(2H2O) + 2H2O ΔGs/RT ln(10) � 2log[H2O]

E3 HA + OH�(3H2O) T A�(3H2O) + H2O ΔGs/RT ln(10) + 14 + log[H2O]

F1 HA + 4H2O T H3O
+(3H2O) + A� ΔGs/RT ln(10) � 4log[H2O]

F2 HA + 5H2O T H3O
+(3H2O) + A�(H2O) ΔGs/RT ln(10) � 5log[H2O]

F3 HA + 6H2O T H3O
+(3H2O) + A�(2H2O) ΔGs/RT ln(10) � 6log[H2O]

F4 HA + 7H2O T H3O
+(3H2O) + A�(3H2O) ΔGs/RT ln(10) � 7log[H2O]

CN1 HA(H2O) + H2O T H3O
+ + A�(H2O) ΔGs/RT ln(10) � log[H2O]

CN2 HA(H2O) + 2H2O T H3O
+ + A�(2H2O) ΔGs/RT ln(10) � 2log[H2O]

CN3 HA(H2O) + 3H2O T H3O
+ + A�(3H2O) ΔGs/RT ln(10) � 3log[H2O]

FN1 HA(H2O) + 4H2O T H3O
+(3H2O) + A�(H2O) ΔGs/RT ln(10) � 4log[H2O]

FN2 HA(H2O) + 5H2O T H3O
+(3H2O) + A�(3H2O) ΔGs/RT ln(10) � 5log[H2O]

FN3 HA(H2O) + 6H2O T H3O
+(3H2O) + A�(3H2O) ΔGs/RT ln(10) � 6log[H2O]

EN1 HA(H2O) + OH�(3H2O) T A�(H2O) + 4H2O ΔGs/RT ln(10) + 14 + 4log[H2O]

EN2 HA(H2O) + OH�(3H2O) T A�(2H2O) + 3H2O ΔGs/RT ln(10) + 14 + 3log[H2O]

EN3 HA(H2O) + OH�(3H2O) T A�(3H2O) + 2H2O ΔGs/RT ln(10) + 14 + 2log[H2O]
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the anion formed by deprotonation of the�OH is 10.97 kcal/mol
lower than that of the anion formed by deprotonation of the�NH,
in aqueous solution. After these analyses it can be concluded that
the processes modeled in the present work correspond to the
actual phenolic deprotonations involved in their observed acid/
base equilibrium.
In addition, it seems worthwhile to call attention on a previous

report, by Liptak et al.,10 describing that while the inclusion of the
solvent has little effect on the phenols’ geometries, it has a
significant effect on the phenoxide anions. Since the geometrical
parameter that changes the most is the CO distance, we have
used it to analyze this point. In ref 10, dCOwas found to be 1.251
Å in gas phase and 1.298 Å in solution, modeled using the
continuum approach CPCM. In both cases the geometry opti-
mizations were performed at HF/6-31+G(d) level of theory. In
our case the solvent wasmodeled by including up to three explicit
water molecules in the vicinity of the CO group. The dCO values
obtained for each studied phenol, at every level of calculation, are
reported in Table 1S, Supporting Information. The average value
of dCO, including all methods of calculation and all the studied
phenols, is found to be 1.266, 1.282, 1.293, and 1.301 Å for the
anions with 0�3 explicit water molecules, respectively. The dCO
average values, per method, have been plotted in Figure 2. The
geometry optimizations performed with the BLYP functional
systematically lead to the longest CO distances, while the short-
est ones arise from optimizations with BHandHLYP. To our best
knowledge there is no experimental data reported in the CO
distance of phenoxides, but taking the value reported by Liptak

et al.10 as reference, it seems that the inclusion of one or two
water molecules in the vicinity of the anions is enough to obtain
good geometrical descriptions of these species.
Due to the large amount of calculations involved in the present

work, it was unfeasible to perform exhaustive conformational
analyses for the solute�water clusters. We have used chemical
intuition and previous experience instead to construct the starting
geometries in each case. To provide information on the optimized
structures of the modeled clusters, the geometries corresponding
to the acetaminophen system are shown in Figure 3. Since only
small variations were found from changing the calculationmethod,
we have chosen only one of them to show the geometrical
distribution of the clusters. Equivalent configurations were
located for all the studied phenolic systems.
pKa Estimations. The pKa values calculated for the studied

nonsteroidal anti-inflammatory drugs (Figure 1) using the reac-
tion schemes from Table 1 and the different levels of theory are
provided as Supporting Information (Tables 2S�5S). The signed
errors (SE) arising from comparison with the experimental
values are reported in Tables 2�5. The SE values smaller
than(2 units of pKa have been highlighted in bold letters, since
this is the limit of accuracy currently accepted for calculated
pKas.

27 To facilitate rapid comparisons among all the reported
data, the unsigned errors (UE) have been plotted in Figures 4�7.
Acetaminophen. For the phenolic deprotonation of aceta-

minophen, it was found that the outcomes from most of the
tested reaction schemes lead to overestimated pKa values
(Table 2). The exceptions are schemes D, E1, and EN1, which
produce pKa values lower than the experimental one. In general
the quality of the pKa predictions was found to be strongly
dependent on the chosen scheme, while it is only slightly
influenced by the method of calculation (Figure 4). The errors
arising from MP2 calculations are larger than those obtained
within the DFT framework for E1 and EN1 schemes, and smaller
when the E2 scheme is used. For all the other reaction schemes,
the MP2 deviation from the experimental value was found to be
intermediate, with respect to those arising from different DFT
functionals. Therefore there is no use to additional computational
cost arising from using MP2 instead of DFT. Reaction schemes
C, CN, F, and FN lead to very large errors, regardless of the
method of calculation and of the number of explicit water
molecules included in the modeling. Curiously increasing the
number of water molecules when using these reaction schemes
does not improve but worsens the results for acetaminophen. In
general the reaction schemes leading to the smallest errors are A,

Figure 2. Variation of the CO distance in the phenoxide anions, with
the number of explicit water molecules.

Figure 3. Geometries of the solute�water clusters, for the acetamino-
phen system, optimized at TPSS/6-311++G(d,p) level of theory.

Figure 1. Studied nonsteroidal anti-inflammatory drugs.
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D, E1, and EN2. With the exception of scheme A, these schemes
are just those that conserve the number and kind of charged
species at both sides of the equilibrium, and among them scheme
A is just the one leading to largest errors.
Analyzing in more detail the results reported in Table 2, some

peculiarities become evident. For the reaction scheme A, func-
tionals BLYP, BHandHLYP, PBE, and PW91 produce a SE larger
than 2 units of pKa. PW91 also yields a SE larger than 2 within
scheme EN2. On the other hand the SE, obtained from M05-2X
calculations in conjunction with scheme E2 and fromTPSS using
the scheme B, is significantly lower than this limit. PBE and
PW91 functionals also produce very low errors when used in
conjunction with the B scheme. In fact these are the only two

functional for which the UE values arising from using scheme B
are smaller than those obtained from scheme A. UE values smaller
than 2 were also obtained for acetaminophen from PBE calcula-
tions using reaction schemes F1, CN1, and EN1 and from PW91
calculations using react F1, CN1, EN1, and FN1.
Profadol. The general behavior of the calculated data for the

phenolic deprotonation of profadol is very similar to that of
acetaminophen. The reaction schemes leading to the smallest
errors are A,D, E1, and EN2. Most of the tested reaction schemes
yield overestimated values of pKa values (Table 3), while schemes
E1 and EN1 lead to negative values of UE. The reaction scheme
choice was found to have a much stronger influence on the
quality of the results than on the particular method of calculation

Table 2. Signed Errors for the Calculated Values of the pKa of Acetaminophen (vs pKa = 9.5)50

scheme B3LYP M05-2X BLYP TPSS BHandHLYP BMK PBE PBE0 PW91 MP2

A 0.88 1.47 �2.61 �0.11 4.28 1.80 �2.55 1.84 �2.49 2.40

B 3.87 6.06 3.83 1.20 5.58 4.78 �0.01 3.64 0.15 4.24

C1 7.24 8.67 7.77 4.75 8.74 8.52 2.85 6.39 2.66 6.92

C2 11.32 11.08 12.69 8.80 12.09 12.71 6.66 9.58 5.95 10.53

C3 18.90 16.63 21.24 16.49 18.75 20.01 13.59 16.50 12.51 16.10

D �0.27 �0.24 �0.97 �0.97 �0.01 0.10 �1.03 �0.15 �1.04 0.80

E1 �0.80 �1.98 �1.59 �0.70 �0.42 �1.91 �0.11 �0.37 0.87 2.95

E2 3.28 0.43 3.33 3.35 2.93 2.28 3.70 2.82 4.17 0.66

E3 10.86 5.98 11.88 11.04 9.59 9.58 10.63 9.74 10.72 6.24

F1 6.27 5.40 5.83 4.17 8.77 8.43 1.31 4.81 0.10 8.26

F2 9.63 8.00 9.76 7.72 11.92 12.17 4.16 7.56 2.60 10.93

F3 13.72 10.41 14.69 11.77 15.28 16.37 7.98 10.76 5.90 14.54

F4 21.30 15.96 23.24 19.46 21.94 23.67 14.91 17.68 12.45 20.12

CN1 4.97 6.96 4.94 2.38 6.81 6.36 1.12 4.72 1.26 5.13

CN2 9.05 9.37 9.87 6.44 10.17 10.56 4.94 7.92 4.56 8.74

CN3 16.62 14.92 18.41 14.11 16.82 17.85 11.86 14.83 11.11 14.31

FN1 7.36 6.29 6.94 5.35 10.00 10.02 2.44 5.90 1.21 9.14

FN2 11.44 8.70 11.86 9.40 13.35 14.21 6.25 9.09 4.50 12.75

FN3 19.02 14.25 20.41 17.08 20.02 21.51 13.18 16.01 11.06 18.33

EN1 �3.07 �3.69 �4.42 �3.07 �2.35 �4.07 �1.84 �2.04 �0.53 4.74

EN2 1.01 �1.27 0.50 0.98 1.01 0.13 1.98 1.15 2.77 1.12

EN3 8.58 4.27 9.04 8.66 7.67 7.42 8.90 8.07 9.32 4.45

Figure 4. Unsigned errors for the calculated values of the phenolic pKa of acetaminophen.
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(Figure 5). The largest deviations from the experimental value
arise from using reaction schemes C, CN, F and FN, and the
inclusion of more water molecules in these schemes increases the
UE values.
Some deviations from these general trends were found. DFT

functionals BHandHLYP, BMK, and PBE0 produce a SE larger
than 2 units of pKa when used in conjunction with scheme A.
This also happens when computing scheme EN2 with the PBE
functional. As it was the case for acetaminophen, M05-2X
calculations using the scheme E2 lead to an UE < 2. However
an UE value is significantly larger for profadol than for acetami-
nophen (1.92 vs 0.43). PBE and PW91 functionals produce UE <
2 when used in conjunction with the B scheme. However, in this
case, their values are similar in magnitude but opposite in sign

than those obtained from scheme A. UE values smaller than 2
were also obtained for profadol from PBE calculations using
reaction schemes CN1 and EN1 and from PW91 calculations
using reactions F1, CN1, FN1, and EN1.
Tapentadol. For this compound the general trends are similar

to those of acetaminophen and profadol. It was found that most
of the calculated values of pKa are overestimated (Table 4). The
exceptions arise mainly from using schemes E1 and EN1, but
they are fewer than those found for acetaminophen and profadol.
The quality of the pKa predictions was found to be more
influenced by the chosen scheme than by the method of
calculation (Figure 6). Reaction schemes C, CN, F, and FN lead
to very large errors, regardless of the method of calculation and
the number of explicit water molecules included in the modeling.

Table 3. Signed Errors for the Calculated Values of the pKa of Profadol (vs pKa = 10.27)51

scheme B3LYP M05-2X BLYP TPSS BHandHLYP BMK PBE PBE0 PW91

A 1.45 1.98 �1.48 1.04 4.86 2.67 �1.37 2.34 �1.29

B 4.45 6.57 4.97 2.35 6.15 5.65 1.18 4.14 1.35

C1 7.57 9.02 8.89 5.26 8.82 9.42 3.77 6.51 3.45

C2 12.34 12.58 14.12 9.96 12.80 13.96 7.90 10.76 7.34

C3 21.21 19.06 23.99 19.64 20.18 21.95 16.83 18.82 15.78

D 0.31 0.26 0.17 0.19 0.57 0.98 0.16 0.36 0.16

E1 �0.46 �1.62 �0.48 �0.19 �0.33 �1.01 0.82 �0.26 1.67

E2 4.30 1.93 4.76 4.51 3.64 3.53 4.94 3.99 5.55

E3 13.17 8.41 14.63 14.19 11.02 11.52 13.87 12.06 14.00

F1 6.84 5.90 6.96 5.32 9.34 9.31 2.49 5.32 1.30

F2 9.97 8.35 10.88 8.22 12.01 13.07 5.09 7.68 3.39

F3 14.74 11.91 16.12 12.93 15.99 17.62 9.22 11.93 7.28

F4 23.61 18.39 25.99 22.61 23.37 25.61 18.15 20.00 15.73

CN1 5.02 6.39 5.85 2.58 6.61 6.40 1.61 4.40 1.64

CN2 9.79 9.95 11.08 7.29 10.59 10.95 5.75 8.65 5.54

CN3 18.65 16.43 20.95 16.96 17.96 18.94 14.67 16.71 13.97

FN1 7.42 5.73 7.85 5.55 9.81 10.06 2.93 5.58 1.59

FN2 12.18 9.28 13.08 10.25 13.78 14.60 7.06 9.82 5.47

FN3 21.05 15.76 22.95 19.93 21.16 22.60 15.99 17.89 13.92

EN1 �3.02 �4.26 �3.52 �2.87 �2.54 �4.03 �1.35 �2.37 �0.14

EN2 1.75 �0.69 1.72 1.83 1.44 0.52 2.79 1.88 3.75

EN3 10.61 5.78 11.59 11.51 8.81 8.51 11.71 9.94 12.19

Figure 5. Unsigned errors for the calculated values of the phenolic pKa of profadol.
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Moreover the inclusion of more water molecules in these
schemes increases the UE values. The reaction schemes leading
to the smallest errors were found to be A, D, E1, and EN2.
In contrast to these general trends, some peculiarities were

found. DFT functionals BHandHLYP, BMK, and PBE0 produce
a SE larger than 2 units of pKa when used in conjunction with
scheme A, as it was the case for profadol. Computing scheme
EN2 with the PW91 functional also lead UE > 2. PBE and PW91
functionals produce UE < 2, when used in conjunction with theB
scheme. However, in this case their values are similar in
magnitude but opposite in sign than those obtained from scheme
A, also in line with the results for profadol. UE values smaller than
2 were also obtained for profadol from PBE calculations using
reaction schemes CN1 and EN1 and from PW91 calculations

using reactions F1,CN1, and EN1. The outcomes from PBE and
PW91 calculations are similar to what was described for acet-
aminophen and profadol.
Ketobemidone. In this case the general behavior of the

calculated data is congruent with what was described for the other
compounds in the tested set. The reaction schemes leading to the
smallest errors are A, D, E1, and EN2. Most of the tested reaction
schemes yield overestimated values of pKa values (Table 5), while
schemesD,E1, andEN1 lead to negative values ofUE.The reaction
scheme choice was found to have a much stronger influence on the
quality of the results than the particular method of calculation
(Figure 7). The largest deviations from the experimental value arise
from using reaction schemesC,CN, F and FN, and the inclusion of
more water molecules in these schemes increases the UE values.

Table 4. Signed Errors for the Calculated Values of the pKa of Tapentadol (vs pKa = 10.09)51

scheme B3LYP M05-2X BLYP TPSS BHandHLYP BMK PBE PBE0 PW91

A 2.15 2.36 �0.88 1.83 5.45 2.11 �0.52 3.04 �0.41

B 5.15 6.95 5.56 3.14 6.74 5.09 2.03 4.84 2.23

C1 8.03 10.72 9.05 5.97 9.09 9.53 4.29 6.56 4.14

C2 11.98 15.09 14.00 10.46 12.84 13.98 8.39 11.05 7.78

C3 19.28 18.19 22.03 17.35 19.11 21.12 14.60 17.10 13.60

D 1.01 0.65 0.77 0.97 1.16 0.42 1.01 1.06 1.04

E1 �0.01 0.07 �0.32 0.52 �0.07 �0.90 1.33 �0.21 2.35

E2 3.94 4.44 4.64 5.00 3.68 3.55 5.43 4.29 5.99

E3 11.24 7.55 12.67 11.90 9.95 10.69 11.65 10.33 11.81

F1 7.54 6.29 7.56 6.11 9.93 8.75 3.35 6.01 2.17

F2 10.42 10.05 11.04 8.93 12.28 13.19 5.60 7.73 4.08

F3 14.38 14.42 16.00 13.43 16.03 17.64 9.70 12.23 7.73

F4 21.67 17.53 24.03 20.32 22.30 24.77 15.92 18.27 13.55

CN1 4.76 7.33 5.31 2.69 6.24 5.46 1.59 3.84 1.42

CN2 8.72 11.71 10.27 7.18 10.00 9.92 5.69 8.34 5.07

CN3 16.01 14.81 18.30 14.07 16.26 17.04 11.90 14.38 10.88

FN1 7.16 6.66 7.31 5.66 9.44 9.12 2.91 5.02 1.37

FN2 11.11 11.03 12.27 10.14 13.19 13.57 7.00 9.51 5.01

FN3 18.41 14.14 20.30 17.04 19.46 20.70 13.22 15.55 10.83

EN1 �3.28 �3.32 �4.05 �2.76 �2.91 �4.97 �1.37 �2.93 �0.36

EN2 0.68 1.06 0.91 1.73 0.85 �0.51 2.73 1.57 3.28

EN3 7.97 4.16 8.93 8.62 7.11 6.61 8.95 7.61 9.10

Figure 6. Unsigned errors for the calculated values of the phenolic pKa of tapentadol.



2535 dx.doi.org/10.1021/ct2001864 |J. Chem. Theory Comput. 2011, 7, 2528–2538

Journal of Chemical Theory and Computation ARTICLE

The deviations from these general trends that were found for
ketobemidone are described next. It is interesting to notice that
even deviations are similar, though not identical, for all the tested
cases. DFT functionals BHandHLYP, BMK, and PBE0 produce a
SE larger than 2 units of pKa, when used in conjunction with
scheme A. This also happens when computing scheme EN2 with
the PW91 functional. PBE and PW91 functionals produce UE <
2 when used in conjunction with the B scheme. The UE values
are similar in magnitude but opposite in sign than those obtained
from scheme A. UE values smaller than 2 were also obtained for
ketobemidone from PBE calculations using reaction schemes
CN1 and EN1 and from PW91 calculations using reaction F1,
CN1, FN1, and EN1.

Other Phenols. To further analyze the performance of the
tested protocols, they have been applied to the pKa calculations of
other phenols. They are: 3-methoxyphenol (m-OCH3), 4-methyl-
phenol (p-CH3), 3-cyanophenol (m-CN), 4-methylthiophenol
(p-SCH3), 3-hydroxybenzaldehyde (m-CHO), and 2,4-dimethyl-
phenol (op-2CH3). The calculated pKas are provided as Support-
ing Information (Tables 6S�11S).
The average UEs, including these six compounds, are shown in

Figure 8. The general behavior of the calculated pKas is in
agreement with what was found for the nonsteroidal anti-inflam-
matory drugs. The reaction schemes leading to the smallest errors
are A, D, E1, and EN2, which supports the good performance of
these schemes. The choice of the method of calculation was found

Figure 7. Unsigned errors for the calculated values of the phenolic pKa of ketobemidone.

Table 5. Signed Errors for the Calculated Values of the pKa of Ketobemidone (vs pKa = 9.96)51

scheme B3LYP M05-2X BLYP TPSS BH&HLYP BMK PBE PBE0 PW91

A 1.38 1.59 �1.60 0.77 4.65 2.00 �1.60 2.13 �1.57

B 4.37 6.17 4.84 2.08 5.94 4.98 0.95 3.93 1.07

C1 8.12 9.48 9.19 5.76 9.04 8.86 4.34 7.10 4.14

C2 12.13 12.86 13.62 10.05 12.66 12.93 7.82 10.55 7.25

C3 21.62 18.75 24.09 19.85 20.86 22.87 17.10 19.13 15.88

D 0.23 �0.13 0.05 �0.08 0.36 0.31 �0.07 0.15 �0.12

E1 0.08 �1.16 �0.18 0.31 �0.12 �1.57 1.38 0.34 2.35

E2 4.09 2.22 4.25 4.59 3.51 2.50 4.87 3.78 5.46

E3 13.58 8.11 14.73 14.40 11.71 12.44 14.14 12.36 14.09

F1 6.77 5.51 6.84 5.05 9.14 8.64 2.27 5.11 1.01

F2 10.51 8.81 11.18 8.73 12.23 12.51 5.65 8.27 4.08

F3 14.52 12.20 15.62 13.02 15.86 16.58 9.14 11.73 7.19

F4 24.02 18.09 26.09 22.82 24.06 26.53 18.42 20.30 15.82

CN1 4.62 6.74 5.19 2.34 6.10 6.15 1.38 4.29 1.53

CN2 8.63 10.12 9.63 6.63 9.73 10.22 4.87 7.75 4.65

CN3 18.12 16.01 20.10 16.43 17.92 20.16 14.13 16.32 13.27

FN1 7.01 6.07 7.19 5.31 9.30 9.80 2.70 5.47 1.48

FN2 11.02 9.45 11.63 9.60 12.92 13.87 6.18 8.92 4.59

FN3 20.52 15.34 22.10 19.40 21.12 23.81 15.45 17.49 13.22

EN1 �3.42 �3.91 �4.17 �3.11 �3.05 �4.29 �1.58 �2.47 �0.25

EN2 0.59 �0.52 0.27 1.18 0.58 �0.21 1.91 0.98 2.86

EN3 10.08 5.36 10.74 10.98 8.77 9.73 11.18 9.55 11.48



2536 dx.doi.org/10.1021/ct2001864 |J. Chem. Theory Comput. 2011, 7, 2528–2538

Journal of Chemical Theory and Computation ARTICLE

to have less influence on the quality of the result than the reaction
scheme, also for these six phenols.
Generalizations. According to all the gathered data, several

generalizations and recommendations can be made regarding
the accuracy of phenolic pKas obtained from calculations. Table 6
shows the mean unsigned errors (MUE) for each scheme�
method pair, including the 10 tested systems. TheMUE values <2
units of pKa have been highlighted in bold letters. This limit has
been chosen based on the accuracy currently accepted for
calculated pKas.

27

It should be kept in mind that these generalizations and
recommendations are valid within the cluster-continuum model,
using the PCMmodel and the strategy based on thermodynamic

cycles. Changes in any of these aspects to the used methodology
can lead to different outcomes.
The quality of the pKa predictions was found to be strongly

dependent on the chosen scheme while only moderately influ-
enced by the method of calculation. The reaction schemes leading
to the smallest errors areA,D,E1, andEN2, while those producing
the largest errors areC,CN, F, and FN. TheMUE obtained when
using reaction schemes A,D, E1, and EN2 is within or below the
currently accepted accuracy. In particular, schemes D and E1
produce MUE values significantly lower than 2 units of pKa, with
most of the used methods of calculation (Figure 9). Therefore we
recommend these approaches to predict reliable pKa values, for
phenolic deprotonations of relative large systems, within the DFT

Table 6. Mean Unsigned Errors for the Calculated Values of Phenolic pKas within the Different Approaches

scheme B3LYP M05-2X BLYP TPSS BHandHLYP BMK PBE PBE0 PW91 MP2

A 1.46 1.97 1.69 1.11 4.88 2.03 1.58 2.35 1.47 2.67

B 4.45 6.55 4.89 2.33 6.17 5.01 1.24 4.14 1.43 4.51

C1 7.67 9.00 8.88 5.50 8.75 8.52 4.01 6.67 3.81 7.18

C2 12.18 12.55 14.19 10.34 12.88 13.65 8.22 10.71 7.78 10.91

C3 20.48 18.18 23.16 18.69 19.90 21.22 15.90 18.12 14.90 16.96

D 0.88 0.82 0.94 0.90 0.96 1.00 0.91 0.90 0.94 0.80

E1 0.86 1.77 0.95 0.82 0.82 2.02 1.15 0.77 2.02 2.69

E2 4.14 2.01 4.83 4.89 3.72 3.21 5.26 3.94 5.99 1.04

E3 12.44 7.54 13.79 13.24 10.74 10.79 12.94 11.35 13.11 7.09

F1 6.85 5.89 6.89 5.30 9.36 8.67 2.55 5.32 1.38 8.53

F2 10.06 8.33 10.87 8.46 11.94 12.17 5.32 7.84 3.75 11.19

F3 14.58 11.88 16.19 13.31 16.07 17.30 9.54 11.88 7.72 14.92

F4 22.88 17.52 25.16 21.66 23.09 24.88 17.22 19.30 14.84 20.98

CN1 4.73 6.35 5.42 2.55 6.12 5.40 1.57 4.29 1.67 5.23

CN2 9.25 9.90 10.74 7.40 10.25 10.52 5.73 8.34 5.61 8.96

CN3 17.54 15.52 19.70 15.73 17.26 18.09 13.40 15.75 12.72 15.00

FN1 7.13 5.69 7.42 5.52 9.31 9.05 2.83 5.47 1.63 9.24

FN2 11.64 9.23 12.73 10.36 13.43 14.18 7.04 9.51 5.55 12.97

FN3 19.94 14.87 21.70 18.70 20.46 21.75 14.72 16.92 12.66 19.02

EN1 3.31 4.29 3.94 2.91 3.04 5.04 1.53 2.47 0.80 4.64

EN2 1.27 1.01 1.40 1.94 1.12 0.65 2.77 1.59 3.82 0.91

EN3 9.51 4.88 10.33 10.28 8.11 7.66 10.44 8.98 10.93 5.14

Figure 8. Unsigned errors for the calculated pKa values of phenolics (average, including m-OCH3, p-CH3, m-CN, p-SCH3, m-CHO, and op-2CH3).
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framework and using relatively modest basis sets, i.e., at very
reasonable computational costs. We particularly recommend the
E1 reaction scheme, since it has the additional advantage of being
experiment independent.
According to the above discussion, it can be stated that the

schemes conserving the number and kind of charged species at
both sides of the equilibrium lead to more accurate values of pKa,
since these approaches promote the cancelation of errors. So this
seems to be the main problem to address for succeeding in the
challenging task of predicting reliable acid constants. Among the
reaction schemes leading to the smallest errors (A, D, E1, and
EN2), all but scheme A conserve the number and the kind of
charges at both sides of the equilibrium, and among them scheme
A is just the one leading to largest errors. The reaction schemes
producing the largest MUEs (C, CN, F, and FN) have all the
charged species at the products side.
Even though the reaction scheme A is among those leading to

the smallest errors, it is not recommended to be used in conjunc-
tionwith BHandHLYP,MP2, or PBE0methods (Table 6). On the
contrary, reaction schemes B, CN1, and EN1 seem to be good
approaches for predicting phenolic pKas, provided that the
calculations are performed with PBE or PW91 functionals. In
particular the combination EN1�PW91 produced a very small
value of MUE.

’CONCLUSIONS

Twenty-two reaction schemes have been tested, within the
cluster-continuum model and including up to seven explicit water
molecules, using the PCM and the strategy based on thermo-
dynamic cycles [Gibbs free energy of reaction in solution ΔGs is

obtained as the sum of the Gibbs free energy of reaction in
vacuum (ΔGg) and the solvation free energies (ΔΔGsolv)].

The quality of the pKa predictions was found to be strongly
dependent on the chosen scheme, while is only moderately
influenced by the method of calculation. The reaction schemes
leading to the smallest errors are A,D, E1, and EN2, while those
producing the largest errors are C, CN, F, and FN.

In particular, schemes D and E1 produce MUE values signifi-
cantly lower than the currently accepted accuracy for pKa calcula-
tions. Therefore we recommend these approaches to predict
reliable pKa values for phenolic deprotonations of relative large
systems, within the DFT framework and using relatively modest
basis sets, i.e., at very reasonable computational costs. We
particularly recommend the E1 reaction scheme, since it has the
additional advantage of being experiment independent.

The best pKa values obtained from the E1 reaction scheme
(MUE < 1 units of pKa) are those involving calculations
with PBE0 (MUE = 0.77), TPSS (MUE = 0.82), BHandHLYP
(MUE = 0.82), and B3LYP (MUE = 0.86) functionals. The best
results when using the D reaction schemes correspond to calcula-
tions performed with MP2 (MUE = 0.80), M05-2X (MUE =
0.82), B3LYP (MUE = 0.88), PBE0 and TPSS (MUE = 0.90),
and PBE (MUE = 0.91).

It is important to notice that these conclusions are valid within
the cluster-continuum model, using the PCM model in conjunc-
tion with the UAHF cavity, and the strategy based on thermo-
dynamic cycles. Changes in any of these aspects to the used
methodology can lead to different results.
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ABSTRACT:Understanding biomass structure and dynamics on a range of time and length scales is important for the development
of cellulosic biofuels. Here, to enable length and time scale extension, we develop a coarse grain (CG)model for molecular dynamics
(MD) simulations of cellulose. For this purpose, we use distribution functions from fully atomistic MD simulations as target
observables. A single bead per monomer level coarse graining is found to be sufficient to successfully reproduce structural features of
crystalline cellulose. Without the use of constraints the CG crystalline fibril is found to remain stable over the maximum simulation
length explored in this study (>1 μs). We also extend the CG representation to model fully amorphous cellulose fibrils. This is done
by using an atomistic MD simulation of fully solvated individual cellulose chains as a target for developing the corresponding fully
amorphous CG force field. Fibril structures with different degrees of crystallinity are obtained using force fields derived using a
parameter coupling the crystalline and amorphous potentials. The method provides an accurate and constraint-free approach to
derive CGmodels for cellulose with a wide range of crystallinity, suitable for incorporation into large-scale models of lignocellulosic
biomass.

I. INTRODUCTION

Polysaccharides are the most abundant form of biomaterial on
Earth. A polysaccharide of particular importance is cellulose, which
is widely present in plants as cell wall or extra-cellular material.1

Cellulose plays a crucial role in plant growth and cell wall function.2,3

Cellulose has recently gained increasing attention due to its
potential application in generating biomass-based renewable
energy.4,5 Various methods have been proposed for converting
cellulose-based biomass to ethanol and other transportation
fuels,6 typically involving three steps: (i) biomass pretreatment,
(ii) conversion of extracted cellulose into sugars, typically through
enzymatic hydrolysis, and (iii) fermentation of sugars to obtain
ethanol. However, the natural recalcitrance of biomass to hydro-
lysis has led to the need to improve pretreatment and hydrolysis
methods.

A characterization of cellulose structure and assembly at the
molecular level is important for understanding the recalcitrance
of biomass to hydrolysis. There have been substantial experi-
mental efforts to understand cellulose structure. For example, a
combination of X-ray diffraction analysis and computational
modeling has revealed that native cellulose (cellulose I) occurs
in two forms: IR and Iβ.7 The IR phase contains a single cellulose
chain in a triclinic cell, while a two-chain monoclinic cell is found
for Iβ. The relative ratio of the two forms depends on the origins
of the cellulose. Recently, extensive synchrotron X-ray and
neutron diffraction measurements on IR and Iβ structures have
provided detailed crystal and molecular structures together with
the hydrogen-bonding network within each phase.8,9 Cellulose
also occurs in amorphous phases.8

Although extensive experimental studies have been under-
taken, simulation studies of cellulose microfibrils have been
relatively rare. This is not surprising, as the complexity and the

size of cellulose fibril structures have rendered them difficult to
study with traditional molecular simulation approaches. The
smallest cellulose microfibrils consist of approximately 36 in-
dividual chains with a large degree of polymerization. These large
system sizes, together with the associated long-time dynamics
often needed to examine cell wall processes, put simulation
studies of cell wall decomposition beyond the scope of a
complete atomistic representation.10�12 Hence, recent simula-
tion studies have focused on using alternative methodologies
based on lower resolution models, such as coarse grain (CG)
molecular dynamics (MD),13�15 that have been proven to be
useful in exploring long time and length scale processes involving
proteins,15,16 lipids,17�20 polymers,21 and other materials.22

In one recent study, a three-site CG model for monosaccha-
rides was developed based on chemical information on the under-
lying monomers,23 and the model was employed to study water
dynamics in the glassy state formed by sugar�water complexes.
Subsequently, a similar but improved three-site CG model was
proposed that successfully reproduces the atomistic behavior of a
single chain cellulose molecule of 14 monomer units.24 In later
work the model of ref 24 was applied to study interactions
between cellulose (40monomer long) and carbohydrate-binding
modules.25 However, in ref 25, in order to preserve the fibril
structure of the cellulose assembly, cylindrical reflecting boundary
conditions needed to be applied. Most recently, another three-site
CG model for native cellulose was introduced based on the
principles of Martini force field.26 However, this force field was
unable to reproduce stable crystalline cellulose fibril structures
(additional interaction terms and backbone restraints were needed
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to stabilize the crystalline fibril). Hence, to the best of our knowl-
edge, there has hitherto been no CG force field able to model the
crystalline cellulose fibril without constraints.

Here, we propose an unconstrained CGmodel of the cellulose
fibril. The polysaccharide is modeled as a flexible chain consisting
of single-site monomer units. In other words, each monosacchar-
ide is replaced with a single CG unit, as compared to three sites in
the previous studies.23�26 The CG model is developed using
information obtained from a 20 ns long atomistic trajectory of a
cellulose fibril in water.27 In lignocellulosic biomass cellulose
exists in varying degrees of crystallinity,5,6 and the crystallinity
can change after pretreatment.28 Hence, it is important to be able
to generate models of cellulose in amorphous and fully crystalline
forms as well as various states of intermediate crystallinity. The
present CG model also addresses this need. We use a system of
individual cellulose chains desolved in water as a model for the
fully amorphous/noncrystalline form. Further, we obtain several
noncrystalline forms of cellulose fibril by introducing a coupling
parameter between CG force fields of fully crystalline and fully
amorphous cellulose systems.

The rest of the paper is organized as follows: In the next
section we describe the CG methodology and its application to
crystalline cellulose. The simulation details are presented in
Section III. The results and discussion for the crystalline models
are presented in Section IV along with parameterization and CG
results for noncrystalline fibrils. We conclude the paper with
closing remarks in Section V.

II. CG METHODOLOGY

A schematic representation of the present CG method is
shown in Figure 1. For development of the CG model we make
use of the chemical information from all-atom simulations of a
representative cellulose system, the details of which are described
elsewhere.27 We summarize important aspects here. A cellulose
fibril was constructed with 36 chains based on the Iβ crystal
structure8 with a degree of polymerization of 80 (containing 80
glucose monomers or 40 cellobiose units). The cellulose fibril
was represented with the CHARMM force field29 and solvated
with more than 200 000 TIP3P water molecules30 in a rectan-
gular simulation box. Atomistic simulations of this system were
performed for 20 ns using the NAMD simulation package.31 Five
such independent 20 ns simulations using a 2 fs time step were
performed for the analysis. The convergence of individual simulations

was monitored by calculating the total dipole moment of the
cellulose fibril, which converged in less than 5 ns in all the
simulations.27 Since our parametrization is completely based on
atomistic crystalline fibril data, the present CG potential is
expected to be less transferrable but accurately represent crystal-
line fibril structure.
A. CG Model for Crystalline Cellulose. In the Iβ fibril

structure the cellulose chains are categorized as belonging to
origin or center planes based on the location of the chain in the
crystalline unit cell. Macroscopically, these two different chains
constitute alternate layers or sheets of the fibril, as represented in
Figure 1. In the CG model, the origin and center chains are
distinguished and assigned separate parameter sets: the monomers
in the origin chains are denoted as “OR”, while those in the center
chains are denoted as “CE”. The need for separate parameter sets
for crystalline and noncrystalline structures is examined in detail
in the sections relevant to amorphous fibrils.
Bonded Parameters. A CG cellulose chain is constructed using

the center of mass of each monomer derived from the correspond-
ing atomistic representation. Hence, each glucose monomer is
represented by a single CG bead, as shown in Figure 1. Clearly
then, a single cellulose chain with a degree of polymerization 80
would be represented as an 80-bead chain.
The complete CG interaction potential is given by

Vcg ¼ Vbond þ Vangle þ Vtorsion þ Vnonbond ð1Þ
In eq 1, any two consecutive monomers in a chain are connected
by harmonic pseudobond potentials Vbond, and similarly, harmonic
pseudobond angle potentials are employed for three consecu-
tively connected beads. A torsional potential, Vtorsion, is applied
to any four consecutive CG beads. Vnonbond represents the
nonbonded interactions. Since we represent each glucose mono-
mer as a single CG site, there is no net charge associated with any
of the CG units. Hence, there are no explicit electrostatic
interaction terms.
In the following we describe each of the terms in eq 1. The

harmonic bond interactions are given by

Vbond ¼ Σbondskbðr� r0Þ2 ð2Þ
where kb and r0 represent the force constant and equilibrium
bond distance for the pseudobond connectingmonomers; kb and
r0 were adjusted until the CG-bond distance distributions repro-
duced the corresponding distributions in the atomisticMD to the

Figure 1. Single bead CG model of a cellulose chain is shown along with the underlying chemical structure. A CG cellulose fibril is also shown. Within
the cellulose fibril, chains belong to origin (cyan) and center (white) sheets. A schematic representation of the CGmethodology used in this work is also
depicted (please see text for details).
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desired accuracy. The bond distance distributions obtained from
the CG simulations using the final parameters for origin and
center chains are shown along with the corresponding atomistic
distributions in Figure 2a.
The bond angle potential is given by

VΘ ¼ ΣangleskΘðΘ�Θ0Þ2 ð3Þ
where the equilibrium virtual bond angleΘ0 and the correspond-
ing force constant kΘ were determined in a similar fashion, as
described above. The bond angle distribution comparisons for
origin and center chains are shown in Figure 2b. As can be seen
from the figures, the chosen set of virtual bond and angle CG
parameters reproduces underlying atomistic distributions quite well.
To represent the long-range order associated with the cellu-

lose crystalline structure, it was found necessary to include a
torsional potential. A harmonic potential for the torsion angles
was found to reproduce the atomistic torsional distributions
reasonably well, as shown in Figure 2c for both origin and center
chains. The torsional potential is given by

VΦ ¼ ΣdihedralskΦðΦ�Φ0Þ2 ð4Þ
whereΦ0 and kΦ represent the equilibrium torsion angle and the
corresponding force constant for four consecutively connected
monomers. CG parameters for the bond, angle, and torsional
potentials are listed in Table 1.
Nonbonded Parameters. While the development of bonded

CG parameters is relatively straightforward, treating nonbonded
interactions is more complex. There exist different approaches in
developing the nonbonded CG parameters for any given
system,14,17,19 and the specific need of the intended application
of the developed CG force field also influences the approach

chosen. If the model needs to be developed for a particular
application, one may choose to parametrize the system based
solely on the information obtained from corresponding, specific

Figure 2. Comparison of distributions obtained from all-atom simulations (symbols) and CG simulations (lines): (a) Bond distance (OR�OR and
CE�CE); (b) bond angle (OR�OR�OR and CE�CE�CE); and (c) torsion angle (OR�OR�OR�OR and CE�CE�CE�CE) distribution
comparisons. In all the figures, comparisons for origin and center sheets are shown in black and red, respectively.

Table 1. CG-Bonded Parameters for Crystalline and
Amorphous Cellulose Fibrils

bonds kb (kJ mol�1 nm�2) r0 (nm)

Crystalline

OR�OR 4.588 � 104 0.5283

CE�CE 7.700 � 104 0.5250

Amorphous

AM�AM 2.420 � 104 0.5228

angles kΘ (kJ mol�1 rad�2) Θ0 (�)

Crystalline

OR�OR�OR 840 168.7

CE�CE�CE 1080 173.2

Amorphous

AM�AM�AM 266.8 163.5

torsions kΦ (kJ mol�1 rad�2) Φ0 (�)

Crystalline

OR�OR�OR�OR 23 191.6

CE�CE�CE�CE 8 187.2

Amorphous

AM�AM�AM�AM 5.6 224.0
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higher-resolution simulations. In one such example, a CG force
field was developed for biological lipid molecules based on
Boltzmann inversion criteria by matching the distributions at
the potential level that captures specific biological properties
including self-assembly into various morphologies.17 In another
approach, systematic CG models for a variety of biological systems
have been developed by introducing multiscale force-matching
CG methods.14 A further method captures correlated motion by
matching covariance Hessian matrices.15,16 These approaches
widen the use of CG methods. Alternatively, CG parameters can
be developed based on previously available generalized para-
meters for the individual components of the system. In an
example of this, the Martini CG force field contains a database
of CG parameters for the naturally occurring amino acids based
solely on their active coefficients in water and oil.32 These, more
general CG parameters are more transferable for simulating
systems not considered during the force field development process
but may fall short of accuracy if the system-specific details have
not been incorporated into the parametrization. For example, a
recent CG model of cellulose was unable to reproduce a crystalline
fibril structure based onMARTINI parameters.26 The present one-
site model is based on Boltzmann inversion criteria, an approach
that Klein et al. have used extensively for developing CG force
fields for copolymers,21,22 and was also adopted for a previous
three-site model of cellulose.13

Distance distributions between the nonbonded units of inter-
est from corresponding atomistic simulations were used as target
observables. The goal is to reproduce the atomistic distributions

by carrying out CG simulations, adjusting the underlying poten-
tials. To this end, the radial distribution function g(r) is the target
observable from the atomistic simulations. Since there are two
different CG units, OR and CE, three separate nonbonded poten-
tials must be determined (OR�OR, OR�CE, and CE�CE); g(r)
for these interactions from the atomistic simulations are shown
in Figure 3.
Here, we obtain nonbonded CG potentials iteratively using

the target observable (the atomistic g(r)) as follows

Vnew ¼ Vold þ kBT lnðgcgðrÞ=gaaðrÞÞ ð5Þ

where the updated potential Vnew between corresponding CG
units in each step is obtained by modifying the potential from the
previous simulation, Vold, kB is the Boltzmann constant, T the
absolute temperature, and the distributions from the atomistic
and CG simulations are gaa(r) and gcg(r), respectively. We began
with a simple Lennard-Jones 12-6 potential as the starting CG
potential and then modified it according to eq 5. In each iteration
the CG simulation is carried out using the updated potential, the
distribution functions obtained from the updated trajectory are
inserted in eq 5, and the potentials updated. Iteration continues
until a satisfactory comparison with the target observables is
obtained.
The g(r) for crystalline cellulose is complex with multiple

discrete distinct peaks and thus contrasts with the simple,
relatively smoother functions of typical bulk/liquid systems.
Consequently, it is impractical to employ simple Lennard-Jones-type

Figure 3. Comparison of all-atom radial distribution functions with those of the CG simulations: (a) g(r) between the CGmonomers in origin sheets;
(b) g(r) for the CGmonomers in center sheets; and (c) g(r) obtained for the cross-interactions between origin and center sheets. In all the figures, CG
distributions (lines) agree with the underlying atomistic distributions (symbols) remarkably well.
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potentials in this case. Using such simplified potentials may also
cause instabilities in cellulose crystalline structure, as was
observed in previous CG simulation studies of the cellulose
fibril.25

Comparison (after five or six iterations) of the target and CG
observables for the origin chains indeed showed that this method
is unable to capture the fine structure of gaa(r) arising from the
crystalline nature of cellulose. Such problems are common when
dealing with crystalline materials, as, for example, in the recent
study of crystalline fatty acids.33 As noted in ref 33, eq 5 needs to
be modified by introducing a damping factor (δij) in order to
suppress abrupt changes in the potentials:

Vnew ¼ Vold þ δkBT ln½gcgðrÞ=gaaðrÞ� ð6Þ

where δ is assigned a positive value between 0 and 1.When δ is 1,
we recover eq 5 corresponding to a noncrystalline system.
The g(r) obtained including the damping factor was compared

with the atomistic g(r) functions, and the iterative procedure
repeated with eq 6 until the target and CG distributions were in
satisfactory agreement. Final comparison is shown in Figure 3.
The CG distribution functions reproduce their atomistic
counterparts remarkably well. Importantly, the positions of
all the peaks corresponding to the crystal structure are
reproduced faithfully by the present CG simulations. Excel-
lent agreement between the atomistic and CG structures
demonstrates the ability of the single-bead model to capture
the structural features at the monomer level. Hence, this com-
parison validates the present CG force field for the Iβ crystalline
cellulose fibril.

The potentials obtained using eq 6 do not correspond to any
simple analytical form, and hence all three nonbonded potentials
were tabulated. The Supporting Information gives more details
together with the tabulated potentials.
B. CG Model for Noncrystalline Cellulose. The CG force

field for the crystalline cellulose fibril was used as a basis from
which to develop CG parameters for noncrystalline cellulose.
The development procedure used is similar in spirit to that of
the crystalline fibril. However, while there is a unique experi-
mental structure corresponding to any given crystalline phase
of cellulose, for amorphous cellulose, this is no longer the
case. Hence, in order to develop CG parameters for amor-
phous cellulose, the approach adopted was modified. To this
end, two simulation systems representing two extreme sce-
narios were considered: one for fully crystalline cellulose and
the other for fully amorphous. For the fully amorphous
systems an atomistic model was constructed consisting of
9 fully hydrated single cellulose chains in TIP3P water, each
chain consisting of 10 glucose monomers. An MD simulation
of this system was carried out for 20 ns, as was the case for the
crystalline system.
Bonded Parameters. A CG parameter set for the amorphous

system was mapped from the atomistic system in a similar
manner to the crystalline case. Again, the bond distance and
the bond and torsion angle potentials were obtained by iterative
CG simulations. The obtained parameter set for the single chains
differs significantly from that for crystalline cellulose. One major
difference is clearly that there is no distinction of origin or center
chains, all chains being indistinguishable. Hence, there is a single
distribution for each of the bond distances and angles and the
torsion angles.

Figure 4. Comparison between atomistic (black) and CG (red) distribution functions of a single cellulose in water: (a) Bond distance, (b) bond angle,
and (c) torsional angle, and (d) radial distribution function.
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The bond distance and angle distributions are represented
with harmonic potentials as before. However, the torsion angle is
more flexible than in the crystalline phase and is thus represented
using a periodic potential of the following form, corresponding to
a periodic potential with single multiplicity.

VamðΦÞ ¼ Σdiherdalskamð1 þ cosðΦ�Φ0ÞÞ ð7Þ
The comparisons of the bond distance and angle and the

torsional angle distributions obtained from the atomistic and CG
simulations are shown in Figure 4a�c, respectively. The final
bonded parameter values obtained are listed in Table 1.
Nonbonded Parameters. The complexity of developing non-

bonded interaction parameters is greatly reduced in the amor-
phous case compared to the crystalline fibril due to the presence
of a single type of CG bead (named AM). Hence, nonbonded
interaction potentials needed to be developed only for AM�AM
interactions. Accordingly, the radial distribution function for AM
obtained from the atomistic simulations is shown in Figure 4d. As
can be seen, the gam(r) in this case does not show discontinuities,
in contrast to the crystalline system. The CG distributions were
obtained starting with the following Lennard-Jones potential:

VamðrijÞ ¼ 27=4ðεijÞððσ=rijÞ9 � ðσ=rijÞ6Þ ð8Þ
where εij and σij represent the potential well depth and the
contact distance between i and j. The gij(r) so obtained was used
with eq 6 to refine the potential, which in turn was used to carry
out new CG simulations. By following the iterative procedure
described in Section II, final ε and σ values were determined. The
final parameters for the fully amorphous system are listed in
Table 1. Note that the scaling factor δ (eq 6) was not needed in
this case.

III. SIMULATION DETAILS

The CG simulations were performed using stochastic dynamics
in order to incorporate solvent effects in an implicit fashion. The
dynamics of the individual CG particles was governed by a
Langevin equation:

miðdvi=dtÞ ¼ FiðriÞ �miξivi þ R i ð9Þ
where the CG particle’s mass, velocity, and position are repre-
sented by mi, vi, and ri, respectively. Fi is the systematic force on
particle i calculated using the interaction potentials described in
the previous sections. ξi is the friction coefficient, and Ri is the
random force. While longer time step (10�20 fs) was possible
for noncrystalline CG fibrils, we were unable to use a time step
larger than 1 fs for fully crystalline fibrils because of the discrete
nature of the fitted potential. Nevertheless, for the sake of
consistency, we have decided to use 1 fs time step for both the
crystalline and the noncrystalline fibril simulations. As a result we
have chosen a GROMACS default value of 0.2 ps�1 for the
damping coefficient in all the simulations.

IV. RESULTS AND DISCUSSION

A. Crystalline Cellulose Fibril. Previous CG simulation
studies of cellulose fibrils have encountered problems with the
stability of the fibril. Hence, as a first test of the present CG model,
we examine this aspect. To this end, two different CG simula-
tions were carried out, with different initial conditions. Both of
these simulations started with a CG cellulose fibril in the crystalline
Iβ form. In general, CG simulations would allow larger time steps

compared to atomistic simulations. However, in the present
study, crystalline nature of the fibril required smaller time steps,
as the potentials are relatively rough compared to traditional
empirical potentials. After several test runs with different time
steps, a time step of 1 fs was chosen, and the productions runs
were carried out for at least 1 μs after the equilibration. The
results presented in the following were obtained by averaging
over the two separate trajectories.
The stability of the crystalline structure can be assessed by

calculating the fluctuations within the fibril (Figure 5a). The
root-mean-square displacement (RMSD) is <0.11 nm over the
entire simulation time (>1 μs). This result is in good agreement
with a recent atomistic simulation study of crystalline cellulose
fibril.12 The RMSD for the individual (origin and center) sheets
shows similar behavior. Considering the fact that each CG
site represents a glucose monomer of diameter ∼0.52 nm, these
fluctuations are relatively small. The stability of the cellulose
crystalline structure is confirmed by the root-mean-square fluc-
tuations (RMSF) of individual monomers, shown in Figure 5b.
Themonomers at the chain ends exhibit relatively larger fluctuations
compared to monomers in the middle part of the chain. In other
words, the chain ends are relatively flexible in the fibril structure
and might disrupt the crystal were the cellulose chains to be too
short. Using longer cellulose chains avoids such unwanted effects.
Further, the largest fluctuations were observed for the monomers
401�480 and 2401�2480, which belong to corner chains in the

Figure 5. Stability of the CG crystalline cellulose fibril. (a) RMSD is
plotted as a function of simulation time. (b) RMSF for each CGmonomer
within crystalline cellulose fibril.
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fibril. This suggests that the corner chains are relatively flexible
compared to other chains in the fibril.
In order to examine the structural details we have calculated

the pair distribution functions. In Figure 6 the radial distribution
function [g(r)] for crystalline fibril is plotted. This system shows
rich structural features even beyond 2 nm. Individual peaks were
analyzed in detail and are schematically shown in the figure, color
coded so as to indicate the responsible CG sites within the fibril.
The broader set of peaks around 0.64 nm arises from first
neighbor interactions between opposite-type monomers (origin
and center or center and origin). The first and second nearest
neighbors of the same kind (origin or center monomers) produce
two peaks, at 0.81 and 0.98 nm, respectively. Second nearest
neighbors of different kinds give rise to the broader peak at
1.38 nm. These structural details are important when comparing
crystalline and amorphous cellulose structures, as discussed in
detail in the later sections pertaining to amorphous structures.
B. Noncrystalline Cellulose Fibril.As a first check, we applied

the fully amorphous CG parameter set to a crystalline fibril. The
fibril lost its structure and rapidly collapsed to form a near
spherical aggregate (<100 ns). The RMSD for simulations using
crystalline and fully amorphous potentials sets is shown in
Figure 7. The fully amorphous structure shows very high RMSD
values (12 nm) compared to that of crystalline fibril (0.11 nm).
C. Generating Noncrystalline Cellulose Fibril Structures.

In this section we describe the study of noncrystalline fibrils,
generated by using a combination of fully crystalline and fully
amorphous potentials with a coupling parameter as follows

VcgðrijÞ ¼ λVcrðrijÞ þ ð1� λÞVamðrijÞ ð10Þ

When λ = 0 the above potential represents a fully amorphous
state, whereas for λ = 1 we recover crystalline behavior. The
above combination rule is applied for both bonded and non-
bonded interactions separately.
Fifteen different simulation systems were constructed with a

nonlinear spacing of λ values between 0 and 1. Final snapshots

obtained for the selected λ values after 1 μs simulation are shown
in Figure 8. The cellulose deviates from the fully crystalline
structure for all values of λ < 1. However, the transition to a fully
amorphous structure accelerates when decreasing λ below 0.1.
This is confirmed in Figure 9 in which the average RMSD values
for the systems with different λ values are plotted. The RMSD
in the fully crystalline phase is near zero. Decreasing λ values
increase the RMSD, indicating the emergence of noncrystalline

Figure 6. Radial distribution function for a crystalline cellulose fibril.
Peaks are color coded. The cellulose fibril is shown in two schematic
representations. The fibril structure on the right reveals the nearest
neighbors around a selected origin chain monomer, while that on the
left shows the same for a center chain monomer.

Figure 7. RMSDfor the fully amorphous system for the 1μsCGsimulation.
For comparison, RMSD for the fully crystalline (CG) cellulose is also shown.

Figure 8. Transition of cellulose fibril from crystalline structure to
amorphous (noncrystalline) structure with decreasing coupling para-
meter (λ) values. Final snapshots obtained from simulations with
different λ values are shown; λ = 1 and 0 correspond to crystalline
and fully amorphous phases, respectively.

Figure 9. RMSD values for systems with different λ values.
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behavior. However, the RMSD shows a significant crossover
between λ = 0.1 and 0.02, suggesting a major disruption in the
crystalline structure. A similar trend was also observed in RMSF
(Supporting Information). For λ < 0.1, single chain behavior
becomes dominant, and the RMSD fluctuations are larger than
the size of the CG monomers (>0.52 nm). In fully amorphous
structures (λ = 0) the RMSD is found to be as large as 12 nm.
Together, these results provide guidelines for the interaction range
over which a possible transition from crystalline to amorphous
structure occurs. In the present formalism, fibrils with λ < 0.1
represent fully noncrystalline structures.
Analyzing fibril structures as a function of λ reveals interesting

features. In Figure 10 the pair distribution function g(r) for all the
systems with different λ values is plotted. The crystalline structure
(λ = 1.0) gradually disappears with decreasing λ, as evidenced by
a gradual disappearance of corresponding peaks in g(r). With
decreasing λ, the first peak to show changes is the peak at 0.81 nm,
which starts to diminish when λ is decreased by as little as 10%.
The peak height then gradually further decreases and ultimately
merges with the neighboring peak at 0.98 nm, thereby forming
a single broader peak. As explained above, the peak at 0.81 nm
corresponds to first nearest neighbors of the same kind, and the
peak at 0.98 nm corresponds to second nearest neighbors of
different kinds. Combined with the peak position analysis, the
merging of these two peaks illustrates how the distinction between
the secondneighbors of the sameor different kind of beads becomes
negligible. The structure defining origin and central chains is
gradually lost at distances greater than 0.8 nm. Similarly, the peaks
from distinct third neighbors merge to a single broader peak
around 1.33 nm. Thus the simulations trace the disappearance of
long-range structure with decreasing λ. Nevertheless, the presence
of peak around 0.63 nm indicates that a short-range structure within
the fibril is still present. Further decreasing λ results in the
complete loss of crystalline order, as evident from the g(r) at λ <
0.1. For the λ values 0.01�0.0, the g(r) resembles that of typical
dense liquid systems, with the peaks corresponding to neighbor-
ing shells of the monomers.

V. CONCLUSIONS

In this paper we have presented efficient and reliable CG
models for crystalline and amorphous cellulose fibrils. Each
monomer in the cellulose chain is mapped on to a single CG
bead. In order to model the corresponding experimental cellu-
lose Iβ structure, the cellulose fibril is constructed with distinct
chains of origin and center sheets. The target observables were
obtained from extensive atomistic simulations, and the optimized
CGmodel obtained is in good agreement with the corresponding
atomistic distributions. The robustness of the present CG force
field for crystalline cellulose is demonstrated by the stability of
cellulose fibrils for several hundreds of nanoseconds without
using constraints. To our knowledge, this is the first such uncon-
strained CG model that can be used to study cellulose fibrils.

Over the course of the CG simulation (>1 μs), mean bead
fluctuations are∼0.1�0.3 nm, indicating that the fluctuations in
the crystalline structure are much smaller than the size of the CG
glucose monomer itself (0.52 nm). In natural samples, amorphous
and crystalline cellulose coexist.35 Hence, in order to enable a more
versatile model of cellulose structure, we extended the crystalline
CG model to amorphous cellulose. An individual cellulose chain
completely solvated (in water) was considered as an “extreme”
case of noncrystalline fully amorphous cellulose, and a corre-
sponding CG parameter set was developed. The use of a coupling
parameter λ allows a combinations of potentials for fully crystalline
(λ = 1) and fully amorphous (λ = 0) systems, thereby producing
a series of structures intermediate between crystalline and
amorphous states. This λ coupling approach allows the CG study
of various partially crystalline and noncrystalline cellulose struc-
tures. Decreasing λ by as little as 10% introduces significant
noncrystallinity into the cellulose structures, and the simulations
exhibit a clear crossover from partially crystalline to fully amorphous
behavior around λ < 0.1.

Previous experimental and simulation studies have shown
distinct behavior between the center and the origin planes due
to their slightly different hydrogen-bonding patterns.12,36 The
present results provide noncrystalline models in which the specific

Figure 10. Gradual progression of crystalline to amorphous transition as evident by radial distribution functions. Each figure corresponds to a
simulation carried out with the specified λ value.
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hydrogen bonding is disrupted, leading to the breakdown of
short-range order. Analysis of the radial distribution functions
shows how as a function of λ the distinction between the center
and the origin planes evolves. For λ< 0.3, the distinction between
the two types of planes exists up to the first nearest neighbors,
while no distinction was found beyond 0.8 nm, a distance
corresponding to second and further neighbors.

In conclusion, the present CGmodel allows the exploration of
both crystalline and amorphous cellulose fibril structures for
length- and time-scales beyond the reach of atomistic simula-
tions. A systematic method is presented for generating and
representing both crystalline and amorphous cellulose states.
Natural cellulose fibrils consist predominately of a mixture of the
crystalline phases IR and Iβ. After biomass treatment, other
crystalline forms, such as cellulose II, III, can be formed. Although
the present study has focused on the Iβ cellulose, similar metho-
dology can be easily extended to other crystalline forms. Further,
the introduction of a coupling parameter λ provides a unified way
of generating cellulose fibril structures with different degrees of
crystallinity, thereby enabling the modeling of extensive cellulose
fibrils with both crystalline and amorphous characteristics. The
mixed CGmodels could also allow the study of the crystalline-to-
amorphous transition of celluloses using an adaptive resolution
scheme.37 Future studies will include the importance of explicit
solvent incorporation along with the interactions between crys-
talline and amorphous cellulose structures. Furthermore, increasing
the complexity of theCGmodels to incorporate other biomolecules,
such as lignin and hemicellulose, will be important in understanding
biomass recalcitrance, a central theme in biomass-based renewable
energy. Work in these directions is presently underway.
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ABSTRACT: Quantitative structure�property relationships (QSPRs) have been developed and assessed for predicting the
reorganization energy of polycyclic aromatic hydrocarbons (PAHs). Preliminary QSPR models, based on a combination of
molecular signature and electronic eigenvalue difference descriptors, have been trained using more than 200 PAHs. Monte Carlo
cross-validation systematically improves the performance of the models through progressive reduction of the training set and
selection of best performing training subsets. The final biased QSPR model yields correlation coefficients q2 and r2 of 0.7 and 0.8,
respectively, and an estimated error in predicting reorganization energy of (0.014 eV.

I. INTRODUCTION

A key property of organic semiconducting materials is that
their conducting properties can be tuned by optimizing their
chemical structure.1�5 A practical route to do this includes the
synthesis of a new compound, optimization of its processing
conditions, fabrication of the device, and measurement of its
performance (properties). By repeating this procedure, one can
formulate structure�processing�property relationships and
proceed with the rational design of organic semiconductors.

It is desirable to assist the design by optimizing material pro-
perties using computer simulations. First, methods are required
that are capable of predicting the property of interest starting
from the chemical structure, preferably without fitting para-
meters. The second step consists of correlating these properties
with the corresponding structures for a specified training set of
compounds and formulating quantitative structure�property
relationships (QSPRs). Finally, improved compounds are iden-
tified for a specific property range.

For organic semiconductors, already the first step in this
scheme is nontrivial since charge carrier mobility depends on
molecular geometry, electronic structure, and global percolation
pathways for charge carriers. Without discussing any details, this
represents a typical multiscale problem, and attempts to solve it
constitute an entire research field.6�22 Current experience suggests
that it is very difficult to directly evaluate charge carriermobility as a
property of interest for an arbitrary chemical compound, since
several assumptions are necessary regarding material morphology,
the type of transport, and the model used to describe it. One could,
however, ask whether it is possible to find adequate QSPRs that
relate chemical structure to charge transport properties, the link
between chemical structure and mobility being established first.

In this paper, we construct and assess the quality of several
such QSPRs in the context of organic semiconductors. As a test

system, we use polycyclic aromatic hydrocarbons (PAHs). PAHs
or, more specifically, discotic liquid crystals have already found
application in organic solar cells and field effect transistors.2,23,24

A typical chemical structure of a discotic liquid crystal consists of
a flat conjugated core with side chains attached to its periphery.
Discotics self-assemble into columnar structures with aromatic
cores stacked on top of each other. Overlap of the π orbitals of
these cores enables charge transport along columns, rendering
these materials one-dimensional semiconductors. The efficiency
of charge transport can be engineered by either varying the shape
and size of the conjugated core or influencing their packing
through the modification of side chains.

Due to structural, dynamic, and energetic disorder, charge
transport in discotic liquid crystals occurs via charge carrier hopping
between the neighboring molecules. The rate of hopping is given
by the high-temperature nonadiabatic Marcus theory:6,25,26

ω ¼ J2

p

ffiffiffiffiffiffiffiffiffiffi
π

λkBT

r
exp �ðΔG� λÞ2

4kBTλ

" #
ð1Þ

where J is the electronic coupling matrix element between the
donor and acceptormolecules,λ is the reorganization energy,ΔG is
the free energy difference between the initial and final states, and
T is the temperature.

Equation 1 identifies several parameters important for charge
transport. The transfer integral J is related to the overlap of
electronic orbitals, highest occupied molecular orbital (HOMO)
for the hole and lowest molecular orbital (LUMO) for the
electron transport. As such, it is very sensitive to the relative
position and orientation of neighboring molecules.13,17,27
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In columnar phases of discotics, the maximum of the transfer
integral is achieved in a face-to-face molecular arrangement, with
the typical intermolecular distance of d = 3.5 Å.24,28�30 In what
follows, we assume such an “ideal”molecular arrangement, since
it maximizes charge transport and hence provides an upper
bound for the charge mobility which can be reached experimen-
tally. We ignore the distribution in transfer integrals due to
thermal fluctuations as well as static defects in morphology.
Another parameter,ΔG, is the free energy difference between the
states with charge localized on a donor or an acceptor of the
charge transfer complex. For an ideal face-to-face arrangement,
this contribution vanishes due to equivalence of the initial and
final states. Finally, the internal reorganization energy, λ, ex-
presses the strength of electron�phonon coupling and has an
exponential impact on the transfer rate, with small λ favoring
more efficient charge transport.

For an ideal face-to-face columnar alignment, the mobility
of the charge carrier along the column is proportional to the

hopping rate, eq 1, with ΔG = 0:

μ ¼ ωd2

kBT
¼ J2d2

pkBT

ffiffiffiffiffiffiffiffiffiffi
π

kBTλ

r
exp � λ

4kBT

� �
ð2Þ

where d is the distance between neighboring sites. We can
therefore argue that large hopping rates (that is, large transfer
integrals, small reorganization energies) favor high charge mo-
bilities. Hence, the potential descriptors shall link the chemical
structure of a compound with the hopping rate, or, alternatively,
J and λ.

In this study, we develop appropriate structure�mobility
QSPRs. To do this, we first present how the PAH compound
data set was generated and used to select the parameters
dominating the charge transport in columnar phases of discotics.
We then present two descriptors and assess their performance
within preliminary QSPR models. Finally, a robust QSPR model
is developed using Monte Carlo cross-validation for variable
training/test set ratios.

Figure 1. Analysis of reorganization energies, transfer integrals, and transfer rates in the PAH compound data set: Sorted values of (a) λ, (b) J, and (c)ω
as functions of compound indices, as well as the respective compound distributions (red lines). For illustrative purposes, several compounds at λ values
of 0.3 eV (benzene), 0.19 eV (triphenylene), 0.14 eV (anthracene), 0.13 eV (coronene), and 0.09 eV (pentacene) are shown. Panel d shows a combined
plot of the three properties against the λ-sorted compound index. The red dash-dotted line indicates a λ-only prediction of the transfer rates based on
eq 1, assuming a constant transfer integral for the entire data set.



2551 dx.doi.org/10.1021/ct200231z |J. Chem. Theory Comput. 2011, 7, 2549–2555

Journal of Chemical Theory and Computation ARTICLE

II. COMPOUND DATA SET

Even for an “ideal” molecular packing, it is not immediately
obvious which of the two physical parameters, J or λ, is more
important for charge transfer rate prediction. In order to identify
the dominant physical parameter and set up the reference values
for QSPRs, we have generated a compound data set of PAHs and
analyzed its properties. Starting from benzene, we have appended
additional aromatic rings at random available bonds. We have
used standard carbon�carbon and carbon�hydrogen bond
lengths and angles, checking for atom overlaps as well as
aromaticity (H€uckel rule) and discarding multiple copies of the
same PAH. Thus, a data set of 211 closed shell aromatic PAHs
with up to nine benzene rings has been generated.

For hole transport, the reorganization energy can be written as
a sum of the relaxation energies in neutral and positively charged
states

λ ¼ Eþn � E0n þ E0c � Eþc ð3Þ

where Eg
q is an energy of the compound in charge state q and

geometry g. q= 0 corresponds to a neutral molecule and q = + to a
cation. g = n indicates optimized geometry of a neutral molecule,
while g = c corresponds to an optimized cation geometry. Hence,
four calculations per compound are necessary, two geometry
optimizations for the neutral (En

0) and cationic (Ec
+) species and

two single point energy calculations for the cationic species in the
neutral geometry (En

+) and for the neutral species in the cationic
geometry (Ec

0).
Reorganization energies were computed using density func-

tional theory (DFT; B3LYP functional,31 the 6-311++g(d,p)
basis set) using the Gaussian 03 package.32 Figure 1a shows the
values of λ in ascending order together with their distribution in
the data set. The reorganization energies of 211 compounds are
spread from 0.06 to 0.30 eV.

Transfer integrals Jwere calculated for a cofacial geometry and
molecular separation of 3.5 Å using Zerner’s Intermediate Neglect
of Differential Overlap method as implemented in the Molecular
Orbital Overlap package.33 Figure 1b shows the resulting values of
J in ascending order and their distribution within the data set. The
transfer integrals span a range of 0.1 to 0.5 eV, which is relatively
large due to the assumed columnar stacking of the molecules. This
distribution is sharply peaked around 0.4 eV, indicating that there
are only small variations of Jwithin the data set. The corresponding
distribution of transfer rates ω is shown in Figure 1c.

Figure 1d combines the three parameters x = λ, J, and ω
plotted as a function of the λ-sorted compound index. All values
are shown relative to the value of the compound with index zero
(x0). This representation illustrates that among the three parameters
the reorganization energy has the largest relative variance and that
the transfer integrals only slightly fluctuate around a constant value.
To further support this conclusion, we have included a λ-only
estimate of the transfer rates, with a constant transfer integral for the
entire data set. The result, shown in Figure 1d, corroborates the
assumption that, for an “ideal” packing considered here, the
reorganization energy is a dominant factor influencing the transfer
rates and thereby the charge carrier mobilities. Henceforth, we will
concentrate on developing QSPRs for the reorganization energy λ.

III. DESCRIPTORS

QSPR relies on the definition of descriptors that characterize
the chemical structure, for instance, the number of atoms,

molecular mass, and deviations of the molecular shape from
planarity or linearity. Several scalar descriptors that have been
investigated but rejected due to their low correlation with the
reorganization energy are described in the Supporting Information.

The two descriptors, molecular signature and Δε, had the
largest correlation with λ. We first discuss their use for the
preliminary QSPR models that are based on the full 211-com-
pound PAH data set. We then present the development of “biased”
QSPR models after partitioning the data set into a 188-compound
training set and a 23-compound test set. Finally, we address the
predictive power of the biased models for the test set compounds.
A. Molecular Signature. The molecular signature is a compi-

lation of a set of atomic signatures, {σ}, that occur in a molecule.
It was first presented and applied in the context of structure
elucidation34 and later defined for acyclic compounds and used in
QSPR analyses.35 An atomic signature describes the extended
covalent bonding neighborhood of an atom within a molecule up
to a certain “height”, h. Figure 2 illustrates how atomic signatures,
hσ, are generated. The molecular signature for a given height is a
vector that contains the frequencies of all of the hσ’s occurring in
the molecule. As such, it represents a methodical codification
system over an alphabet of atom types.
The MolConverter program from ChemAxon36 was used

to convert the xyz-coordinate files of the structures in our
PAH data set to corresponding simplified molecular input line
entry specification (SMILES) strings. SMILES describe chemical
structures and topologies using short textual strings.37 From the
SMILES strings, molecular signatures have been determined for
individual heights. The correlation between these molecular
signatures alone and the reorganization energy is, however,
insufficient formaking predictions of λ. For example, the correlation

Figure 2. Atomic signatures hσ from height h = 0�4 for an atom X in
2-methyldecahydronaphtalene. hσ(X) is determined as follows: (1) The
subgraph containing all atoms at distance 4 from atomX is extracted. (2)
This subgraph is canonicalized with atom X having label 1. (3) A tree
spanning all edges of the subgraph is constructed. (4) All labels
appearing only once are removed, and the remaining labels are renum-
bered in the order they appear. (5) The atomic signature is determined
after reading the tree in a depth-first order, the depth corresponding to
height h.
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coefficient, r2, of molecular signatures with h ∈ (0, 1, 2, 3) versus
λ does not exceed 0.39.
B. HOMO Eigenvalue Difference, Δε. As mentioned above,

the reorganization energy λ expresses the strength of electro-
n�phonon coupling in the molecule. Thus, a weak correlation of
λ and the descriptor based solely on structural features, such as
the molecular signature, is not surprising. In order to add
electronic properties to descriptors, we note that eq 3 can be
rearranged in terms of the difference between vertical excitation
energies, linking states of the same geometry but a different
number of electrons Ne, yielding

λ ¼ δn � δc,

δn ¼ Eþn ðNe � 1Þ � E0nðNeÞ
δc ¼ Eþc ðNe � 1Þ � E0cðNeÞ ð4Þ

Here, δn is the iso-nuclear change in energy due to removal of an
electron from the neutral species in its relaxed geometry, while δc
is the iso-nuclear change in energy due to addition of an electron
to the cationic species in its relaxed geometry.
Based on molecular grand-canonical ensemble DFT,38�40

we can Taylor-expand δn and δc in number of electrons, Ne

EðNe þ ΔNeÞ ¼ EðNeÞ þ ∂EðNeÞ
∂Ne

ΔNe þ OðΔN2
e Þ ð5Þ

For an exact expression for the exchange-correlation potential
within density-functional theory, all higher order terms would
vanish for 0 e ΔNe e 2 because the total potential energy of a
molecule with fixed external potential changes only linearly as
one varies the number of electrons.41,42 Since the derivative of
the energy with respect to Ne is the eigenvalue of the highest
occupied molecular orbital (HOMO),43,44 we can combine
eqs 4 and 5 and express λ as

δn ¼ ∂E0nðNeÞ
∂Ne

ΔNe ¼ ε0nðNeÞΔNe

δc ¼ ∂E0cðNeÞ
∂Ne

ΔNe ¼ ε0cðNeÞΔNe

λ ¼ ε0c � ε0n ð6Þ
whereΔNe =� 1 and εn

0(Ne) and εc
0(Ne) denote the eigenvalues

of the highest occupied molecular Kohn�Sham orbitals of the

neutral molecule in the respective optimal neutral and cationic
geometries.
The exact form of the exchange-correlation functional is,

however, unknown. Moreover, the self-interaction error increases
for fractional occupation within widely used functionals.45 The
difference between electronic eigenvalues of the HOMOs in the
neutrally and cationically relaxed geometries, εc

0 � εn
0, yields

therefore only an estimate of λ. In our case, we have tested the
quality of this approximation for the B3LYP hybrid functional by
correlating the λ obtained from the eigenvalues as in eq 6with the
λ obtained from the energies according to eq 3. As shown in
Figure 3a, the correlation is very strongwith a correlation coefficient
r2 of 0.96. This could be further improved by using functionals that
correctly account for fractional occupation numbers.42

The (approximate) determination of the reorganization en-
ergy according to eq 6 still requires the optimizations of neutral
and cationic geometries, as well as a single-point calculation
for the neutral molecule in the cationic geometry. While this is
one calculation less than in eq 3, it is inconvenient since ideally
one would like to predict λ from ground-state properties of the
neutral molecule alone, i.e., without having to calculate εc

0. We
have therefore probed whether εc

0 correlates with εn
0 in the PAH

data set. The inset in Figure 3a shows εc
0 plotted versus the

respective εn
0. The linear regression yields εc

pred = 0.93εn
0 � 0.25

[eV] with a remarkable correlation of r2 = 0.99. On the basis of
these observations, we have used

Δε � εpredc � ε0n ð7Þ

as an additional scalar descriptor for λ.
Figure 3b shows the correlation of the actual λ from eq 3 with

the estimated Δε, λ ≈ 1.01Δε + 0.001 [eV]. The regression for
this expression, however, yields a rather low correlation coeffi-
cient of only r2 = 0.39. Thus, solely an electronic descriptor
cannot reliably predict reorganization energies.

IV. QSPR MODELS

From the two preceding sections, it is apparent that when
used separately neither the structural molecular signature nor the
electronic eigenvalue descriptor Δε are sufficient for reliable
quantitative estimates of the reorganization energy in our set of
PAHs. Since λ is a measure of the coupling of structural and

Figure 3. Correlations of calculated reorganization energies λ of the PAH data set with differently predicted values. In panel a, the correlation to εc
0� εn

0

according to eq 4 results in λ = 1.05 � (εc
0 � εn

0) � 0.004 [eV] with r2 = 0.96 (blue triangles). The inset shows the correlation between the highest
occupied electronic eigenvalue of the neutral molecule in cationic geometry, εc

0, with the respective value for the neutral geometry εn
0, resulting in εc

0 =
0.93� εn

0� 0.25 [eV] and r2 = 0.99. Using this relation to predict λ from εn
0 only according toΔε in eq 6 yields the correlation shown in panel b with λ =

1.01 � Δεn
0 + 0.001 [eV], r2 = 0.39 (red squares).
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electronic degrees of freedom in a molecule, it is natural to
attempt a combination of the two descriptors.
A. Preliminary QSPR Models. For the different heights of

molecular signatures (see Section IIIA), we have set up different
preliminary QSPR models using signatures of heights 0�3
through 0�5 for the PAH compound data set (without outliers).
Specifically, leave-one-out cross-validated correlation coeffi-
cients (q2) have been calculated using multiple linear regression
(MLR) and partial least-squares (PLS). These coefficients,
together with the preliminary models, are listed in Table 1. For
the sake of completeness, we also present the results for additional
models that are not based on Δε but that combine molecular
signature with various other scalar structural descriptors. More
technical details can be found in the Supporting Information.
Our results show that while the PLS calculations yield a q2 of

around 0.50, indicating predictability in general for all of the
models, they do not suggest a preference for a particular
descriptor combination. MLR results, in contrast, indicate a clear
preference for the model combination of the height 0�3
molecular signature with Δε, which has a q2 of 0.62 (see model
ii in Table 1). For the alternative combinations of molecular
signature and various structural scalar descriptors, the corre-
sponding r2 ranges only from 0.20 to 0.29. An additional model
which combines all descriptors considered in this study (see, e.g.,
model vii in Table 1) does not improve the performance of
preliminaryQSPRmodel ii, evenwhen using unsupervised forward
selection of the descriptors (see the Supporting Information) to
further eliminate redundancy among descriptors (model viii).
Thus, the combination of height 0�3 signatures and Δε in

model ii is identified as the optimal starting combination for
developing the “biased” QSPR model in the next section. More
specifically, the logarithm of λ is estimated by

log10 λ ¼ cλΔε þ c0 þ ∑
i
ciσi ð8Þ

where i runs over all 63 signatures and where c0, cλ, and {ci}
are the trained QSPR coefficients of the intercept and the
descriptors Δε and signatures, respectively (see the Supporting
Information).
B. Biased QSPR Models. We found that the previously

identified optimal preliminary QSPR model can further be

developed into a “biased” QSPR model with the help of Monte
Carlo cross-validation. To this end, the PAH compound data set
was first split into a total 188-compound training set and a test set
of 23 compounds, enabling the validation of the biased models.
The test set was determined using dissimilarity-based compound
selection, as described in the Supporting Information. The
resulting test set compounds are shown in Table 2.
Thereafter, out of the total 188-compound training set, subsets

with varying percentages x were defined, where x ∈ (5, 10, 15, ...,
90, 95)%. For each x, 10 000 random partitions from among the
188 compounds were generated. All of the random partitions
were subjected to training using the preliminary QSPR model ii,
i.e., height 0�3 molecular signatures combined with Δε based
on PLS.
The models obtained, dubbed Mx

k (k ∈ 1, 2, ..., 10 000), were
subsequently ranked according to their performance as measured
by q2. For M100, q

2 = 0.44 and r2 = 0.53, which is below the
conventional predictive threshold of 0.50. As described in more
detail in the Supporting Information, q2 can be improved by
reducing the training subset size x, followed by the QSPR model
training of 10 000 random partitions for each of these reduced
training subsets.
Figure 4 illustrates the results for varying percentage x. The

average q2, i.e., the average of the cross-validated correlation
coefficients over all randomly chosen partitions, declines pro-
gressively as the training set size decreases. The standard devia-
tion around that average, however, increases even more, thereby
enabling us to identify “biased”modelsMx

I , Mx
II, Mx

III, etc., namely
models that yield the respective best, second best, third best, etc.
qx
2 out of all 10 000 models that have been trained for each
partition at a particular x. This behavior is in line with ref 46.
C. Test Set Results of Biased QSPR Models. Figure 4

demonstrates overfitting, namely, that predicting the reorganiza-
tion energy based on the biased (best performing) Monte Carlo
models will always be themore favorable the smaller the subset is.
From the behavior of q2 versus x, one could therefore be tempted
to deduce that the optimal model should be based on the smallest
training subset. Obviously, q2 is not a sufficient requirement for
the predictability of a model, and only external validation
provides a sound assessment of a QSPR model.47 Thus, to
determine the optimal size of the training subset, we compute
the root-mean-square (RMS) deviation of predicted λ from
actual λ for the 23 test set molecules using the biased Mx

I , where
x = 5, 10, ..., 100. Note that we excluded two outliers from the test
set since they had the largest residuals and corresponded to
extreme λ values (maximum and minimum) within the entire
compound data set.
As shown in Figure 4, as x decreases from 100 to 60%, RMS

remains roughly constant (∼ 16 meV) and starts to strongly
increase in oscillatory fashion for subsets smaller than 55%. Since
RMS is minimal at x = 40% (14 meV), we define the correspond-
ing biasedmodelM40 as our best QSPRmodel for predicting λ of
PAHs. In contrast, model M100 has a higher RMS of 17 meV.
Biased QSPR model M40 does not only have a lower RMS
deviation but also exhibits improved correlation coefficients, q2 =
0.70 and r2 = 0.80. Table 2 lists the residuals for the predictions
of λ based on models M100 and M40.
In summary, model M100 predicts the reorganization energy of

more than 75% compounds within a reasonable margin of error
((20 meV). The biased model M40, however, predicts a larger
number (>85%) of test set compounds within the same error
margin of (20 meV.

Table 1. Preliminary QSPR Models, i�viii, and Corre-
sponding q2 Values for Multiple Linear Regression (MLR)
and Partial Least Squares (PLS), Respectivelya

h type #σ i ii iii iv v vi vii viii

0�3 MLR 63 0.29 0.62 0.20 0.28 0.29 0.29 0.63 0.64

0�3 PLS 63 0.47 0.47 0.47 0.46 0.47 0.47 0.46 0.45

0�4 PLS 431 0.50 0.50 0.50 0.49 0.50 0.50 0.50 0.26

0�5 PLS 1635 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.31
a See section IV.A and the Supporting Information for more details.
Here, h is the signature height; #σ refers to the number of atomic
signatures, i.e., the dimension of the molecular signature vector. These
models were generated using the data set of 211 PAHs. Highlighted
model ii has been used for the construction of the “biased” QSPR. (i)
molecular signatures. (ii) molecular signatures + Δε. (iii) molecular
signatures + dM (molecular distance). (iv) molecular signatures + dL
(molecular linearity). (v) molecular signatures + dP (molecular
planarity). (vi) molecular signatures + dH (hydrogen repulsion). (vii)
molecular signatures + dM + dL + dP + dH + Δε. (viii) vii redundant
descriptors removed based on UFS.
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V. CONCLUSIONS

On the basis of conceptual density functional theory, we have
developed a frontier orbital eigenvalue descriptor Δε for the
empirical prediction of reorganization energies, λ. For a compound
data set of over 200 polycyclic aromatic hydrocarbons, we have
investigated the performance of various QSPR models aimed at
predicting reorganization energies of PAHs based on a combina-
tion of a structural and an electronic descriptor, molecular
signature, and Δε, respectively. For the entire data set, we find
that preliminary QSPR models yield at best a correlation coeffi-
cient of q2 = 0.5.MonteCarlo cross-validationwith training subsets

permits the definition of a “biased”model with significantly better
performance, yielding a q2 and r2 of 0.70 and 0.80, respectively, and
a root-mean-square deviation of predicted from actual λ of 0.014
eV. Additional scalar structural descriptors, such as average intera-
tomic distance, deviation from linearity, or deviation fromplanarity
yielded only negligible improvement when combined with molec-
ular signature. Furthermore, we have confirmed the basic assump-
tion of selection algorithms based on dissimilarity, which requires
that compounds spanning structure/descriptor space also span
property/activity space. The main drawback of the proposed
descriptor is that it does not account accurately enough for the
changes of the molecular geometry upon charging/discharging.
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ABSTRACT: The application of hopping theory to predict charge (hole) mobility in amorphous organic molecular materials is
studied in detail. Application is made to amorphous cells of N,N0-diphenyl-N,N0-bis-(3-methylphenylene)-1,10-diphenyl-4,
40-diamine (TPD), 1,1-bis-(4,40-diethylaminophenyl)-4,4-diphenyl-1,3,butadinene (DEPB), N4,N40-di(biphenyl-3-yl)-N4,N40-
diphenylbiphenyl-4,40-diamine (mBPD), N1,N4-di(naphthalen-1-yl)-N1,N4-diphenylbenzene-1,4-diamine (NNP), and N,N0-bis-
[9,9-dimethyl-2-fluorenyl]-N,N0-diphenyl-9,9-dimethylfluorene-2,7-diamine (pFFA). Detailed analysis of the computation of each
of the parameters in the equations for hopping rate is presented, including studies of their convergence with respect to various
numerical approximations. Based on these convergence studies, the most robust methodology is then applied to investigate the
dependence of mobility on such parameters as the monomer reorganization energy, the monomer�monomer coupling, and the
material density. The results give insight into what will be required to improve the accuracy of predictions of mobility in amorphous
organic materials, and what factors should be controlled to develop materials with higher (or lower) charge (hole) mobility.

1. INTRODUCTION

Organic conducting materials are receiving significant scrutiny
for possible application in the development of lightweight, cheap,
and flexible electronic devices, such as organic light-emitting
diodes (OLED), data storage systems, field-effect transistors
(FET), or solar cells.1�3 While organic conductors have numer-
ous advantages over established technology, the hole mobility of
most organic crystals (∼10�2 cm2/V s) is much smaller than that
of the inorganic materials in common use. Recently, however,
organic crystals, such as pentacene and phthalocyanine, have
been produced with improved conducting properties, thereby
invigorating the field. The mobility of pentacene has been
improved from 2 � 10�3 to 1.5 cm2/V s and that of phthalo-
cyanine from 10�3 to 0.02 cm2/V s using improved fabrication
technology.4

Some characteristics of high-performance organic electronic
materials are well established. For example, discotic liquid crystal
molecules that have one or more strong resonance rings at their
center often show good charge mobility. This results from a low
reorganization energy and a large electronic splitting.5�10 The
strong resonance ring tends to make the molecules form
columnar phases, leading to a pseudo-one-dimensional charge-
transfer pathway. Such a one-dimensional charge-transfer path
was observed in our previous work on phthalocyanine, in which
we showed that the coupling matrix element is high only for the
face to face charge-transfer dimer.11 For this face to face charge
transfer, the site energies are nearly identical, producing very low
energetic disorder. The large coupling matrix element and the
low energetic disorder combine to yield high charge mobility.

Although the mechanism of charge transfer in organic crystals
has been studied for several decades, the capability to predict
charge mobility in amorphous materials is still very limited. Tse
and colleagues have reviewed three general approaches to
modeling charge transport.12 Historically, charge transport was

modeled with macroscopic phenomenological models. The cur-
rently most popular approach is to employ the Gaussian disorder
model (GDM). The GDM approach, which is most appropriate
when charge transport is dominated by energetic disorder in the
hopping sites,13 was developed by B€assler and colleagues14�16

and used extensively by others.17,18 The third approach, and the
one adopted for the present work, is to apply Marcus hopping
theory, which is especially useful when polaron effects are signi-
ficant.13 In amorphous organic materials, charge mobility cannot
be predicted by simple application of Marcus�Hush theory, how-
ever, because all molecules are inequivalent due spatial disorder, so
energetic disorder in the matrix cannot be disregarded.19�21 To
predict the charge mobility adequately, the site energy must be
reliably incorporated.

We seek to identify a reliable and computationally efficient
computational method for screening amorphous molecular
solids for high hole mobility. Toward this end, in this study
we explore the application of hopping theory to calculate
charge (hole) mobility in amorphous N,N0-diphenyl-N,N0-bis-(3-
methylphenylene)-1,10-diphenyl-4,40-diamine (TPD), 1,1-bis-(4,40-
diethylaminophenyl)-4,4-diphenyl-1,3,butadinene (DEPB), N4,
N40-di(biphenyl-3-yl)-N4,N40-diphenylbiphenyl-4,40-diamine
(mBPD), N1,N4-di(naphthalen-1-yl)-N1,N4-diphenylbenzene-
1,4-diamine (NNP), and N,N0-bis[9,9-dimethyl-2-fluorenyl]-N,
N0-diphenyl-9,9-dimethylfluorene-2,7-diamine (pFFA) (for which
the chemical structures are shown in Figure 1). For comparison,
we also calculate charge (hole) mobility in crystalline tetracene
and pentacene. First, we describe the theoretical/computational
approach. Next, we report detailed studies of the various
approximations employed. Finally, numerous factors controlling
the mobility are investigated, including the influence of the

Received: May 21, 2011
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dielectric properties of the material matrix on the reorganization
energy, the dependence of charge mobility on material density,
and the method of treating site energy.

2. THEORY AND COMPUTATIONAL METHODS

2.1. Overview.Our approach to computing charge mobility in
amorphous molecular solids is based on modeling the following
fundamental step in the charge-transport process. If “M” repre-
sents the basic monomer unit of the material, (a single molecule)
we consider the rate of hopping of a charge between one
monomer and an adjacent one:

Mþ þ M f M þ Mþ ð1Þ
in the presence of a disordered background distribution of M.
The disordered background distribution represents the
material bulk.
To model the material bulk, we construct an ensemble of

representative unit cells, using a procedure described in detail in
Section 2.2. These unit cells are constructed to be sufficiently
large so that for a representative monomer near the center of the
cell, the nearest-neighbor interactions involve other monomers
within the same cell. We refer to these cells as “amorphous cells”,
while acknowledging that a material built by translational repeti-
tion of such a cell would have periodicity on the length scale of
the cell dimension.
Next, for each cell, hopping theory is applied to a selec-

ted monomer within the cell to compute the rate of charge
hopping to the adjacentmonomers. These hopping rates are then

combined to determine a holemobility for the cell. The ensemble
of cells therefore gives rise to a distribution of mobility values,
and the average value of mobility over the entire ensemble is
taken as the estimate of mobility in the material. This approach,
outlined above and detailed in the balance of this paper, explicitly
incorporates energetic disorder of the sites in the material and
does so without the introduction of an adjustable “disorder
parameter” common to simulation approaches to computing
mobility.22�24 The use of an explicit cell model also avoids the
severe assumption of isotropic monomer�monomer interac-
tions. Instead, each such interaction is treated explicitly.
2.2. Construction of Amorphous Cells. Amorphous cell

representations of TPD, DEPB, mBPD, NNP, and pFFA were
generated using the amorphous cell construction and forcite
modules of Accelrys’ Materials Studio 5.0 commercial code.25

There are no material density measurements for any of the
amorphous organic materials studied in this paper. Since the
charge mobility depends exponentially on density (vide infra),
we first accurately determined material densities using the
procedure developed by Rigby.26 In brief, the molecular mono-
mer structures shown in Figure 1a�e were first optimized using
molecular mechanics and the COMPASS force field.26 Ten cubic
lattice amorphous cells were prepared for each material. Each cell
was filled with sufficient copies of the optimized monomer struc-
tures to result in approximately 1600 atoms/cell. The starting
cubic cell parameter was selected to make the density close to
1 g/cm3, and the cells were energy minimized after generation.
Each cell was subjected to four sequential forcite molecular
dynamics runs: (i) a constant volume and temperature (NVT)

Figure 1. Chemical structures of the monomers of the amorphous materials studied here: (a) TPD, (b) DEPB, (c) mBPD, (d) NNP, (e) pFFA,
(f) naphthalene, (g) tetracene, and (h) pentacene.
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velocity scaled run of 10 000 steps; (ii) a NVT run of 40 000 steps
using the Andersen thermostat; (iii) a constant pressure and
temperature (NPT) run of 10 000 steps; and (iv) a final
production NPT run of 100 000 steps. Both NPT runs employed
the Andersen and Berendsen thermostat and barostat and an
applied external pressure of 0.0001 GPa. The time step for all of
the dynamics runs was 1 fs. Full atomic coordinate frames were
written out every 1000 steps of the production runs and used to
compute the mean density and its standard deviation. The
computed densities of TPD, DEPB, mBPD, NNP, and pFFA
are 1.07, 1.01, 1.10, 1.14, and 1.02 ( 0.01 g/cm3, respectively.
Subsequently these computed densities were used to generate

more than 90 different amorphous cells for each material, each
with ca. 20 molecules (24 and 15 molecules for NNP and pFFA,
respectively) in the unit cell. Each generated cell was energy
minimized to remove close contacts generated by the cell packing
algorithm. These amorphous cells were generated in a cubic
lattice, a= 26.9129, 26.6633, 26.8210, 26.1847, and 26.5138 Å for
TPD, DEPB, mBPD, NNP, and pFFA, respectively.
The crystal structures of tetracene and pentacene were built up

using X-ray diffraction data27,28 withMaterial Studio.25 Details of
their structures are given in Table 1. In P1 symmetry, there are 3
nearest-neighbor interactions, T1, T2, and P-type, and 1 long
range interaction, L-type.19,20 The three nearest neighbor inter-
actions are displayed in Figure 2.
2.3. Mobility. To compute mobility for a given amorphous

cell, we apply a generalization of Deng and Goddard’s19 im-
plementation of Marcus�Hush theory.29 In this approximation,
mobility (μ) is given in terms of the charge diffusion coefficient
D, unit charge e, temperatureT, and Boltzmann constant kB by an
expression attributed to Einstein:

μ ¼ eD
kBT

ð2Þ

The diffusion coefficient is determined from a weighted
average of the hole hopping rates Wij from a representative
monomer cation Ai

+ in the material to each of its interacting
neutral neighbors Aj. The weight on each term is given by the
product of the square of the distance to the neighbor rij and by the

normalized hopping probability to the neighbor Pij.

D ¼ 1
2n∑i 6¼j

r2ijWijPij ð3Þ

The summation runs over all monomers within a cutoff radius
rc = 12 Å of the representative central molecule. (See Conver-
gence Tests Section below.) The charge-hopping rate (without
external electric field) is assumed to be given by the general
expression:19�21

Wij ¼
Vij

2

p

π

λkBT

� �1=2

exp �ðΔEij þ λÞ2
4λkBT

 !
ð4Þ

Where Vij is the coupling matrix element, λ is the reorganization
energy, p is Planck's constant, and ΔEij is the energy difference
between the initial and final states in the hopping process. (This
is nominally the energy difference between the reactants and the
products in eq 1, which is, in general, not equal to zero because
the presence of the disordered background removes the apparent
symmetry of the reaction.) Note that throughout this work we
make the implicit assumption that the free energy change for the
hopping process (ΔG) is well approximated by the total energy
change for the hopping process (ΔEij). This assumption is
supported by the fact that the nuclear structures of the initial
and final states are essentially the same in the crossing region,30

so entropic considerations to both states are plausibly very
similar. To apply eq 4 it is necessary to compute the system-
specific parameters λ, Vij(rij), andΔEij. We will now present
details of the computation of each of these parameters.
2.4. Reorganization Energy, λ. The reorganization energy

reflects the geometry relaxation in the twomonomers involved in
a charge transfer when their electronic state changes. In the case
of hole transport, the reorganization energy is determined by four
energies, (the Nelson four-point method):31,32

λ ¼ E
�
þ � Eþ þ E

� � E ð5Þ
where E+ and E are the optimized energies of the cationic and
neutral forms of a single monomer, E+* is the energy of the
monomer cation at the neutral geometry, and E* is the energy of
the neutral monomer at the cation geometry.19�21,31,32 These
energies were obtained from standard quantum chemical elec-
tronic structure calculations on a single monomer.
Monomer chemical structures of the materials studied in this

paper are shown in Figure 1. Initial structures were fully opti-
mized to obtain the reorganization energy. The cationic and
neutral forms of each structure were fully optimized to obtain E+
and E. E+* and E* were obtained using single point energy cal-
culations on the optimized neutral and cationic structures. Opti-
mization was initially performed at the AM1 level 33 and then at
the B3LYP/6-31G(d) level of theory.34�39 This two-step opti-
mization procedure is primarily to reduce overall computational
expense,11,40 but it also yields reorganization energies at both the
AM1 and DFT levels of theory. These were both tested for use in
computing mobility. An unrestricted model was used for the
optimized structure in the cationic state. Some spin contamina-
tion was observed at the AM1 level, but spin contamination was
typically negligible at the DFT level. All electronic structure
calculations were carried out with the GAMESS program.41

2.5. Coupling Matrix Element, Vij(rij). The coupling matrix
element is dictated by overlap of molecular orbitals and is
strongly dependent upon the relative position and orientation

Table 1. X-ray Crystal Cell Parameters for Tetracene and
Pentacene

space group a (Å) b (Å) c (Å) R β γ

tetracene P1 7.98 6.14 13.57 101.3 113.2 87.5

pentacene P1 6.28 7.79 14.56 76.4 87.6 84.7

Figure 2. Neighbor interactions (P, T1, and T2) in the tetracene crystal.
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of the neighboring molecules.5,10,11,19�21,42 Several methods are
in common use for determining the coupling matrix element.
These have been previously been compared in detail21,30 and will
therefore only be reviewed briefly here.
2.5.1. Dimer Splitting. A common approach is the dimer

splitting method, where Vij is expressed as

Vij¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEHOMO � EHOMO�1Þ2 � ðεi � εjÞ2

q
ð6Þ

where EHOMO and EHOMO�1 are energies of the highest occupied
and the second highest occupiedmolecular orbitals (HOMOand
HOMO-1) of the optimized dimer structure, respectively, and
εi(εj) is energy of site i(j). Note that these energies always appear
as a difference, the difference in energy between the two
molecules that results from their unique positions within the
material. This difference arises not only from the differing degree
to which the two monomers in an asymmetric dimer polarize each
other but also from polarization of the surrounding molecules. This
latter intermolecular effect is neglected in the present work. Con-
siderable discourse on site energies may be found in the appendix of
refs 20 and 43. We summarize a few essential points here: The
approximation of using dimer splitting is simple to apply in an ideal
system but encounters problems for complex real systems.21,44 In an
ideal system, the HOMO and HOMO-1 of the dimer are formed
from a linear combination of the HOMOs of the two isolated
monomers, but in a complex real system, there are many energe-
tically closely placed orbitals, and it is difficult to identify the pair of
split orbitals in the dimer that originate from the monomer
HOMOs. Often there is sufficient mixing that no such pair exists.
Detailed discussion of this matter may be found in ref 21.
In a crystal, the site energy difference term in eq 6 often

vanishes because every molecule is equivalent in the crystal, feels
an identical chemical environment, and is therefore polarized
identically. When the interacting monomers are not symmetry
related, however, each molecule has different chemicophysical
interactions, inducing a different degree of polarization in its
surroundings when charged, and the site energy difference is not
zero.11,21,42 The coupling matrix element in these asymmetric
systems has been investigated by Valeev et al., who showed that
the coupling matrix element in a noncofacially stacked dimer
should consider the site energy correction because the mono-
mers polarize each other differently.42

One approximatemethod to estimate the site energy difference in
the calculation of the coupling matrix element is to use the HOMO
level of each isolated molecule in dimer for its site energy. This
approach neglects the influence of thematrix surrounding the dimer,
which we will show below is a severe approximation.
2.5.2. Semiempirical Approximation to the Coupling Matrix

Element. Another way to estimate the coupling matrix element,
which skirts the site energy problem, is to use a semiempirical
approach. A few different methods have been introduced.45 We
tested one of the most common approximations, which assumes

V ¼ 1:75Sij
ðEi þ EjÞ

2
ð7Þ

Here, Ei and Ej are HOMO energies of the two isolated
monomers, and Sij is the overlap integral between the orbitals of
the isolated monomer in the dimer geometry, Æϕi|ϕjæ. In this
approximation, the coupling matrix element strongly depends on
the relative orientation of the monomers within the dimer. The
principal disadvantages of the semiempirical approximation are

that it invokes an empirical parameter (1.75) and neglects the
effect of the matrix surrounding the dimer.
2.5.3. Fock Transfer Integral. Within a one-electron product

description of the electronic structure, a more rigorous way to
determine the coupling matrix element that also avoids the issue
of site energy difference is by direct computation of the Fock
transfer integral (FTI).21,44,46�53 Several direct calculationmeth-
ods have been investigated.21,44,46�53 Troisi andOrlandi used the
FTI to calculate the coupling matrix element in DNA and
obtained satisfactory results in comparison with experiments.44

In their method, the coupling matrix element is written as

V ¼ Æja,HOMOjFabjjb,HOMOæ ð8Þ
where F is the Kohn�Sham�Fock matrix for the dimer and
ϕHOMO is approximated by L€owdin orthogonalization of mono-
mer HOMO orbitals. After orthogonalization through terms of
second order, the coupling matrix element is given by

V ¼ Æja
0jFjjb

0æ
¼ ðÆjajR þ ÆjbjβÞjFjðRjjbæ þ βjjaæÞ
¼ RβÆjajFjjaæ þ R2ÆjajFjjbæ þ β2ÆjbjFjjaæ

þ RβÆjbjFjjbæ ð9Þ
whereR = 1 + 3/8S2 and β =�1/2S, and S is the overlap integral
of the monomer HOMOs in the dimer geometry.21

We calculated the coupling matrix element using all three
different techniques: dimer splitting (with and without use of the
monomer HOMO energies to approximate the site energies),
semiempirical method given by eq 7,45 and direct calculation of
the FTI as given by eq 9.21 For the two acenes, the coupling
matrix element was only calculated by dimer splitting and direct
calculation of the FTI because the site energy difference vanishes
for equivalent sites in the crystalline acenes. Finally, as detailed
below, the FTI was selected for use in the present work.
2.6. Site Energies. Even when the coupling matrix element

(Vij) is computed by the FTI method, it is necessary to compute
the site energy difference. This is because when predicting
charge mobility, the site energy correction appears in two places.
One case is when the couplingmatrix element is calculated by the
dimer-splitting method as expressed by eq 6. The other case is for
introducing the energetic disorder of the hopping sites into eq 4,
i.e., to evaluate the exponential term in eq 4. We tested two
approaches for approximating the site energy difference. In the
first approach, the HOMO level of each isolated monomer in the
dimer geometry is taken as its site energy. The second approach
is to approximate the site energy with an empirical potential. This
potential is taken to be a sum of three separate potentials:
Coulombic, non-Coulombic intermolecular, and intramolecular
interaction.10,54�57

Vtotal ¼ VCoulomb þ Vnon-Coulomb þ Vintra ð10Þ
To calculate the Coulomb interactions, the Wolf method58

was employed

VCoulomb ¼ ∑
i > j

qiqj
4πεε0

erfcðRrijÞ
rij

� erfcðRrcÞ
rc

 

þ erfcðRrcÞ
rc

þ 2Rffiffiffi
π

p expð�R2r2c Þ
rc

 !
ðrij � rcÞ

!

ð11Þ
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where ε0 is the permittivity of vacuum, ε is the dielectric constant,
and qi and qj are the MOPAC charge for AM1 level (Mulliken
charge for DFT level) at atom i and j, respectively. The dielectric
constant is used as 3, which is typical of many electro-optic
materials. The cutoff radius, rc, was 12 Å, and the damping factor,
R, was 0.2 Å�1.
The non-Coulombic intermolecular interactions are given by

Grimme’s method,57 which is expressed as

Vnon-Coulomb ¼ � Cij
6

r6ij

1

1 þ exp �d
rij

SRRvdW
� 1

� �� �
0
BBB@

1
CCCA

ð12Þ
where rij is the atom�atom separation, C6

ij is dispersion coeffi-
cient, RvdW is equilibrium van der Waals separation, d is damping
coefficient, and S6 is scaling factor for RvdW. The geometric mean
and simple average combination rules were employed for C6

ij and
RvdW, respectively:

Cij
6 ¼

ffiffiffiffiffiffiffiffiffiffi
Ci
6C

j
6

q
, RvdW ¼ Ri þ Rj

2
ð13Þ

The dispersion coefficients and the van der Waals radii for the
different atoms were obtained from Grimme’s publication,57 and
d and Sr were set as 1 and 0.5, respectively.
The intramolecular interactions were employed by the amber-

type force field as

Vintra ¼ ∑
bonds

Krðr � reqÞ2 þ ∑
angles

Kθðθ� θeqÞ2

þ ∑
dihedrals

Kjð1� cosðj� jeqÞÞ ð14Þ

Where req, θeq, and ϕeq are determined by the optimized
structures. We set Kr = 400 kcal/mol Å2, Kθ = 70 kcal/mol
radian2, and Kϕ = 30 kcal.56

3. CONVERGENCE TESTS

The charge mobility in molecular materials as approximated
by Marcus�Hush theory depends on the reorganization energy
and the coupling matrix element. These two parameters can be
calculated by using electronic structure methods. In principle,
any of the quantum electronic structure methods in the toolkit
of computational chemistry can be applied to compute these
quantities, but in practice, we require a computationally efficient
approach. This is especially true for computing the coupling
matrix element because of the large number of such computa-
tions involved in predicting hole mobility based on an ensemble
of amorphous cells. Two approaches are reported here: First,
both the reorganization energy and the coupling matrix elements
were computed with the semiempirical AM1 method. Since
many fewer calculations of the reorganization energy are required
than calculations of the coupling matrix element, it is reasonable
to apply more advanced methodology for the computation of
reorganization energy. In the second approach, the reorganiza-
tions energy is computed at the DFT/B3LYP/6-31G(d)34�39

level, and the coupling matrix elements are computed at the
AM133 level. The second approach has proven successful in
the past20,21 and is termed the “hybrid” method. Using these

approaches, we performed numerous convergence tests to identify
an appropriate set of assumptions.
3.1. Basis Set Selection. To study the influence of basis set

change, we calculated the coupling matrix element in the parallel
naphthalene dimer and a DEPB dimer as well as the reorganiza-
tion energy of mBPD using an assortment of different basis sets.
As shown in Figure 3a, the coupling matrix element (FTI

method) in the naphthalene dimer is more strongly influenced by
the size of the basis set than by the addition of polarized or diffuse
functions. The coupling matrix element appears to be reasonably
well converged at the triple-ζ level and is only about 25% too
small at the double-ζ level. With a minimal basis set, and at the
AM1 level,33 (which has an implicit minimal basis) the coupling
matrix element is significantly underestimated. This underesti-
mation arises from the fact that π�π overlap is significantly
underestimated in a minimal basis. The parallel naphthalene
dimer therefore represents an extreme case because the
interaction is exclusively of the π�π type. The calculated
coupling matrix element is influenced by the wave function
overlap between the monomers in a dimer, which depends on
their relative spatial orientation.59 Figure 3b shows the results
of a similar convergence test for an asymmetric DEPB dimer.
Note that while AM1 still underestimates the coupling matrix
element, in this case it is too small by about a factor of 6, as
compared to more than 100 in the case of the parallel naph-
thalene dimer.
Figure 4 shows the reorganization energy of mBPD as com-

puted with different basis sets. The reorganization energy does
not show strong basis set dependence. Consequently, the pre-
dicted mobility is not highly sensitive to the basis set used in the

Figure 3. Coupling matrix element dependence on basis set as calcu-
lated by the FTImethod: (a) parallel naphthalene and (b)DEPB dimers.
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computation of λ. Even when a minimal basis set is used, λ is not
grossly inaccurate.
Figure 5 shows predicted charge mobility of mBPD as com-

puted with various basis sets. Tests were performed with the

coupling matrix element calculated by the semiempirical method
(Figure 5a) and by the FTI (Figure 5b). The predicted mobility
does not change much with change in basis set, except with the
6-31G(dp)+36�39 and STO-3G60 basis sets. This is similar to the
case of the reorganization energy, which similarly shows sig-
nificant deviations only for these two basis sets, suggesting that
the sensitivity of the predicted charge mobility to basis set is
dominated by the reorganization energy. Based on the above
convergence tests, the 6-31G(d)36�39 basis set is selected for
all DFT calculations as the best compromise of efficiency and
completeness.
3.2. Dielectric Constant. The influence of the dielectric

properties of the surrounding matrix on the reorganization energy
is shown in Figure 6a. The reorganization energy decreases with
increasing dielectric constant. This result demonstrates that the
reorganization energy depends on the chemical environmental.
For this reason, ε = 3was used throughout this study, as this value
is representative of many conducting organic materials.61

No significant dependence of the coupling matrix element on
dielectric constant was found. Figure 6b shows the root-mean-
square change in the computed coupling matrix element as
computed with dielectric constant (ε) = 1.0 and as computed
with dielectric constant set to the value given on the horizontal
axis for an ensemble of 60 mPBD dimers. Note that the change is
trivial, being smaller than typical values of the coupling matrix
element by a factor of �100.
The reorganization energy reflects the structural relaxa-

tion that accompanies oxidation/reduction. In a high-dielectric
medium, the relaxation of the molecule is restricted, so the

Figure 4. Reorganization energy of mBPD calculated using different
basis sets.

Figure 5. Dependence of predicted charge mobility of mBPD on basis
set. The coupling matrix element was computed by (a) semiempirical
and (b) FTI methods.

Figure 6. Dependence on dielectric constant for (a) reorganization
energy and (b) coupling matrix element.
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reorganization energy gets smaller. In an amorphous material,
each monomer is not equivalent because each feels different
chemicophysical interactions due to spatial disorder, so the
reorganization energy has to include the effect by the local
environment. This is the origin of the energetic disorder of the
hopping sites.
3.3. Cut-Off Radius Selection. Figure 7 shows the computed

mobility in TPD as a function of the cutoff radius used in the
weighted average summation of hopping rates given by eq 3.
Periodic boundary conditions were employed to find the neighbors

outside of the explicit unit cell. Figure 7a shows the case where Vij is
computed by dimer splitting. Figure 7b shows the case where Vij is
computed by the semiempirical method, and Figure 7c shows the
casewhereVij is computed byFTI. In all cases the predictedmobility
is converged for Rc g 12 Å, which was therefore the value used
throughout the rest of the investigation.
3.4. Selection of the Method Used for Computing Cou-

pling Matrix Element. The calculated mobility values for the
five amorphous materials and two crystalline acenes wherein the
coupling matrix element were computed by the dimer splitting
method are shown in Figure 8 (denoted “D.S.”). The mobilities
of the amorphous materials are greatly overestimated but not for
the acenes. We can assume that the origin of this difference lies in
the two parameters: reorganization energy and coupling matrix
element. In a crystal of high symmetry, the dimer splitting
method is often a good way to estimate coupling matrix
element, but it is not good for amorphous materials because
the site energy different term in eq 6 is not small and cannot be
assumed to vanish. Therefore, to predict the charge mobility
in amorphous materials adequately, the site energy correction
is needed.
One way to approximate the site energy is to use the HOMO

level of each monomer as its site energy. The predicted charge
mobility for each of the systems studied here using dimer
splitting with the HOMO energy approximation for site energy
is shown in Figure 8 (denoted “HOMO”). The predicted
values improve over the case here where dimer splitting alone
is used, but they are still greatly overestimated and show
essentially no correlation to experimental values from the
literature. It seems dimer splitting, with or without HOMO
level approximation to the site energy, does not work well in
these amorphous systems.
A method of approximating the coupling matrix element that

is one step more advanced than dimer splitting is to use a
semiempirical method. Here we tested a method given by eq 7.
The coupling matrix element is strongly related to the relative
spatial orientation of the monomers in the dimer. This semi-
empirical method reflects the orientational dependence of
coupling matrix element because it uses the overlap integral
between the monomers in the dimer geometry. The predicted
charge mobilities (Figure 8, denoted “Semi”) are improved
over those predicted by D.S., but the values are still signifi-
cantly overestimated and show weak correlation to experi-
mental values, at best.
Using the FTI is another way to obtain the coupling matrix

element that avoids the site energy difference problem.21,44,46�53

The predicted charge mobility using the coupling matrix element
as computed with FTI method is shown in Figure 8c and d. The
predicted values are much improved over those obtained using
the semiempirical method of calculating the coupling matrix
element. When the site energy difference is neglected, however,
(SP = 0) there are still some substantial disagreements with the
experimental results. As discussed in Section 2.6, we tested two
different methods to approximate the energetic disorder. One
method is using the HOMO level of the monomer to approx-
imate its site energy. The other method is to approximate each
site’s energy with an empirical potential function (denoted “EPE”
in Figure 8). Agreement is better when the site energies are
approximated using the empirical potential approach. The
predicted charge (hole) mobilities for all of the amorphous
materials are within about one order of magnitude of the
experimental results. For the acenes, the predicted values are

Figure 7. Dependence of predicted charge mobility on cut off radius for
the five amorphous materials. B3LYP/6-31G(d) was used to compute
reorganization energy and AM1 to compute couplingmatrix elements by
three different methods: (a) Dimer splitting method without the site
energy correction was used, (b) dimer splitting method with HOMO
level for the site energy was used, (c) FTI method with sum of empirical
potential functions for the site energy was used.
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severely underestimated in comparison to published experi-
mental results. The origin of this error appears to be the small
wave function overlap in the parallel dimer in the crystal of the

acenes (see Figure 2). Since π�π overlap is artificially low in
small basis set calculations, the coupling matrix element is
underestimated. When the coupling matrix elements are
calculated at the DFT/B3LYP/6-31G(d)34�39 level of theory
for the crystalline acenes (this is not computationally practical
for the amorphous materials), we again see order of magni-
tude agreement with experimental results (denoted “DFT” in
Figure 8d).
To further compare the semiempirical and the FTI methods,

we plot the charge mobility of mBPD as a function of the
reorganization energy in Figure 9. The different values of
reorganization energy result from the use of different basis sets.
The calculated charge mobility linearly decreases with increasing
reorganization energy. The results from the semiemprical meth-
od and the FTI show the same slope, only the scale is different.
This shows that the absolute magnitude of the mobility is
strongly related to the reorganization energy, but the same basic
physics of the charge transport is captured in both methods of
estimating the coupling matrix element. It is reasonable to
surmise that the two methods will predict qualitatively similar
trends and therefore will be useful for screening materials based
on relative mobilities.

Figure 8. Predicted charge mobility for the five amorphous materials studied here: (a) using AM1 for all electronic structure calculations with the
coupling matrix element calculated by three different methods: (b) using B3LYP/6-31G(d) to compute reorganization energy and AM1 to compute
coupling matrix elements by three different methods; (c) using AM1 for all electronic structure calculations and three different methods to estimate the
site energy difference; and (d) using B3LYP/6-31G(d) to compute reorganization energy, AM1 to compute couplingmatrix elements and three different
methods to estimate the site energy difference. [The dotted horizontal line depicts the lower limit of the vertical axis used in (a), (b), and (d) for
comparison.] The technique marked “EPF” is the most robust approach considered here and is recommended. To obtain the DFT(acene) points, DFT
was used for all electronic calculations.

Figure 9. Charge mobility of mBPD as a function of the reorganization
energy calculated using different basis sets. Black squares represent
calculations where the coupling matrix element was computed with the
FTI method and red circles with the semiempirical method.
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4. DISCUSSION

Histograms based on the predicted mobilities for∼100 amor-
phous cells of each of several different species considered here are
presented in Figure 10. Note that the spectrum of values exhibits
a clear peak in this log�scale plot. Throughout this work, the
average of such an ensemble is reported as the computed
mobility value. It is important to note, however, that the range
of values is quite broad, typically spread over 2�3 orders of
magnitude.

The calculated and (where available) experimental reorgani-
zation energy values for the species considered here are given in
Table 2. The calculated values at DFT level (B3LYP/6-31G(d))34�39

agree well with the experimental values. The experimental values

of the charge mobility are also in Table 2. Two acene molecules
show high charge mobility due to low reorganization energy. In
amorphous materials, the charge mobility is less strongly related
to the reorganization energy.

Figure 11 shows the dependence of charge mobility on
material density. To evaluate this dependence, the cells were
built up in two different ways. The first was by expansion of cell.
In the expended cell, the individual molecules in the cell have the
same relative orientation but have different center to center
distances. The second approach was reconstruction of cell,
wherein the new cells were developed with different size cubic
parameter, so the orientations or the monomers within the cells
changed. The results are essentially the same in the two cases.

Figure 10. Histograms showing the computed hole mobilities for ensembles of ∼100 amorphous cells for each of the five systems studied here: (a)
TPD, (b) DEPB, (c) mBPD, (d) NNP, and (e) pFFA.
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The charge mobility is exponentially increased with cell density,
because the coupling matrix element strongly depends on wave
function overlap and decreases exponentially with increasing
center to center distance. Reliable estimation of material density
is therefore critical for the accurate prediction of hole mobility in
amorphous organic materials.

According to eqs 1�3, the charge-hopping rate depends
exponentially on the reorganization energy and quadratically
on the couplingmatrix element. In consulting the above results, it
is clear that for the amorphous materials, the charge mobility
depends linearly on the reorganization energy and exponentially
on the coupling matrix element. Since these two parameters, the
reorganization energy and the couplingmatrix element, influence
the charge mobility, to improve the charge mobility of a material,
those two parameters need to be controlled. The reorganization
energy cannot be changed without altering the molecule. In our
previous work11 on phthalocyanine, we showed that the coupling
matrix dominates charge mobility. In a strong conjugated system,
like phthalocyanine and many other discotic molecules, the
charge mobility depends more strongly on the coupling matrix
element than on the reorganization energy.7 This arises because
the system is not changed much during the redox process
because of the presence of the strong resonance structure, so
the reorganization is small. In an amorphous material, therefore,
changing the orientation (changing the couplingmatrix element)
is a better way to control the charge mobility.

To study the relation between the predicted charge mobility
and thematerial density, we plotted the predicted chargemobility as

a function of the number of carbons in unit volume, as shown in
Figure 12. There is a strong relation between the two parameters.
The predicted mobility increases exponentially with the carbon
density. This result is similar to the relation of the mobility and
the cell density of mBPD shown in Figure 11. It again follows that
the predicted mobility depends more strongly on the coupling

Table 2. Calculated Reorganization Energy and Corresponding Experimental Data for Several Amorphous Materials as well as
Crystalline Tetracene and Pentacene

TPD DEPB mBPD NNP pFFA tetracene pentacene

λ/eV

AM1 0.2501 1.1023 0.2706 0.8395 0.3036 0.2684 0.2740

DFT1 0.2740 0.4390 0.3022 0.3803 0.2189 0.1119 0.09349

expt. 0.29a 0.1176b 0.0992b

mobility, cm2/V s

our work2 6.7 � 10�5 4.1 � 10�5 1.5 � 10�4 1.7 � 10�4 5.1 � 10�5 0.95 1.9

expt. ∼10�4,c 5�8 � 10�5,c 5.3 � 10�5,d 1.6 � 10�4,d 1.1 � 10�3,e 0.14,f

0.4g
3,h

5∼7i

1DFT values were calculated at B3LYP/6-31G(d) theory level using GAMESS.34�39,41 2Hybrid method was adopted for amorphous material and DFT
for acenes. Vij was calculated by FTI method. aRefs 62 and 63 bRefs 64 and 65 cRef 66. dRef 67. eRef 68. fRef 69. gRef 70. hRef 71. iRef 72.

Figure 11. Predicted charge mobility of mBPD as a function of cell density; * indicates complete reconstruction of the cell and ** indicates simple cell
expansion.

Figure 12. Predicted charge mobility of the amorphous materials as a
function of number of carbon atoms in a unit volume. The coupling
matrix element was calculated by the FTI method, and the site energy
was estimated with an empirical potential (eq 10).
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matrix than on the reorganization energy in the amorphous
molecules. This result shows that to develop new material with
high charge mobility, a potentially fruitful approach is to increase
the density of the material.

5. CONCLUSIONS

The application of a generalization of Deng and Goddard’s
implementation of Marcus hopping theory to the estimation of
hole mobility in amorphous organic materials has been presented
here in detail. The approach is based on determining an average
mobility based on an ensemble of amorphous cells representative
of the material. In the most successful approach, the reorganiza-
tion energy is calculated at the B3LYP/6-31G(d)34�39 level and
includes an adjustment of the dielectric constant to match that of
the material. The coupling matrix elements are calculated at the
AM1 level by the FTI method based on orthogonalized mono-
mer HOMOs. The AM1 method is used for computational
efficiency, since thousands of such calculations are required. The
hopping site energies are approximated with an empirical poten-
tial energy function that includes Coluombic, non-Coulombic,
and intramolecular interaction terms. All adjacent monomers
within 12 Å of the representative central molecule are included in
the calculation.

The results show that unlike crystalline organic molecular
solids, charge (hole) mobility is more highly dependent on the
coupling matrix elements than on the monomer reorganization
energy in these amorphous organic materials that have similar
reorganization energy. Furthermore, the mobility is highly sensitive
to material density, showing that a reliable estimate or mobility
requires accurate prediction of the material density.

It is likely that the use of the AM1method for the computation
of the coupling matrix elements underestimated their magnitude
quite significantly. It would be desirable to apply more advanced
electronic structure methodology in their computation, but this
is impractical due to the sheer number of such calculations that
are required to apply hopping theory to an ensemble of amor-
phous cells. This is probably the most pressing issue that needs to
be addressed to improve the reliability of predictions of charge
(hole) mobility in these materials. An electronic structure method
that provides the reliability of a split-valence basisDFTcalculation at
the cost of AM1 is needed.Nevertheless, the approach outlined here
appears to provide order of magnitude estimates of charge (hole)
mobility in amorphous organic materials.
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ABSTRACT: Range-separated hybrid functionals along with global hybrids and pure density functionals have been employed to
calculate geometries, ionization energies (IP)s, electron affinities (EA)s, and excitation energies of neutral and oxidized polyenes,
thiophene, and furan oligomers. Long-range correction with 100% HF exchange solves the problem of density functional theory
with incorrect chain length dependence of IPs and energy gaps. There is a possibility of overcorrection, if the short-range part of the
functional with no or low HF exchange is too small. The wB97XD functional with 22% of HF exchange in the short-range and a
range-separation parameter of 0.2 seems to be just right for conjugated systems at all chain lengths. The wB97XD functional
additionally produces negative orbital energies in very good agreement with IPs and EAs. With correct orbital energies, band gaps
correspond to transport gaps (Et) and not to optical gaps (Eg). Et is much larger than Eg in the gas phase, but the difference is
significantly smaller in the solid state. The accuracy of the negative orbital energies is good down to about 30 eV so that valence and
innervalence PE spectra can be modeled. wB97XD is therefore suitable for calculating band structures of conjugated polymers
employing orbital energies.

’ INTRODUCTION

Crucial properties for theoretical research on conducting
organic polymers (COPs) are ionization potentials (IP)s, elec-
tron affinities (EA)s, and excitation energies of neutral and
charged species. These properties relate to experimental obser-
vables and determine ease of doping, stability in neutral and
doped states, optical band gap (Eg), and conductivity. Instead of
calculating states, band structure calculations are often used,
which means that orbital energies and orbital energy differences
are used as approximations for energies and densities of states.
Therefore, an adequate theoretical level should correctly predict
IPs and EAs, and both should match the corresponding negative
orbital energies. To evaluate the density of states, lower and
higher lying orbital energies have to match states, too. Because all
of the properties depend on geometries, i.e., bond length
alternation (BLA) in neutral systems and defect sizes in ions,
geometries have to be predicted accurately.

In recent years, DFT has gradually replaced semiempirical
methods,1�4 Hartree�Fock (HF) theory,5�7 and perturbation
theory8,9 in research on COPs because it includes electronic
interactions self-consistently,10 accounts for electron correlation,11

and avoids spin-contamination in open-shell systems.12,13 Despite
many successes of DFT, a couple of vexing problems remain,
however. Foremost, there is the incorrect chain length dependence
of IPs14 and excitation energies15 of neutral systems, which leads to
underestimation of polymer properties no matter whether peri-
odic boundary conditions or extrapolation methods are applied.
Another important issue is the mismatch between the negative
energy of the highest occupied molecular orbital (�εHOMO) and
IPΔSCF (Ecat � Eneutral) as well as the experimental IP. �εHOMO

should be identical with the IPΔSCF with the exact exchange-
correlation functional,16,17 but it differs by a couple electronvolts
with most approximate functionals.18�21 Finally, there is contro-
versy about geometries, as pure DFT underestimates bond length

alternation,22,23 predicts larger defect sizes than semiempirical
methods,24 and does not confirm the existence of bound bipolar-
ons in doped systems.25�27

Some of the problems of DFTwith extended π systems can be
ameliorated by the inclusion of HF exchange.18,23,28 It was
shown, for instance, that bond length alternation increases to
reasonable values with hybrid functionals,23 that defect sizes
predicted with hybrid functionals agree with those at the MP2
level,12 that HOMO�LUMO gaps (EH�L) can be adjusted with
HF exchange to reproduce Eg,

23,28 and that orbital energy
differences agree better with differences between states.29 None-
theless, no global hybrid functional is able to predict the correct
chain length dependence of IPs,14 Eg’s,

15 or EH�L’s.
30 These

errors are a consequence of the self-interaction error (SIE) that
arises in DFT because exchange is approximated.

The SIE is now addressed with range-separated density
functionals31,32 that eliminate the SIE by using 100% HF
exchange for the long-range part of the exchange-correlation
functional.32�43 Therefore, SIE-free functionals with the correct
long-range behavior of the exchange-correlation potential hold
promise for improving the accuracy of theoretical results on
extended π systems. It is the goal of this investigation to test a
selection of new density functionals with respect to IPs, EAs,
fundamental gaps (Et) and Eg’s, bipolaron binding energies, and
excitation energies of dopedπ systems. Guided by the availability
of experimental data, polyenes, thiophene, and furan oligomers
were chosen as representative systems.

’METHODS

Structures of oligomers were optimized with a range of density
functionals, as summarized below. If not stated otherwise, the

Received: May 21, 2011
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6-311G* basis set was employed. Thiophene and furan oligomers
of different size are designated nT and nF, respectively, n being
the number of rings. Polyenes44 and furanes45 are planar. Because
bithiophene is nonplanar in the gas phase,46 thiophene oligomers
were allowed to deviate from planarity. There are two main
structural alternatives: one with all interring dihedral angles
having the same sign and one with alternating signs (see
Figure 1). The latter are slightly lower in energy and have about
0.1 eV smaller excitation energies. This conformation leads to
bending and may not be adopted in a crystal. The lower energy
forms were used in the following because they are the lower
energy structures in the gas phase and probably in solution. In all
cases, planarization energies and influences on other properties
due to bending are relatively small. Cation energies were
obtained on the structures of the neutral forms to evaluate
vertical IPs and with optimized geometries to evaluate UV
spectra upon doping. Vertical IPs were calculated with theΔSCF
method as the difference between ground state energies of cation
and neutral species and are abbreviated as IPΔSCF.

Upon structure optimization, cations and anions become
planar and straight with pure DFT and with global hybrids. With
a range-separated hybrid functional, planarization occurs over
five rings, but the chain ends remain slightly twisted, as shown in
Figure 2 for 19T+ at the wB97XD/6-31G* level (description, see
below). Excitation energies are calculated with time-dependent
density functional theory. Most calculations were performed
with Gaussian 09.47 Calculations with BNL were done with
QChem.48

The density functionals are grouped into pure local density
functionals, gradient corrected (nonlocal) functionals (GGA),
meta-GGAs that depend explicitly on the kinetic energy
density,42,49�51 global hybrid functionals that use a constant
amount of exact (HF) exchange,42 and range-separated
functionals32 that use different amounts of DFT and HF ex-
change for short and long ranges. For comparison, HF theory was
included as well. The following density functionals were used:
Local Functionals. SVWN: Slater exchange52 and correlation
functional of Vosko, Wilk, and Nussair,53 identical to local spin
density approximation (LSDA). SVWN5: same as SVWNwith
correlation functional V from ref 53.
Gradient Corrected (GGA) Functionals. BLYP: gradient cor-
rected functional with Becke exchange54 and correlation
functional of Lee, Yang, and Parr.55 BP86: gradient corrected
functional with Becke exchange54 and correlation functional of
Perdew.56 PBEPBE: Perdew, Burke, and Ernzerhof57,58 ex-
change and Perdew, Burke, and Ernzerhof correlation
functionals.57,58 OLYP: OPTX modification by Handy59 of
Becke exchange54 and Lee, Yang, and Parr correlation
functional.55

Meta-GGA (Containing Explicit Dependence on the Kinetic
Energy Density).42,49�51 TPSSTPSS: Exchange and correlation
functional of Tao, Perdew, Staroverov, and Scuseria.50

Global GGA Hybrids (Constant Amount of HF Exchange).
B3LYP: Becke’s three-parameter hybrid functional with 20%
HF exchange60 and correlation functional of Lee, Yang, and
Parr.55 B3P86: Becke’s three-parameter hybrid functional with
20% HF exchange60 with the correlation functional of
Perdew.56 B3P86�30%: same as B3P86, but HF exchange is
increased to 30%. PBE1PBE: also known as PBE0, hybrid
version (25% exchange and 75% correlation weighting) by
Adamo and Barone61 of Perdew, Burke, and Ernzerhof57,58

exchange and Perdew, Burke, and Ernzerhof correlation
functionals.57,58

Global meta-GGAHybrids (Constant Amount of HF Exchange).
M06: meta hybrid functional with 27% HF exchange. M06-
HF: 100% HF exchange.
Range Separated Hybrid Functionals without Short-Range HF
Exchange. All local, GGA, and meta-GGA functionals listed
above were also used in their long-range corrected version. For
the long-range correction (LC) Hirao et al.’s range separation
scheme32 without short-range HF exchange and with a range-
separation parameter γ = 0.4 was employed. LC-wPBE: long-
range corrected35,42,49,51 Perdew, Burke, and Ernzerhof57,58

functional. wB97: range-separated version62 of Becke’s 97
functional γ = 0.4.63

Range Separated Hybrid Functionals with Short-Range HF
Exchange. CAM-B3LYP: Coulomb attenuated version of
B3LYP by Yanai et al.,64 includes 19% HF exchange at short
range and 65% HF exchange at long range, γ = 0.33. wB97X:
same as wB97 but containing 16% short-range HF exchange
and γ = 0.3.62 wB97XD: same as above with additional
dispersion correction, containing 22% short-range HF ex-
change and γ = 0.2.65

Range Separated Hybrid Functional with γ Tuning. BNL:
Baer�Neuhauser�Livshits37,43 using LDA exchange, the
LYP55 correlation functional subtracting a small part of the
Savin exchange.43 γ Tuning means that the range-separation
parameter is adjusted to reproduce IPΔSCF = �εHOMO.
Decreasing the value of γ increases the extension of the
short-range part. γ = 0 reduces range-separated functionals
to pure DFT or global hybrid functionals with constant HF
exchange equal to that of the basic functional.

’RESULTS

Degree of Planarity of Thiophene Oligomers. 6T66 and
8T67 have been crystallized, and their structural parameters have
been determined. Although 2T is nonplanar in the gas phase with
an interring angle of 148�,46 6T and 8T are planar in the crystal.We
are not aware of gas-phase structures for 6T and 8T. Theoretical
results indicate that the interring dihedral angle in 6T is larger than
in 2T but that 6T is slightly nonplanar in the gas phase. For
instance, the interring angles are 138.6� (2T) and 145.7� (6T) at
the MP2/6-311G* level; the energy for planarization of 6T is
1.4 kcal/mol. The agreement with the experiment for 2T is best
with LC-BLYP, 147.0�; CAM-B3LYP, 147.0�; and B3P86�30%/
6-311G*, 149.9�. Planarity increases more from 2T to 6T with
global hybrids than with range-separated functionals to 150.6� at
LC-BLYP, 152.2� at CAM-B3LYP, and 156.9� at B3P86�30%. In
general, more HF exchange leads to stronger nonplanarity.

Figure 1. 8T with same sign dihedral angles (top) and alternating sign
dihedral angles (bottom).
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Bond Lengths of Thiophene and Furan Oligomers. The
double bond lengths in the inner rings of 6T single crystals vary
from 1.367 to 1.380 Å.66 The ring single bond lengths of the two
inner rings are 1.400 Å and 1.403 Å, and the central inter-ring
single bond length is 1.444 Å. The BLA is therefore ∼0.07 Å.

Bond lengths in 8T67 are as follows: double bonds of inner rings,
1.38 Å; inner ring single bonds, 1.41 Å; and central inter ring
single bond, 1.43 Å. BLA in 8T is therefore 0.05 Å. Because there
is little difference between gas-phase structures of 6T and 8T at
the B3LYP/6-311G* level, part of the differences between

Table 1. Theoretical Bond Lengths and Dihedral Angles between the Innermost Rings for 6T and 6F

method outer ring double ring single inner ring double inter ring BLA dihedral

6T

exptl66 1.370/1.376 1.400/1.403 1.367/1.380 1.444 0.070 180.0

LSDA/6-311G* 1.378 1.397 1.378 1.421 0.043 163.4

LC-SVWN/6-311G* 1.352 1.411 1.352 1.451 0.099 149.0

LC-SVWN5/6-311G* 1.353 1.413 1.353 1.453 0.100 148.6

BLYP/6-311G* 1.392 1.416 1.393 1.443 0.050 163.1

LC-BLYP/6-311G* 1.353 1.413 1.353 1.450 0.097 150.6

B3LYP/6-311G* 1.378 1.413 1.378 1.443 0.065 158.5

CAM-B3LYP/6311G* 1.366 1.416 1.366 1.450 0.084 152.2

BNL-0.182/6-311G* 1.400 1.440 1.400 1.473 0.073 149.9

LC-BP86/6311G* 1.354 1.409 1.354 1.446 0.092 151.2

B3P86/6-311G* 1.376 1.408 1.376 1.438 0.062 159.2

B3P86�30/6-311G* 1.371 1.409 1.371 1.441 0.070 156.9

PBE1PBE/6-311G* 1.375 1.409 1.375 1.440 0.065 158.3

LC-PBEPBE/6-311G* 1.354 1.408 1.354 1.446 0.092 150.7

LC-wPBE/6-311G* 1.362 1.416 1.362 1.456 0.094 149.1

M06/6-311G* 1.371 1.408 1.371 1.439 0.068 158.4

M06-HF/6-311G* 1.364 1.426 1.365 1.462 0.098 146.6

wB97/6-311G* 1.368 1.424 1.367 1.463 0.095 150.9

wB97x/6-311G* 1.366 1.420 1.366 1.458 0.091 150.7

wB97xd/6-311G* 1.368 1.417 1.368 1.453 0.084 150.2

wB97xd/6-31G* 1.371 1.418 1.371 1.452 0.081 154.4

OLYP/6-311G* 1.393 1.410 1.390 1.442 0.053 160.8

LC-OLYP/6-311G* 1.352 1.410 1.352 1.448 0.096 150.2

TPSSTPSS/6-311G* 1.389 1.411 1.389 1.438 0.049 169.3

LC-TPSSTPSS/6-311G* 1.353 1.409 1.353 1.447 0.094 150.2

HF/6-311G* 1.351 1.429 1.351 1.462 0.112 148.3

MP2/6-311G* 1.393 1.409 1.393 1.447 0.054 145.7

MP2/6-311G* 1.391 1.405 1.391 1.439 0.049 180.0

6F

exptl45 1.362 1.408 1.358 1.432 0.074 180

LSDA/6-311G* 1.372 1.405 1.372 1.411 0.039 180

BLYP/6-311G* 1.386 1.424 1.387 1.431 0.044 180

LC-BLYP/6-311G* 1.347 1.420 1.347 1.436 0.089 180

B3LYP/6-311G* 1.372 1.420 1.372 1.429 0.057 180

CAM-B3LYP/6311G* 1.361 1.422 1.361 1.432 0.071 180

B3P86/6-311G* 1.370 1.415 1.370 1.425 0.055 180

B3P86�30/6-311G* 1.365 1.416 1.365 1.427 0.062 180

wB97xd/6-311G* 1.362 1.423 1.362 1.437 0.075 180

Figure 2. 19T+ optimized at wB97XD/6-31G*.
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experimental data of 6T and 8T might be due to experimental
uncertainties. 6F has slightly shorter inner-ring double bonds
(1.358/1.362 Å) and a shorter inter-ring single bond (1.432 Å)
than 6T. The central inter-ring single bond in 6F is 1.408-Å-
long.45 BLA is thus 0.074 Å, slightly larger than in 6T. In Table 1,
bond lengths of fully optimized nonplanar structures of 6T and of
planar 6F at various levels of theory are summarized. Planariza-
tion has a little effect on the bond lengths in 6T.
The general trends are as follows: pure DFT (LSDA) tends to

overestimate double bond lengths and to underestimate single
bond lengths. BLA is therefore too small. Gradient correction
(BLYP) predicts single and double bonds to be too long. Hybrid
functionals (especially B3P86�30% and M06) are very accurate.
Long-range correction shortens double bonds and comes some-
times close to values obtained with HF theory. Single bond
lengths are overestimated but not as much as with HF theory. As
a result, BLA is too large with all range-separated functionals.
CAM-B3LYP with only 65% of long-range HF exchange and γ =
0.33 and wB97xd with a rather large short-range part (γ = 0.2)
are doing better than the LC-functionals with 100%HF exchange
and γ = 0.4. CAM-B3LYP and wB97XD perform better for 6F
than for 6T. BNL predicts all bonds to be too long, but BLA is
accurate. HF theory overestimates BLA because it overestimates
single bond lengths and underestimates double bond lengths.
Correlation at the MP2 levels shortens the double bonds
correctly but lengthens the single bonds too much. The closest
agreement between theory and experiment for 6T is reached with
global hybrid functionals. For 6F, B3P86�30%, CAM-B3LYP,
and wB97XD give the best results.

Defect Sizes. Defect sizes of C41H43
+, C101H103

+, and 19T+

were previously investigated with pure DFT and with the
B3P86�30% global hybrid functional using Stevens�
Bach�Krauss pseudopotentials (SBK).12,13,24 Here, we are re-
peating some of the calculations with range-separated hybrids,
i.e., LC-wPBE and wB97XD, and with the “BLYP series”, i.e.,
BLYP, B3LYP, CAM-B3LYP, and LC-BLYP. Because of the size
of the systems, 6-31G* and SBK basis sets were used. Defect sizes
decrease by about six bonds (or about one ring) with 6-31G*
compared to SBK in 19T+ and C77H79

+ with the wB97XD
functional. Differences in bond lengths between 6-311G* and
6-31G* basis sets can be seen in Table 1 for wB97XD. 6-31G*
lengthens the double bonds and slightly shortens the single
bonds compared to 6-311G*.
Test calculations were done on 19T+ and 25T+ and on

C75H77
+ and C101H103

+ to determine the required chain lengths
for converged defect size. With LC functionals, defect sizes are
converged for 19T+ and C75H77

+. With global hybrids, defects
are delocalized and do not converge with increasing chain length.
Figure 3 shows differences inC�Cbond lengths between neutral
C76H78 and C76H78

+ and C77H79
+ cations with BLYP. The

expectation value of the spin operator (ÆS2æ) for C76H78
+ is

0.77. Figure 3 shows that odd- and even-numbered systems have
similar defect extensions and shapes when the wave function of
the open-shell system is not spin-contaminated. As soon as HF
exchange is included, unreasonably high ÆS2æ values are obtained
for long polyene cations, while global hybrids produce good ÆS2æ
values for thiophene oligomer cations.12,13 Spin contamination is
avoided with polyenes by employing odd-numbered systems and
investigating charged defects with closed-shell calculations.
The effect of HF exchange on defect size is established in

Figures 4 (BLYP and B3LYP) and 5 (wB97XD and HF) for
C75H77

+ (bond lengths are compared to those of C76H78, from
which the innermost bond was deleted to achieve the same chain
length and position of double bonds as in C75H77

+). Increasing
HF exchange leads to defect localization. While defects are
delocalized at BLYP and B3LYP, they spread over about 48
bonds (SBK) and 42 bonds (6-31G*) with the wB97XD func-
tional and over about 30 bonds at the HF/6-31G* level. The
criterion for determining defect size is that bond lengths in the
cation differ by more than 0.002 Å from those of the neutral
molecule.
Oligothiophene cations have one unpaired electron and have

to be treated in the open-shell formalism. The ÆS2æ values for
19T+ are BLYP, 0.75; B3LYP, 0.76; CAM-B3LYP, 0.88;
wB97XD, 0.90; LC-wPBE, 1.09; and LC-BLYP, 1.11. The values

Figure 3. Differences in C�C bond lengths between C76H78 and
C76H78

+ and between C76H78 and C77H79
+ at BLYP/6-31G*.

Figure 4. Differences in C�C bond lengths between C76H78 and
C75H77

+ at BLYP/6-31G* and B3LYP/6-31G*.

Figure 5. Differences in C�C bond lengths between C76H78 and
C75H77

+ at wB97XD/6-31G* and HF/6-31G*.
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do not increase from 19T+ to 25T+. As shown in Figure 2, cations
are nonplanar with range-separated hybrid functionals. The
planarization energy is very small, however, e.g., 2.24 kcal/mol
for 19T+ at wB97XD/6-31G*. Because the defect sizes are virtually
the same in planar and nonplanar forms at wB97XD/6-31G*,
planar cations were used in the following. In Figure 6, bond length
changes upon ionization in 19T+ are shown at the B3LYP/SBK
and CAM-B3LYP/SBK levels and in Figure 7 at CAM-B3LYP/
SBK and LC-BLYP/SBK. The inclusion of large amounts of long-
range HF exchange changes the defect shape and extension from
totally delocalized at B3LYP with a tendency to split into two
separate defects to a localized defectwith amaximum in themiddle
of the chain. LC correction to BLYP localizes the defect more than
CAM-B3LYP. LC-wPBE results (not shown) are almost identical
to those with LC-BLYP. With the LC correction and with
wB97XD, defects spread over about 9 or 10 thiophene rings. With

CAM-B3LYP, the defects spread over about 15 rings. The defect
size in 19F+ is 10 rings at wB97XD/6-31G*.
As demonstrated in Figure 8, it is possible to move the defect

from the middle of the chain closer to one end. This move
changes neither the energy of the cation nor the defect size and
shape. Therefore, defects are converged with respect to chain
length with the LC-corrected functionals.
It is also possible to obtain cations that exhibit two separated

defects, as seen in Figure 9 at LC-wPBE/SBK. A cation with two
half charges at either end of the chain is reminiscent of the DFT
problem with the unphysical dissociation of symmetrical radical
cations into two fragments with half charges. Such a state might
be a superposition of two nonsymmetrical cations and a valid
solution of the Schr€odinger equation, as discussed by Vydrov and
Scuseria49 for symmetrical radical cations. The problem with
pure DFT is that it underestimates the energy of such solutions
and predicts them to be global minima, whereas they should be
energetically degenerate with the radical/cation pair. HF, in
contrast, overestimates the energy of the linear combination.
At LC-wPBE, the split charge state lies 12 kcal/mol above the
single defect cation, suggesting that the problem is overcorrected
(too close to the HF result).
Defects in Dications. Geometries of 25T dications were

optimized with LC-wPBE and wB97XD functionals. Figure 10
shows the defects obtained with closed-shell and open-shell
(ÆS2æ = 1.44) calculations at wB97XD/SBK. It is clearly visible
that even with closed-shell calculations there is a tendency for
splitting the defect and placing the two charges at opposite ends
of the molecule. Open-shell calculations lead to a complete
separation of the two charges with an undistorted chain segment
in the middle. Figure 11 shows that LC-wPBE (ÆS2æ = 1.98) leads
to defects virtually identical to those of wB97XD/SBK. With
both methods, the defect size is nine rings.

Figure 6. Differences in bond length between 19T and 19T+ at B3LYP/
SBK (red squares) and CAM-B3LYP/SBK (blue diamonds).

Figure 7. Differences in bond length between 19T and 19T+ at CAM-
B3LYP/SBK (blue diamonds) and LC-BLYP/SBK (green triangles).

Figure 8. Localized defects at LC-wPBE/SBK in different positions
on 25T+.

Figure 9. Two defect types on 25T+ at the LC-wPBE/SBK* level.

Figure 10. Comparison of defects on 25T2+ with closed- and open-shell
calculations at the wB97XD/SBK level of theory.
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Ionization Energies.Gas phase ionization energies of neutral
1T through 5T were measured by Jones et al.,68 for 3T through
8T by da Silva Filho et al.,69 and for 1F through 4F by Distefano
et al.70 It was established recently14 that IPΔSCF’s of 1T, 1F, and
pyrrole are predicted quantitatively at the B3LYP/6-311G* level
and that the higher IPs can be obtained by adding the TDB3LYP
excitation energies of the cation to IPΔSCF. For longer oligomers,
the accuracy declines because B3LYP, like any other global
hybrid functional, increasingly underestimates IPΔSCF with
growing chain length. To find out whether range-separated
hybrid functionals improve the chain length dependence, vertical
IPΔSCF’s were calculated for 1T and 6T. In Figure 12, the errors
compared to the experimental IPs of 8.87 eV (1T)68 and 6.98 eV
(6T)69 are plotted. 1T entries include a zero point energy (ZPE)
correction of 0.059 eV. For 6T, the ZPE correction is negligibly
small. The third (green) bar shows the difference in errors
between the IPΔSCF’s of 1T and 6T. A short green bar indicates
therefore correct chain length dependence. Figure 12 reveals that
all range-separated functionals with the exception of BNL have
similar errors for 1T and 6T and therefore the correct chain
length dependence. The absolute IPΔSCF’s, however, are not
necessarily correct. The functionals that predict IPΔSCF’s of 1T
and 6T within about 0.3 eV of the experiment are LC-BLYP,
CAM-B3LYP (with some problems with chain lengths
dependence), LC-wPBE, the wB97 series, and LC-OLYP.
Figure 13 depicts the chain length dependence of B3LYP,

BNL, CAM-B3LYP, wB97xd, and LC-BLYP IPΔSCF’s compared
to experimental results. B3LYP IPΔSCF’s fall off too fast, and BNL
follows this trend. The reason is probably that with BNL, γ
tuning bymatching IPΔSCF and�εHOMO energy requires smaller

values with increasing chain length (for 1T,γ = 0.352; and for 8T,
γ = 0.168). Thus, the short-range part increases for longer
oligomers, and results get closer to those with global hybrids.
CAM-B3LYP and wB97xd with constant γ are very close to
experimental results and have the correct chain length depen-
dence. LC-BLYP predicts values slightly above experimental
values and a leveling off at a relatively short chain length. Such
a convergence is not seen in the experimental data. IPΔSCF’s
extrapolated to infinite chain length with second degree poly-
nomial fits are as follows exptl, 6.45 eV; CAM-B3LYP, 6.22 eV;
wB97xd, 6.48 eV; LC-BLYP, 7.08 eV.
For furan oligomers IPs are available only up to a chain length

of 4 rings.70 Figure 14 compares the IPΔSCF of 1�9 Fwith several
functionals to these experimental values. The first IP of the
monomer is predicted quantitatively with B3LYP, CAM-B3LYP,
and wB97XD. However, in contrast to results for thiophene
oligomers, CAM-B3LYP and wB97XD slightly overestimate the
decrease with increasing chain length and underestimate the
IPΔSCF of long oligomers. LC-BLYP slightly overestimates the IP
of the monomer but agrees quantitatively with experimental
results for the longer oligomers. LC-BLYP again predicts the
onset of convergence, while B3LYP and BLYP predicta acceler-
ated decrease of IPΔSCF’s with increasing chain length. Experi-
mental IPs70 extrapolate to about 6.4 eV, LC-BLYP to 6.66 eV,
wB97XD to 5.98 eV, and CAM-B3LYP to 5.82 eV.
Excitation Energies and Optical Band Gaps. UV spectra

become simpler as oligomers get larger. Because we are inter-
ested in long oligomers and polymers, monomers are not
representative and were not considered. In Figure 15, errors in

Figure 11. Comparison of defects on 25T2+ with open-shell calcula-
tions at the wB97XD/SBK and LC-wPBE/SBK levels of theory.

Figure 12. Errors in IPΔSCF of 1T and 6T at various levels of theory.

Figure 13. Chain length dependence of IPΔSCF of thiophene oligomers.

Figure 14. Chain length dependence of IPΔSCF of furan oligomers.
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the first excitation energies of 2T and 6T are plotted. The
experimental Eg’s are 4.09 eV71�73 for 2T and 2.8471,72 or
2.9274 eV for 6T. Solvent effects were shown theoretically to
be small in ref 13. To calculate the errors, we used 4.19 eV as
suggested by Andrzejak and Witek73 as the vertical excitation
energy for 2T and 2.92 eV for 6T.
For 2T, the HOMO�LUMO (1�10) transition is the leading

electron configuration of the first excited state with a CI

coefficient between 0.68 and 0.70 with all density functionals
and at the HF level. There is no other contribution with a CI
coefficient above 0.1. Double excitations, which are not included
in TDDFT, are of little importance in these systems according to
CASSCF calculations.75�77 The oscillator strength of the first
excitation energy is between 0.38 and 0.40 at all levels of theory
employed.
For the first excited state of 6T, pure DFT and global hybrids

predict the 1�10 transition to be the only electronic configura-
tion with a CI coefficient above 0.1; CI coefficients range from
0.69 to 0.71. At the HF level, the 1�10 transition has a CI
coefficient of 0.58, and there are contributions arising from
HOMO�1 to LUMO+1 (2�20) and HOMO�2 to LUMO+2
(3�30) with CI coefficients of 0.27 and 0.16. Range-separated
functionals produce values very close to those of HF theory.
Estimates of the oscillator strength range from 1.58 to 1.94
(Table 2).
Pure DFT underestimates excitation energies, and errors get

larger with increasing chain length. Hybrid functionals are quite
accurate for short oligomers, but the chain length dependence is
wrong. Long-range correction leads to proper chain length
dependence, but excitation energies are too high. Three func-
tionals are better than the rest: B3P86�30% with the smallest
absolute errors for 2T and 6T of +0.16 and �0.10 eV but the
wrong chain length dependence because of the opposite signs of
the errors, CAM-B3LYP with errors of 0.37 and 0.35 eV, and
wB97xd with errors 0.43 and 0.49 eV.

Figure 15. Errors in first excitation energies of neutral 2T and 6T at
various levels of theory.

Table 2. Spectroscopic Data (Energy (E) and Oscillator Strength (f), for 6T and 6T+, and ÆS2æ for 6T+; energies in eV, basis set:
6-311G*)

6T 6T+ 6T+ 1st excited state 6T+ 2nd excited state

exptl 2.85,72 2.9274 0.8474, 79 1.5974, 79

E f ÆS2æ E f ÆS2æ E f ÆS2æ

LSDA 2.121 1.58 0.75 0.914 0.34 0.75 1.746 1.35 0.76

LC-SVWN 3.924 1.90 0.95 1.222 1.17 0.95 2.120 1.11 1.31

LC-SVWN5 3.929 1.90 0.96 1.231 1.19 0.97 2.082 1.07 1.34

BLYP 2.036 1.62 0.75 0.864 0.25 0.75 1.646 1.75 0.76

LC-BLYP 3.835 1.88 0.98 1.231 1.23 0.99 2.018 1.01 1.38

B3LYP 2.557 1.86 0.77 0.942 0.45 0.76 1.786 1.78 0.88

CAM-B3LYP 3.271 1.94 0.85 1.042 0.82 0.82 1.904 1.49 1.13

BNL-0.182 3.025 1.86 0.78 0.908 0.94 2.001 1.47

LC-BP86 3.835 1.92 0.98 1.218 1.25 0.99 2.063 1.00 1.42

BP86 2.079 1.61 0.75 0.880 0.29 0.75 1.678 1.68 0.76

B3P86 2.833 1.88 0.77 0.953 0.48 0.76 1.828 1.74 0.89

B3P86�30 2.822 1.95 0.80 0.987 0.57 0.77 1.824 1.73 1.01

PBE1PBE 2.704 1.92 0.78 0.969 0.54 0.77 1.835 1.72 0.96

LC-PBEPBE 3.871 1.94 0.98 1.220 1.27 0.99 2.072 0.98 1.44

LC-wPBE 3.794 1.92 0.98 1.188 1.21 0.98 2.005 1.01 1.43

M06 2.691 1.85 0.78 0.934 0.52 0.77 1.801 1.67 0.94

wB97 3.729 1.91 0.94 1.159 1.13 0.94 2.063 1.11 1.33

wB97x 3.617 1.93 0.91 1.116 1.03 0.89 2.036 1.24 1.24

wB97xd 3.411 1.96 0.86 1.048 0.87 0.83 1.998 1.45 1.12

OLYP 2.136 1.62 0.75 0.893 0.31 0.75 1.707 1.71 0.76

LC-OLYP 3.858 1.90 0.98 1.231 1.24 0.99 2.042 1.01 1.39

TPSSTPSS 2.093 1.71 0.75 0.898 0.29 0.76 1.703 1.80 0.78

LC-TPSSTPSS 3.880 1.93 1.01 1.237 1.33 1.02 2.018 0.92 1.48

HF 3.938 1.87 3.03 1.033 1.86 3.85 5.440 0.13 3.54
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In Figure 16, excitation energies of 2T�12T with
B3P86�30%, CAM-B3LYP, and wB97XD are plotted versus
inverse chain length. The extrapolated excitation energies (linear
and polynomial fits give almost the same results) are 2.43 eV with
the solution data of Colditz et al.,72 2.47 eV according to the
solution data of van Haare et al.,74 2.85 eV at wB97XD, 2.67 with
CAM-B3LYP, and 2.00 eV at B3P86�30%.
The electronic configurations of excited states of furan oligo-

mers are very similar to those described above for 2T and 6T.
The excitation energies are less underestimated with global
hybrids, and the errors with CAM-B3LYP and wB97XD are
smaller than for thiophene oligomers (Figure 17). Extrapolation
with second degree polynomial fits predicts the following εmax

values for polyfuran: exptl,45 2.53 eV; CAM-B3LYP, 2.55 eV; and
wB97XD, 2.65 eV. LC-BLYP overestimates first excitation en-
ergies of neutral oligomers by 0.75 eV and extrapolates to 3.22 eV.
BLYP and B3LYP predict polymer values of 0.92 and 1.67 eV.
Excitation Energies of Cations.The 2T cation was produced

in a matrix at 77 K. It has a strong and a very weak absorption in
the UV spectrum.78 2T+ and 3T+ cannot be produced in solution.
3T seems to dimerize upon oxidation as the recorded absorption
spectrum is identical to that of 6T+.70 Starting with 4T, cations
were observed in solution.74,79 Upon oxidation of 4T to 9T,74,79

the absorption of the neutral form disappears, and the two new
features appear at lower energy. Both bands decrease in energy
with increasing chain length. For 12T, the absorption of the

neutral form decreases to half its original intensity upon oxida-
tion, while two new features appear.74

Theoretical analysis of the 2T cation spectrum shows that there
are four low energy bands, two of them with negligible oscillator
strengths.13,78 Double excitations contribute between 4 and 7% in
the ground and excited states.80 Because the lowest energy
transition of 2T is not dominated by the 2�1 transition, 2T is
not representative for longer oligothiophenes. For 3T to 9T, global
hybrid functionals predict two bands for cations, in agreement with
experimental results.13 The lower energy transition of oxidized
thiophene oligomers is due to an electronic transition from
HOMO to SOMO(2�1 transition) with a CI coefficient between
0.73 and 0.94. The smaller coefficients are caused by deexcitations,
and there is no correlation between CI coefficients and HF
exchange. The second excited state is dominated by a transition
from SOMO to LUMO (1�10 transition) with a CI coefficient
between 0.66 and 0.88. Again, the size of the CI coefficients
appears to be random with respect to the functionals, and density
functionals that predict small CI coefficients for the 1�2 transition
may predict large ones for the 1�10 transition.With all functionals,
there are small contributions of the 1�10 transition to the 1�2
state and vice versa. Between 8T and 12T, the 1�2 and 1�10
transitions do not mix anymore, but the 1�10 transition starts to
interact with 2�20 and 3�10 electronic configurations and splits
into two peaks.13 In agreement with experimental results, the third
band of 12T+ occurs at the same position as the absorption of
neutral 12T at the same level of theory.
Excitation energies of 6T and 6T+ are summarized in Table 2.

Pure DFT and global hybrids produce ÆS2æ values that are close to
the correct value of 0.75 for the ground state of 6T+. HF predicts
a value of 3.02, and long-range corrected functionals predict
values between 0.85 and 1.0. Normally, a deviation of 10% is
considered to be acceptable. CAM-B3LYP and wB97XD with
values of 0.85 and 0.86 are therefore borderline. Values of around
1 were shown to produce useless spectra for polyene cations.12

ÆS2æ values of the first excited state are only slightly above those of
the ground state, but spin contamination of the second excited
state is problematic. Only pure DFT is adequate in terms of ÆS2æ
for the second excited state; global hybrids are borderline.
Overall, there is a pretty good correlation between ÆS2æ values
and excitation energies, with larger spin contamination leading to
higher excitation energy.

Figure 16. First excitation energies of neutral thiophene oligomers with
different density functionals compared to experimental results.71,72,74

Figure 17. First excitation energies of neutral furan oligomers with
different density functionals compared to experimental results.45

Figure 18. Errors and first and second excitation energies of 6T+.
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Figure 18 shows errors in excitation energies compared to
experimental values. The best agreement with experimental
results is achieved with BLYP. OLYP and TPSSTPSS are also
quite accurate. The more HF-exchange is used, the more the
results deviate from experimental results. Long-range corrected
functionals perform worse than global hybrids. Among the long-
range corrected functionals, CAM-B3LYP is the best, followed by
wB97XD. This is in line with the spin contamination. With all
functionals, the error in the second excitation energy is larger
than in the first.
The influence of HF exchange on cation spectra of 12T+ is

summarized in Table 3 and illustrated in Figure 19. For these
calculations, the smaller 6-31G* basis set was used. (For 6T+, the
differences in results with 6-311G* and 6-31G* basis sets are
about 0.1 eV.) Spin contamination does not increase from 6T+ to
12T+ for the ground state (GS) and first excited states. For
excited states 2 and 3, only pure DFT produces acceptable ÆS2æ
values.
The effect of HF exchange is spreading the peaks over a wider

range and splitting them into several contributions. Oscillator
strengths of the first peak increase while the oscillator strengths
of the higher energy peaks decrease with increasingHF exchange.
The vertical lines in Figure 19 at the experimental peak positions
show that BLYP underestimates the peak separations and that
LC-BLYP overestimates them. The agreement of peak positions
with experimental results is best with CAM-B3LYP and
B3P86�30%, which seems to produce oscillator strengths that
match the experimental peak heights better. The performance of
pure DFT is not as good as for 6T+. The close lying peaks are
most likely a result of the too close lying orbital energies with
pure DFT.
Orbital Energies. With the exact exchange-correlation func-

tional, �εHOMO should match IPΔSCF. The BNL functional
produces orbital energies that fulfill this requirement,20 but the
BNL functional suffers from incorrect chain length dependence
of IPΔSCF for extended π systems. Because γ is tuned to equalize
�εHOMO with IPΔSCF, �εHOMO gets too small as well. It is not
possible to find a value for γ that simultaneously produces a
correct IPΔSCF and a match between IPΔSCF and �εHOMO for
long oligomers.20,81 LC functionals with fixed γ were also shown
to improve orbital energies of small molecules because they
achieve cancellation of the Coulomb self-repulsion through the
exchange self-interaction term,82 as it is known from HF theory.
Differences between �εHOMO and experimental IPs are

plotted in Figure 20, differences between �εHOMO and IPΔSCF

in Figure 21. Figure 20 reveals that all pure DFT and global
hybrid functionals grossly underestimate �εHOMO IPs. Range-
separated functionals lower the orbital energies, and most of
them overestimate IPs. Excellent agreement with experimental
results is achieved with HF and the wB97 series, wB97XD
producing an almost perfect match. Results with CAM-B3LYP
and BNL are acceptable.
Figure 21 shows whether �εHOMO IPs are consistent with

IPΔSCF’s at a given level of theory, i.e., whether a theoretical level
leads to internally consistent results without reference to experi-
mental results. BNL is internally consistent by definition. HF,
which yields very good �εHOMO IPs, is internally inconsistent
because the IPΔSCF’s are too low. Long-range corrected func-
tionals suffer from overcorrection of the orbital energies and
predict larger �εHOMO IPs than IPΔSCF’s. The best results in
terms of accuracy compared to experimental results, internal
consistency, and chain length dependence are achieved with
wB97XD. CAM-B3LYP is acceptable.
The proof that �εHOMO is equal to the first IP with the

unknown exact exchange-correlation functional cannot be easily
extended to other orbital energies.83,84 Therefore, controversy
exists about lower lying orbitals and about unoccupied orbitals.
The energies of the relevant states can be calculated by adding
excitation energies of cations that create holes in the appropriate
orbitals to IPΔSCF. The idea to model photoelectron spectra in
this way is described in refs 14 and 20.
Figure 22 compares higher ionic states with negative energies

of lower lying orbitals for 1T at the wB97XD/6-311G* level. In
the valence region, there is a one to one correspondence between
negative orbital energies and the corresponding states. The states
arise from electronic transitions of β electrons from lower lying
orbitals into the SOMO. The contributions (CI coefficients) of
these transitions are above 0.98 in the energy range from the first
IP down to 15 eV. This means that these states are single-
configurational and that the ionization is a single electron
process. States with higher ionization energies than 16 eV are
multiconfigurational. Plotted in Figure 22 are all states that have a
contribution from an electron configuration that has a hole in one
of the β orbitals. The lengths of the peaks are the squared CI
coefficients of these electronic configurations. It can be seen that
the states with holes in β orbitals cluster around the negative
energy of the corresponding orbitals. For the whole energy range
from 8 to 28 eV, there is an excellent correspondence between
states and orbital energies. Figure 23 shows that thematch is even
better with the BNL functional.

Table 3. Ground state and Excited State ÆS2æ Values and Excited State Energies and Oscillator Strengths in the Absorption
Spectrum of 12T+ with Different Density Functionals

state 0 1 2 3

exptl74 0.62 1.45 2.68

ÆS2æ E f ÆS2æ E f ÆS2æ E f ÆS2æ

BLYP 0.75 0.48 1.02 0.75 1.11 1.70 0.83 1.58 1.60 1.06 0.61 0.81 0.86

B3LYP 0.77 0.48 1.53 0.76 1.35 1.57 1.44 1.96 2.22 1.06 0.74 1.94 0.96

B3P86�30% 0.78 0.42 1.59 1.67 0.81 2.50 2.52 0.48 1.68

CAM-B3LYP 0.89 0.55 2.06 0.87 1.53 1.80 1.25 0.58 1.54 1.77 2.87 3.23 0.74 0.57 1.26 0.96

LC-BLYP 1.10 0.90 2.29 1.20 1.55 1.90 0.48 0.75 2.68 1.79 3.41 3.50 3.83 0.83 0.32 0.29 1.32 1.43 1.38

wB97XD 0.90 0.62 1.98 0.90 1.60 1.75 0.71 1.23 2.27 1.17 2.99 3.04 3.70 0.66 0.39 0.46 1.03 1.01 0.94

LC-wPBE 1.09 0.84 2.27 1.18 1.51 1.87 0.43 0.81 2.70 1.81 3.30 3.40 3.70 0.58 0.58 0.29 1.34 1.32 1.39
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Figure 24 compares the wB97XD/6-311G* orbital energies
with experimental peak positions. The excellent match of negative
orbital energies with photoelectron peaks (PE) shows that the
wB97XD functional is capable (like BNL) of predicting reliable
orbital energies for small systems without any adjustments.
What is left to show is that the results are not deteriorating

with increasing chain lengths, a problem that cannot be solved
with BNL. Figure 25 compares negative orbital energies and
states to PE peaks of 4T. The resolution of the experimental 4T
spectrum is much less than that of 1T, but the overall agreement
between peak position and negative orbital energies holds over
the whole range of available PE peaks.
The only thiophene oligomer for which experimental EAs

seem to exist is 2T. 2T has a positive EA of 0.049 ( 0.005 eV

according to photoelectron spectroscopy (PES) of the anion.86

Since the electron is removed from a stable anion, the EA from
the PES experiment is adiabatic. Electron transmission spectros-
copy (ETS) produces an attachment energy at 0.2 eV.68 Attach-
ment energies are approximate negative vertical EAs.68 Thus,
2T� at the geometry of the neutral form is unbound according
to ETS.
To evaluate the contribution of the zero point energy (ZPE),

frequency calculations were carried out on 2T and 2T� at the
wB97XD/6-311+G* level. The ZPE correction for the EA of 2T is

Figure 19. Spectra of 12T+ with different density functionals and the
6-31G* basis set. Experimental peak positions are shown as black
vertical lines.

Figure 20. Difference between negative HOMO energies and experi-
mental IPs of 2T and 6T.

Figure 22. Ground and excited states of 1T+ (blue lines) compared to
negative orbital energies (green lines) at wB97XD/6-311G*.

Figure 21. Difference between negative HOMO energies and ΔSCF
IPs of 2T and 6T with different density functionals.
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0.135 eV. As this value is larger than the experimental adiabatic EA,
2T� is unbound in its equilibrium structure before ZPE correction.
Orbital energies of neutral species correspond to vertical EAs, and
a negative EA of 2T indicates that LUMO energy, if correct, must
be positive. There seem to be no PES experiments on longer
oligomers, and ETS data of longer oligomers do not simply
correlate with orbital energies from semiempirical calculations.68

Therefore, only the vertical EA of 2T is compared with experi-
mental values, and 6T is checked for internal consistency.
Because vertical and adiabatic EAs of 2T are negative before

ZPE correction, the electron would simply be removed from the

2T molecule with an infinite basis set. With finite basis sets, the
electron is forced to stay on the anion, and an attempt can be
made to estimate the energy difference between 2T and 2T�. At
the CCSD/aug-CCPVTZ level of theory, the vertical EA of 2T is
�0.428 eV with ZPE correction, which is reasonably close to the
ETS result of �0.2 eV. We were unable to include approximate
triples with the aug-CCPVTZ basis set, but with the 6-311G*
basis set, approximate triples contribute only 0.019 eV. Density
functional theory with the exception of LSDA predicts negative
EAs as well. The values of the vertical EAs including the ZPE are
LSDA, 0.476 eV; BLYP, �0.224 eV; B3LYP,�0.203 eV; CAM-
BLYP,�0.367 eV; LC-BLYP,�0.482 eV; wB97XD,�0.444 eV
with the 6-311G* basis set. Inclusion of diffuse functions with
6-311+G* and aug-CCPVTZ basis sets increases the EA by
0.2�0.3 eV.
Figure 26 shows the difference between vertical ΔSCF EAs

and LUMO energies of 2T and 6T with six different density
functionals. All levels of theory predict 6T� to be stable. LSDA
and BLYP have LUMOorbitals that are lying too low and predict
therefore EAs that are significantly larger than the ΔSCF EAs.
With global hybrids, i.e., B3LYP, the LUMO is pushed up and the
difference between negative LUMO energies and EAs decreases.
Long-range correction fixes this problem to a large extent, but the
agreement differs from functional to functional. CAM-B3LYP
does not correct enough, and LC-BLYP overcorrects. The
differences between orbital energies and EAs are larger for 2T
than for 6T. wB97XD leads to a near perfect match for 2T and 6T
between negative LUMO energy and EA. These findings are very
similar to those for IPs.

’DISCUSSION

Performance of Range-Separated Functionals. Taking all
results together and setting the maximal allowable error for any
property of any system to 0.5 eV, only the wB97XD functional
emerges as sufficient. The largest errors with wB97XD are for
excited states of cations. Second best is the performance of CAM-
B3LYP, which is superior in excitation energies of cations but
exceeds errors of 0.5 eV for orbital energies. M06 and TPSSTPSS
do not have any obvious advantages for conjugatedπ systems. All
range-separated functionals are capable of correcting the incor-
rect chain length dependence of IPs, Eg’s, and orbital energies
that make problems with pure DFT and global hybrids. Here,
CAM-B3LYP, which contains only 65% long-range HF exchange
and has therefore an incorrect long-range limit, tends to be

Figure 23. Ground and excited states of 1T+ (blue lines) compared to
negative orbital energies (green lines) at BNL/6-311G*.

Figure 24. Negative orbital energies (blue lines) at wB97XD/6-311G*
and experimental85 PE peaks (red lines) of 1T.

Figure 25. Negative orbital energies (blue lines), states (green lines) at
wB97XD/6-311G* and experimental85 PE peaks (red lines) of 4T.

Figure 26. Difference between negative LUMO energies and ΔSCF
EAs of 2T and 6T with different density functionals.
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slightly inferior. Bond length data, IPs and Eg’s show, however,
that the LC correction tends to overcorrect and approaches HF
results too closely. Therefore, BLA and nonplanarity are some-
what overestimated, and defect sizes may be underestimated with
the LC functionals which have no short-range HF exchange and
as a result an earlier onset of 100%HF-exchange (larger γ). Thus,
range-separated functionals that include a small amount of short-
range HF exchange perform decidedly better for conjugated π
systems than those without.
A comparison of thiophene and furan oligomers indicates that

there are differences between systems. Properties of furan
oligomers require more HF exchange and are better predicted
with LC functionals than those of thiophenes, although a
tendency to overshoot is also predicted here. For furans,
CAM-B3LYP might not be enough, and wB97XD appears to
be a good compromise. The larger error for the thiophene
compared to furan oligomers with LC functionals might be
due in part to the overestimated nonplanarity.
Caution has to be applied when cations or anions are to be

investigated. Range-separated hybrid functionals are more likely
to produce spin-contaminated wave functions than global hy-
brids. This causes inaccuracies in the higher energy peaks in
spectra of doped species. Here, LC functionals overshoot clearly
and CAM-B3LYP and wB97XD are more suitable. In particular,
because of the excellent match between its negative orbital
energies and states, wB97XD is the best choice overall.
The difference between the LC-corrected GGA functionals

and CAM-B3LYP, wB97X, and wB97XD is that the latter contain
short-range HF-exchange and a larger short range (smaller γ)
than the LC functionals. In this respect, the wB97 functional
resembles the LC functionals, but it produces generally smaller
errors than any of them. Therefore, the superior performance of
wB97X and wB97XD seems to be due to a suitable parametriza-
tion of the basic functional plus a proper amount of short-range
HF exchange in combination with an adequate size of the short
range. It is especially encouraging that the functional performs
extremely well on properties like excitation energies and orbital
energies, which were not included in the training set for the
parametrization.
Defect Sizes and Shapes. With range-separated hybrid

functionals, singly charged defects shrink and converge to a size
of about 9 or 10 rings or 36�40 carbon atoms for polyenes,
thiophenes, and furans. As mentioned above, defect sizes
approach those at the HF level (30 atoms) and are probably
underestimated. In dications, two clearly separated defects at the
chain ends form that extend also over about 9� or 10 rings. The
chain segment between the two defects is completely undis-
torted. Range-separated hybrid functionals were shown to cor-
rect the error of pure DFT and global hybrids with the wrong
dissociation limit of symmetrical radical cations.49 Therefore, a
crucial error of DFT is eliminated. This error might have
influenced results with global hybrids regarding the nonexistence
of bound bipolarons. The pronounced separation of two positive
charges into two defects located at the ends of the chains
confirms therefore that there is no bipolaron binding energy in
conducting organic polymers.
Orbital Energies, Transport Gap, and Optical Band Gap. In

principle, there are three band gaps: Eg, which is the first peak in
the UV spectrum (either the onset of absorption or εmax); the
electrochemical band gap Eel, which is the difference between
oxidation and reduction potential; and Et, which is the difference
between IP and EA. Although the three band gaps are obviously

correlated, the exact relationship between them is rather
complicated.87,88 In experiments on thin films, Eg and Eel are
often quite close, differing by several tenths of an electronvolt.
From a conceptual point of view, Eel and Et might be expected to
be closest because both correspond to the difference between
independent electron removal and electron attachment energies,
while electron and hole are not completely separated in the UV
experiment. The relationship between Et and Eg has been
investigated with PES, inverse PES (IPES), and UV spectroscopy
of thin films.88 The directly measured difference between IP and
EA of 6T is 4.2 eV. Eg is 3.0 eV. After applying a range of
corrections for polarization, relaxation, peak centers, difference
between surface and bulk, and so on, the difference between Et
and Eg was estimated to be 0.4 eV.88

In gas-phase calculations with global hybrid functionals, there
is a relatively closematch of Eg and EH�L.

18,28,30 Because accurate
negative orbital energies formally match IPs and EAs, EH�L

should match Et rather than Eg.
87,88 Given the small experimental

difference between the two and the considerable uncertainty in
the DFT orbital energies, the agreement was usually found to be
sufficient. Having now reliable orbital energies at the wB97XD
level allows us to address this issue more thoroughly. Vertical and
adiabatic IPs and EAs of 6T are collected in Table 4. The Et of 6T

Table 4. IPs, EAs, and Energy Gaps of Isolated 6T and a
Cluster of Five 6T Chains in eV with the wB97XD Functional

property 6T 5 � 6T diff solid�gas

6-311G* 6-31G* 6-31G* pl 6-31G* 6-31G*

IPΔSCF(vert) 6.85 6.61 6.44 5.73 �0.88

�εHOMO 7.04 6.80 6.64 6.01 �0.79

IPΔSCF(ad) 6.44 6.23 6.19 5.24 �0.99

EAΔSCF(vert) 0.61 0.51 0.80 0.92 0.41

�εLUMO 0.41 0.31 0.50 0.60 0.29

EAΔSCF(ad) 1.03 0.88 0.94 1.37 0.49

Et(vert) 6.24 6.10 5.64 4.81 �1.29

EH�L 6.63 6.49 6.14 5.41 �1.08

Et(ad) 5.41 5.35 5.25 3.87 �1.48

Eg 3.41 3.30 3.03 3.55 0.25

Figure 27. Five molecules of 6T stacked parallel; neutral form opti-
mized at wB97XD/6-31G*.
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in the gas phase amounts to 6.24 eV. This is matched fairly well
by the HOMO�LUMO gap (EH�L) of 6.63 eV. Eg calculated
with TDwB97XD/6-311G* is 3.41 eV. Thus, the difference
between Et and Eg is 2.83 eV for 6T in the gas phase. For
comparison, B3LYP yields Et = 6.18 eV� 1.23 eV = 4.95 eV. This
value is too small because of the incorrect chain length

dependence of IPΔSCF and EAΔSCF. EH�L = 5.12 eV � 2.27
eV = 2.85 eV, which is even smaller because of the incorrect
orbital energies with global hybrids. Eg = 2.56 eV, which is
underestimated (by 0.36 eV) because of incorrect chain length
dependence. The good match between EH�L and Eg at B3LYP is
thus a coincidence.

Figure 28. Molecular orbitals of a π-stacked cluster of five 6T molecules.
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Because the wB97XD gas phase values were shown to be reliable
throughout this paper, the large discrepancy between the theore-
tical (2.83 eV) and experimental (0.4 eV) differences between Et
and Eg can only be caused by solid state effects. In order to
investigate the influence of neighboring chains, we optimized a
cluster of five 6T chains (Figure 27) in neutral, positively, and
negatively charged states at the wB97XD/6-31G* level and calcu-
lated IPs and EAs. The results are included in Table 4. Although a
small π-stacked cluster is a very crude model for a herringbone
structured crystal of 6T, we believe that the model catches the
essentials at least qualitatively. Since wB97XD includes dispersion,
the geometry optimization yielded a reasonable distance between
the chains of 4.5 Å. The spacing between chains in the cation is
3.4 Å; in the anion it is 3.6 Å. In agreement with the experimental
crystal structures of 6T and 8T, the inner 6T is planar.
Vertical IP, adiabatic IP, and �εHOMO decrease from the gas

phase to cluster by between 0.8 and 1.0 eV. The electron affinitiy
increases by 0.3�0.5 eV. Thus, the transport gap is reduced by
1.1�1.5 eV in the cluster. About 0.5 eV of that is due to
planarization. The first excitation energy of the cluster is 0.25 eV
higher than that of 6T. Theory therefore predicts that the
difference between Et(vert) and Eg shrinks to 1.26 eV in the
cluster. For comparison with experimental results, we need to
consider furthermore that the solid state IPs and EAs are
adiabatic.88 For the cluster, we should therefore compare Et(ad)
to Eg. This difference is 0.32 eV, in very good agreement with the
experimental value of 0.4 eV.88 EH�L, albeit 1.08 eV smaller in the
cluster than in the gas phase, overestimatesEg of the cluster by 1.86 eV
mainly because it approximates Et(vert) rather than Et(ad).
The opposite effect of neighboring chains on Et and Eg is

caused on the one hand by the fact that HOMO and LUMO
delocalize to some extent over the whole structure (Figure 28),
which lowers the IP and increases the EA. On the other hand, Eg
increases because the HOMO�LUMO transition is symmetry-
forbidden in the cluster. The lowest allowed state involves
transitions between higher and lower lying orbitals, namely,
6�10, 5�20, 3�30, 2�50, and 1�60. The spectra of 6T and the
cluster are shown in Figure 29. Both spectra have one main
feature at similar energies, but the cluster peak has a much larger
oscillator strength. These findings rationalize the puzzling ob-
servation that there is a large solid state polarization energy for
IPs of organic solids (∼1.8 eV)89 but very little difference
between UV absorption energies of organic molecules in the
gas phase, in solution, and in the solid state. Our results
furthermore predict that the solid state polarization energy is
larger for IPs than for EAs, in contrast to earlier assumptions.88

’CONCLUSIONS

Range-separated functionals solve the DFT problem of in-
correct chain length dependence of IPs, excitation energies, and

orbital energies of conjugated systems. Using 100% of long-range
HF exchange can overcorrect, however, as is obvious from the
results on BLA, twist angles, and orbital energies. Of all range-
separated functionals tested, wB97X, wB97XD, and CAM-
B3LYP show the best overall performance, especially when
excited states of cations are included. The reason seems to be
that these functionals include short-range HF exchange and have
a larger short range. This pushes the onset of 100% HF exchange
further out and leads to less overshooting.

Because range-separated hybrid functionals correct the erro-
neous dissociation of symmetrical radical cations, a major error of
approximate DFT that might have had an impact on the nature of
the charge carriers in conducting polymers has been removed.
The fact that range-separated functionals not only confirm but
enhance the splitting of two charges on one chain into two
separated defects provides further support to our earlier claim13

that there are no bound bipolarons in conducting polymers.
Among all functionals, wB97XD appears most promising for

calculations on conducting polymers. In particular, the excellent
match of negative orbital energies (with binding energies of up to
30 eV) and IPs and EAs makes it useful for band structure
calculations. Only the higher excited states of charged systems
are somewhat problematic.

The good accuracy of wB97XD orbital energies allows assess-
ment of the relationship between EH�L, Eg, and Et in the gas
phase and in a cluster as a model for the solid state. EH�L

approximates Et(vert) with errors of 0.4 and 0.6 eV in the gas
phase and in the cluster, respectively. Et(vert) exceeds Eg by
2.8 eV in the gas phase and by 1.26 eV in the cluster. As IPs and
EAs of thin films are adiabatic, for the cluster, Eg has to be
compared to Et(ad), and the difference is only 0.32 eV. None-
theless, even if Eg is dominated by a HOMO�LUMO transition,
which may or may not be the case, it is not equal to EH�L.
Therefore, correct orbital energy differences do not predict
optical band gaps, and the “success” of DFT orbital energies
with global hybrids to do so is a result of error cancellation
between incorrect orbital energies, wrong chain length depen-
dence, and the neglect of solid state polarization effects.
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ABSTRACT: Numerous experimental studies indicate that amyloid beta protein (Aβ) oligomers as small as dimers trigger
Alzheimer’s disease. Precise solution conformation of Aβmonomer is missing since it is highly dynamic and aggregation prone. Such
a knowledge is however crucial to design drugs inhibiting oligomers and fibril formation. Here, we determine the equilibrium
structures of the Aβ1�40, Aβ1�42, and Aβ1�40(D23N) monomers using an accurate coarse-grained force field coupled to
Hamiltonian-temperature replica exchange molecular dynamics simulations. We observe that even if these three alloforms are
mostly disordered at the monomeric level, in agreement with experiments and previous simulations on Aβ1�40 and Aβ1�42, striking
morphological differences exist. For instance, Aβ1�42 and Aβ1�40(D23N) have higher β-strand propensities at the C-terminal,
residues 30�42, than Aβ1�40. The D23Nmutation enhances the conformational freedom of the residues 22�29 and the propensity
for turns andβ-strands in the other regions. It also changes the network of contacts; theN-terminal (residues 1�16) becomingmore
independent from the rest of the protein, leading to a less compact morphology than the wild-type sequence. These structural
properties could explain in part why the kinetics and the final amyloid products vary so extensively between the Aβ1�40 and the
Aβ1�40(D23N) peptides.

1. INTRODUCTION

Alzheimer’s disease (AD) is characterized by the presence of
extracellular neuritic plaques and intracellular neurofibrillary
tangles in the brain.1 Senile plaques are made of the amyloid
beta (Aβ) protein. This protein is naturally produced through the
cleavage of the amyloid precursor glycoprotein (APP) by the β-
and γ-secretases. Many alloforms with amino acid lengths varying
between 39 and 43 are produced. Of these, Aβ40 is the most
abundant, and Aβ42 is the most toxic and aggregation prone.

2

Experimental studies using circular dichroism (CD) spectros-
copy and electron microscopy3 indicate that Aβ peptides exhibit
a transition from random coil to β-sheet during fibrillation. Other
experiments reveal that the final amyloid product, the nucleation
and elongation rates4 are distinct for different alloforms and are
modulated by experimental conditions.5 The oligomerization
pathways also vary for different alloforms6,7 and Aβ oligomers,
rather than the amyloid fibrils, are the principal neurotoxic
agents2,8 interacting with receptors,9 metal ions,10 cell mem-
branes,11 and synapses.12 Despite these significant advances in
Aβ amyloid fibril assembly, precise aqueous solution conforma-
tions of Aβmonomer are missing. We know from solution NMR
that it is mostly coil turn with little β-strand content in water
solution,13,14 that Aβ42 is more structured at the C-terminal than
Aβ40,

15 and that oxidation of Met35 causes important changes in
the monomer structure.16 Also, hydrogen/deuterium exchange
experiments showed that the monomer is completely exposed to
the solvent, revealing that it is highly fluctuating.17 Finally,
limited proteolysis/mass spectrometry on Aβ40 monomer sug-
gests many turns, such as between Val24 and Lys28, which was
observed by solution NMR on the Aβ21�30 fragment.18

Yet detailed conformational knowledge of Aβ monomer is of
utmost importance for two reasons. First, the monomer exists in
equilibrium with oligomers during polymerization,6 interacts
with the cell membrane,11 binds to fibril,19 and may even be
neuroprotective.20 Second, since Aβ oligomers as small as dimers
have been implicated in AD,21 it is important to block oligomer-
ization at the monomer level. To complement biophysical
studies, computer simulations are often used. Several molecular
dynamics (MD) simulations have already been reported on
Aβ40

22 and Aβ42
23 folding in aqueous solution. Other studies

examined the role of ion binding,24 oxidation ofMet35,25 and salt
bridge Asp23-Lys2826 on the folding of Aβ monomers. These
simulations revealed many interesting features, but the generated
conformational ensemble is affected by the starting structure
used and by the short time scale explored. Moreover, MD
simulations easily get trapped in local minima biasing the results
when the energy landscape is rugged, as is the case with Aβ.

Replica exchange molecular dynamics (REMD) simulation,
which enhances conformational sampling,27 has also been used.
For the monomer of Aβ40 and Aβ42, it was coupled to different
all-atom force fields with explicit28 and implicit solvent models.29

Each replica was however simulated for 60�100 ns,28,29 which
may not be enough to sample the complete morphological
ensemble. This convergence problem certainly holds for the
simulation of Aβ1�39.

30 A recent extensive all-atom simulation
with implicit solvent on the truncated Aβ10�40 monomer reached
convergence.31 However, the predicted percentage of R-helix

Received: September 21, 2010
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content (∼38%) is significantly overestimated compared to the
CD analysis (between 9 and 12%3,32) and the weakR-helix signal
detected by NMR.13 In addition, the N-terminal segment must
not be discarded as it has been recently recognized that muta-
tions at positions 6 and 7 alter monomer folding and oligomeri-
zation.33 Finally, two long all-atom simulations based on different
force fields and sampling approaches were recently performed on
the Aβ42 monomer. They reported, however, very different
conformational ensembles: with highβ-sheet content and forming,
for instance, a four-stranded antiparallelβ-sheet usingMonte Carlo
simulated annealing and an implicit solvent34 or an ensemble of
predominantly random coil conformations from a 225 ns REMD
simulation using AMBER force field with explicit solvent.35

These divergent computational conclusions on the nature of
the conformations that characterize the whole ensemble of Aβ40
and Aβ42 monomer motivated us to re-explore their foldings
using a different approach. Here, we use the coarse-grained pro-
tein force field (OPEP), which has been tested on widely
different systems,36 and we couple it to a hybrid of Hamiltonian
and temperature replica exchange molecular dynamics (HT-
REMD),37 which allows a more efficient sampling of the con-
formational space than standard temperature REMD. Along the
wild-type Aβ40 and Aβ42 peptides, we also examined the Aβ40-
(D23N) variant implicated in early onset AD.38 To our knowl-
edge, there is no experimental and computational study on the
Aβ40(D23N) monomer. Yet, the mutation D23N has strong
consequences on polymerization and fibril product. While the
kinetics of Aβ40 and Aβ42 polymerization shows a lag phase, with
Aβ42 peptide forming fibrils at a much faster rate, the Aβ40-
(D23N) peptide does not display any lag phase.39 In addition,
Aβ40 and Aβ42 form in-register parallel β-sheet fibrils,40�42

whereas Aβ40(D23N) predominant fibrils form antiparallel β-
sheets.39 Such fibrillar morphologies are usually seen only for short
sequences making therefore Aβ40(D23N) a very special alloform.

2. METHODOLOGY

We use the implicit coarse-grained potential OPEP 3.2 para-
meter set36 coupled with HT-REMD37 to describe the morphol-
ogies visited by Aβ1�40, Aβ1�42, and Aβ1�40(D23N) alloforms
using the same protocol. Aβ40 has the following amino acid
sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGL-
MVGGVV. For Aβ42, two more residues, Ile41 and Ala42, are
present at the C-terminal end, and for Aβ40(D23N), the posi-
tively charged residue Asp23 is mutated into the neutral Asn23.
We use 23 temperatures following an exponential distribution:
200.0, 229.7, 239.9, 259.4, 261.5, 273.1, 285.1, 297.7, 310.8,
324.6, 338.9, 353.9, 369.5, 385.8, 402.8, 420.6, 439.2, 458.6,
478.6, 500.0, 502.0, 504.0, and 505.0 K. At the highest tempera-
ture, we use a potential reduction scale composed of 5 steps: 0.8,
0.7, 0.6, 0.4, and 0.2 that fractionally reduces nonbonded
attractive forces. Exchanges between neighboring replicas are
attempted every 7.5 ps resulting in an exchange rate of 50�60%.
This relatively high exchange rate is due to the use of a coarse-
grained protein model coupled with an implicit solvent, which
decreases the effective number of degrees of freedom, and to the
low secondary structure probability of the peptides, as discussed in
Section 3. In the absence of clear structural differences, configura-
tional energies between nearby temperatures tend to be closer.

Bond lengths are constrained with the RATTLE algorithm.43

The simulations are thermalized using Berendsen’s thermostat
with a coupling constant of 0.1 ps44 and have an integration time

step of 1.5 fs. Simulations are started from a random extended
conformation with an end-to-end distance of 36.9, 37.5, and
36.9 Å for Aβ1�40, Aβ1�42, and Aβ1�40(D23N), respectively.
Each monomer is simulated in a sphere of 60 Å radius with
reflecting boundary conditions. The size chosen for the sphere
minimizes boundary conditions bias. Each replica of Aβ1�40

is simulated for 700 ns (giving 19.6 μs total time), each replica of
Aβ1�42 for 900 ns (giving 25.2 μs total time), and each replica
of Aβ1�40(D23N) for 900 ns (giving 25.2 μs total time). These
extensive simulations are necessary to reach convergence as
discussed below.
Potential. We choose the implicit solvent coarse-grained

potential optimized potential for efficient structure prediction
(OPEP) 3.2 because it captures the main interactions during
protein folding without costing much computational time, such
as an all-atom explicit solvent potential.36 This potential has been
shown to recover the native structure of a variety of peptides with
widely different secondary and tertiary structures as accurately as
all-atom potentials using temperature REMD simulations.45

OPEP has also been applied to short and long amyloid sequences
giving results with strong similarities with experiments.37,46�51

Coupled to a greedy algorithm and a structural alphabet, OPEP
was able to locate, using a benchmark of 25 peptides with 9�23
amino acids, lowest energy conformations differing by 2.6 Å CR
root-mean-square deviation (rmsd) from the full NMR struc-
tures.52,53 Briefly, this model approximates each amino acid by
6 beads: N, HN, CR, SC, C, and O, where the side chain (SC) is
represented by a unique bead with glycines having a H instead of
SC. The interaction parameters are finely tuned against protein
structures and thermodynamics and include bond lengths and
angles, improper torsions, dihedral angles, van der Waals inter-
actions, and two- and four-body cooperative hydrogen bonds.
HT-REMD. In order to determine the conformations of Aβ, we

use an hybrid of Hamiltonian and temperature replica exchange
molecular dynamics (HT-REMD). T-REMD is widely used to
simulate protein aggregation with a variety of implicit and explicit
solvents.27 Nonetheless, for some proteins, it is observed that
T-REMD alone is not sufficient to completely unfold the protein
and escape from strong local minima. HT-REMD enhances
sampling by reducing nonbonded attractive forces at the highest
temperature.37 This allows Aβ to unfold completely into an
extended chain.
As T-REMD,27,45 HT-REMD has a distribution of tempera-

tures allowing exchanges between neighboring replicas i and j
according to the Metropolis criterion that preserves thermody-
namic ensembles:

Probði T jÞ ¼ min 1, exp
Ei � Ej

kBðTi � TjÞ

" #( )
ð1Þ

where Prob(iT j) is the probability of exchange between replicas
i and j, Ei and Ej are the energies of replicas i and j, respectively,
and T is the temperature.
As H-REMD,54 HT-REMD possesses an energy scale at the

highest temperature in which nonbonded attractive forces are
fractionally reduced. Exchanges between neighboring replicas i
and j are governed by

Probði T jÞ ¼ min 1, exp �HiðX 0Þ �HiðXÞ +HjðXÞ �HjðX 0Þ
kBTmax

" #( )

ð2Þ
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whereH denotes the Hamiltonian (energy) and X and X0 are the
configurations of replicas i and j, respectively. By decreasing the
nonbonded attractions between atoms at the highest tempera-
ture, HT-REMD helps the replicas escape from deep local
minima increasing the conformational space sampling.
Analysis.We analyze the secondary and tertiary structures at

325 K as justified in Section 3.2 using the equilibrated time
interval of each alloform. The secondary structure is analyzed
using STRIDE,55 and the tertiary structure is analyzed using
contacts between side chains and clustering. Contacts are
considered when the distance between two side chain beads is
smaller than the sum of their van der Waals radii plus 0.5 Å. For
clustering, we first calculate the rmsd between all structures for
each alloform. We then find the biggest cluster, remove from the
pool of structures all those contained in this cluster, and repeat
iteratively until no structure is left.56 We select a small threshold
of 2 Å CR rmsd to increase the discrimination between clusters.
The weighted histogram analysis method57 is used to calculate

the free energy, and the entropy is calculated using S = (E� F)/T.
J-coupling constants between HN and HR,

3JHRHN
, are calculated

using the Karplus equation58 with three different sets of
coefficients.35,59,60 Error bars for the J-coupling constants and
the secondary structure propensities show the interval of con-
fidence on the mean value given by the bootstrap statistical
analysis method.61

Convergence. Convergence in our simulations is assessed by
three criteria. First, we check that, at equilibrium and based on
the ergodic principle, the entropy as a function of temperature,
S(T), is time independent when averaged over sufficiently long
periods as is seen in Figure 1. Aβ40 is the most rapidly converged
simulation, and S(T) converges within 200 ns time intervals after
only 100 ns of equilibration. As Aβ42 converges more slowly, the
equilibration takes 300 ns, and the entropy becomes time
independent when averaged over 300 ns time windows. Aβ40-
(D23N) requires an equilibration time of 500 ns, and S(T)
remains constant within 200 ns time windows. Note that the
differences in the time windows to reach equilibrium and obtain
converged entropies starting from similar conformations for the
three alloforms cannot be related to differences in aggregation
properties. They only indicate that the configuration space of
Aβ42 is more complex than those of Aβ40 and Aβ40(D23N). We
further note that the entropy of the three alloforms has a similar
slope, which is related to their weak secondary structure signals

and their overall behavior as random coil polymers. Second, to
further confirm convergence, we look at the variation of second-
ary structure using the time windows mentioned above for each
alloform. The same trend is observed in each time window, and
the probabilities of secondary structures per residue vary on
average by only 4�5% implying convergence (data not shown).
Third, as a final check, we cluster all structures in each time
window for each alloform and find that the resulting distribution
of clusters is very similar between different time windows. These
results confirm that, with our simulation protocol, each alloform
has fully converged. As a result, for analysis, we use the equilibrated
time interval of each alloform: from 100 to 700 ns for Aβ40, 300 to
900 ns for Aβ42, and 500 to 900 ns for Aβ40(D23N), totaling
80 000, 80 000, and 53 333 structures, respectively.
Naming Convention. To facilitate analysis, the sequence is

often split into four regions: the N-terminal (residues 1�16), the
central hydrophobic core or CHC (residues 17�21), the loop
region (residues 22�29), and the C-terminal (residues 30�42).
TheN-terminal is mostly hydrophilic, the CHC corresponds to17

Leu-Val-Phe-Phe-Ala (LVFFA),21 the loop region refers to the
residues forming a loop in the fibrillar morphologies, and the
C-terminus is mostly hydrophobic.

3. RESULTS

3.1. J-Couplings. Before comparing the properties of the
three alloforms, it is important to select the appropriate simula-
tion temperature for comparison with experiments. It is known
that even all-atom simulations with explicit solvent generally
show a shift between the predicted and experimentally observed
melting temperatures, indicating that the comparison between
computation and experiments cannot be made directly with the
temperature used in the experiments.62 This feature has also been
observed with the OPEP force field.51 To find the simulation
temperature corresponding best to experiments, we calculate the
J-coupling constants, 3JHNHR

, of Aβ40 and Aβ42 at 300 and 325 K
(the highest temperature before transition to random coil) and
compare those with experimental J-coupling constants measured
at 300 K.28 We also examine the use of three sets of parameters
for the Karplus equation (namely the Vuister’s,59 Sgourakis’,35

and Schmidt’s60 parameter sets) in calculating the J-coupling
constants from the simulations.
Figure 2 superposes the J-coupling constants calculated for

both alloforms at 300 and 325 K using the Vuister’s parameter
set59 on the experimental values.28 In the inset, the Vuister’s
parameter set is compared to that proposed recently by Sgourakis
et al.35 for the simulations at 325 K. Qualitatively, both tempera-
ture data sets follow the same trend for Aβ40 and Aβ42. We note,
however, for the Vuister’s set, an overall J-coupling shift in the
N-terminal region for Aβ40 compared to experiment, a shift that
is considerably reduced with Sgourakis’ set. Quantitatively
(Table 1), the Pearson correlation coefficient (PCC) remains
nearly the same for Aβ40 independently of the simulation
temperature and the parameter set used but is significantly
improved for Aβ42 at 325 K, indicating that this latter tempera-
ture is most relevant for comparison with experiment.
Using the same residues and experimental J-coupling constant

values28 as benchmark, our results can be compared to the PCC
obtained by other computational studies. For Aβ42, our PCC
value of 0.43 agrees with the values derived from all-atom REMD
simulations in explicit solvent using OPLS (PCC of 0.43 using
60 ns per replica) and AMBER99SB (PCC of 0.4�0.5 using

Figure 1. Entropy as a function of temperature S(T) averaged over
different time intervals. Aβ40, Aβ42, and Aβ40(D23N) are shown in the
top, middle, and bottom panels, respectively.
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225 ns per replica) force fields.28,35 For Aβ40, our PCC value of
0.29 is lower than that obtained by all-atom REMD using OPLS
(PCC of 0.66) but is similar to that obtained using all-atom
REMD with the AMBER96 force field (PCC of 0.27).28 Our
moderate correlation for Aβ40 is due a shift of more than∼1 Hz
for most of the N-terminal residues and the four outliers at
positions Glu22, Ala30, Val39, and Val40.
Though there is no physical rational for eliminating outliers, to

compare with Mitternacht et al.,34 we follow their procedure and
eliminate the four most significant outliers out of the 24 and 21
experimental data points for Aβ40 and Aβ42, respectively, and
compute the PCC using the Schmidt’s parameters set.60 Doing

so, our PCCs increase from 0.29 to 0.57 for Aβ40 and from 0.43
to 0.71 for Aβ42, showing that only a few outlying points strongly
impact the PCC (Table 1). Using the same approach, our PCC
for Aβ42, 0.71 is comparable to the PCC of 0.86 determined by
Mitternacht et al.34

3.2. Aβ40 Properties. Secondary Structure. Averaged over all
structures and residues, Aβ40 has 7.7 ( 0.1% β-strand, 3.4 (
0.1% R-helix, 50.2 ( 0.1% turn, and 38.8 ( 0.1% random coil.
Compared to a recent CD study on Aβ40 (8% R-helix and 24%
β-strand),32 our ensemble shows a comparable propensity
for R-helices but underestimates the percentage of β-strands.
This experiment, however, may overestimate the percentage of
β-strands because NMR shows a very weak signal,13,16 and an
earlier CD experiment using a more stringent sample separation
protocol reports only ∼12% of β-strands.3

The secondary structure propensities for each residue in Aβ40
are shown in Figure 3. Three β-strands are present from Ala2 to
Arg5 with a propensity of 20�50%, from Glu10 to His13 and
Lys16 to Leu17 with a propensity of 15�30%, and from Phe18 to
Ala30 with a small propensity (<1%). The first two β-strands are
stabilized by turns at His6-Gly9 and His13-Gln15. The β-strands
2 and 3 are found in competition with 2 R-helices spanning
Glu11-Gln15 with a small probability (<1%) and Glu22-Asn27
with a probability of up to 25%, as depicted in Figure 3. Finally,
our analysis also shows a high turn signal (>60%) between
residues 21 and 28 and between residues 33 and 39.
Tertiary Structure. Several contacts play a dominant role in the

tertiary structure of Aβ40, as shown in Figure 4. The C-terminal
interacts with the CHC forming hydrophobic contacts between
Leu34-Phe19, Val36-Phe19, Met35-Phe19, and Met35-Phe20
with high probabilities and between Ile31-Ile32 and Val18 with
slightly lower probabilities. We also observe hydrophobic con-
tacts localized in the CHC between Leu17-Phe19 and Val18-
Phe20, indicating a mostly collapsed core. We also find that the
electrostatic Asp23-Lys28 contact, present in about 65% of the
morphologies, stabilizes a turn between Ala21 and Lys28.
Column 1 of Figure 5 shows the center of the five dominant

Aβ40 clusters with their respective populations. These five clus-
ters contain 34.3% of all generated conformations. The center of
cluster 1 is fully random coil. The centers of clusters 2�5 display
two β-strands at the N-terminal residues 2�4 and 10�12,
leading to a well-formed or a very flexible β-hairpin for the
clusters 4�5 and 2�3, respectively. While the cluster centers do

Figure 3. Per residue secondary structure propensities. From top to
bottom: β-strand,R-helix, turn, andR-helix plus β-strand propensities in
percentage (%). Aβ40 is shown in green, Aβ42 in red, and Aβ40(D23N)
in blue.

Figure 2. J-coupling constants 3JHRHN
for Aβ40 and Aβ42 at 300 and

325 K. The J-coupling constants determined experimentally28 for Aβ40
and Aβ42 are compared to the predicted J-coupling constants obtained in
our simulations. The inset in each figure compares experiment28 (black
curve) and the numerically predicted J-coupling constants at 325 K using
Sgourakis’35 and Vuister’s59 (blue and red curves, respectively) para-
meter sets in Karplus equation.58 Glycine residues are not included
because their experimental values are ambiguous.

Table 1. PCC between Experimental and Calculated
J-Coupling Constantsa

Vuister et al.59 Sgourakis et al.35 Schmidt et al.60

parameter set all part all part all part

Aβ40 - 325K 0.28 0.45 0.29 0.57 0.29 0.57

Aβ40 - 300K 0.26 0.40 0.27 0.53 0.27 0.50

Aβ42 - 325K 0.43 0.65 0.42 0.72 0.43 0.71

Aβ42 - 300K 0.27 0.52 0.29 0.39 0.27 0.44
aGlycine residues are not included because their experimental values are
ambiguous. The first and the second columns for each parameter set
contain, respectively, the PCC obtained when using all the data points
and when neglecting the four most problematic residues. For Aβ40, we
neglected residues 15, 21, 30, and 40 when using Vuister et al.,59 residues
22, 30, 39, and 40 when using Sgourakis et al.,35 and residues 22, 30, 39,
and 40 when using Schmidt et al.60 parameter sets. For Aβ42, we
neglected residues 2, 21, 40, and 41 when using Vuister et al., residues
2, 22, 40, and 41 when using Sgourakis et al., and residues 2, 22, 40, and
41 when using Schmidt et al. parameter sets.
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not exhibit secondary structure in the CHC or the C-terminal,
the loop region is structurally near a R-helical conformation, and
we find aR-helix at residues 22�26 with∼45% probability when
averaging over all conformations belonging to the top three clusters.
All five clusters display contacts between CHC and the C-terminal.
Clusters 1�3 also show contacts between residues 1�15 and
21�38, while these contacts are absent in clusters 4 and 5.

3.3. Aβ42 Compared to Aβ40. Secondary Structure. Averaged
over all structures and residues, Aβ42 shows 2.1 ( 0.1% R-helix,
6.1( 0.1% β-strand, 48.3( 0.1% turn, and 43.4( 0.1% random
coil contents, whereas Aβ40 exhibits 3.4 ( 0.1% R-helix, 7.7 (
0.1% β-strand, 50.2 ( 0.1% turn, and 38.8 ( 0.1% random coil.
Thus, these two sequences have the same overall secondary
structure composition. It is in the propensity per residue that
differences arise.
The secondary structure propensity for each residue is shown

in Figure 3. As for Aβ40, there are β-strands at the N-terminal at
positions Ala2-Arg5, Glu10-His13, and Lys16-Val17, but their
propensities are smaller in Aβ42. Noticeably, Aβ42 is more prone
than Aβ40 to form β-strands at the CHC and at positions Ala30-
Ile32 and Val39-Ile41, as depicted by the inset in Figure 3. Thus,
there is a small random coil to β-strand transition at the CHC
and the C-terminal in going from Aβ40 to Aβ42. Overall, 1.4% of
Aβ40 and 8.6% of Aβ42 structures display β-strands at the CHC
or C-terminal. As for Aβ40, there are in Aβ42 two R-helices at
positions Glu11-Gln15 and Glu22-Asn27 (Figure 3). The R-
helix at Glu22-Asn27 is however reduced in going from Aβ40
(∼22%) to Aβ42 (∼10%). In addition, we find in Aβ42 a third
helix at positions Met35-Val40 that is absent in Aβ40 (Figure 3).
On the other hand, both alloform share a very similar turn profile.
Tertiary Structure. Many hydrophobic contacts contribute to

the Aβ42 monomer morphologies. Most of them are also present
in Aβ40, as depicted in Figure 4 that shows the differences in the
contact propensity between the two alloforms. These include a
number of contacts between the CHC and the C-terminal, parti-
cularly between Met35 and the two residues Phe19 and Phe20.
The hydrophobic residue Ile41 increases the overall contact
occurrence between the CHC and the C-terminal by interacting
predominantly with Leu17 and Val18. It also increases contacts
inside the C-terminal itself. Finally, the addition of Ile41 and Ala42
causes a small shift of the interactions between the N-terminal
and the region 15�35 toward the C-terminal or the N-terminal.
This shift may allow the conformational freedom necessary for
the CHC to form β-strands and for the region 22�29 to form
more easily the specific loop conformation required for fibrilla-
tion. Electrostatic interactions also play a role in Aβ42 structures.
Aβ42 and Aβ40 have approximately the same propensity of
forming a contact between Asp23 and Lys28 (∼ 60%) with a
similar contact distance distribution (data not shown).
While the probability of contact occurrence differs between

Aβ40 and Aβ42, both alloforms have a very similar conformational
ensemble, and only 16% of all Aβ42 conformations are unique,
i.e., show a CR-rmsd greater than 2 Å from any observed Aβ40
structures by using residues 1�40. The centers of the five
dominant Aβ42 clusters are shown in column 2 of Figure 5.
These five clusters include 50.1% of all conformations. We
observe that some of these clusters are structurally similar to
the main clusters of Aβ40. For instance, clusters 2 and 4 of Aβ42
are respectively similar to clusters 2 and 5 of Aβ40. The third
cluster is similar to the cluster 6 of Aβ40 that represents 1.2% of its
structural ensemble. On the other hand, the first cluster of Aβ42 is
only similar to marginal clusters of Aβ40 (<1%), and its fifth
cluster is not present in Aβ40.
To identify the structural differences between Aβ42 and Aβ40,

we cluster all unique structures of Aβ42. The first five unique
clusters of Aβ42 are shown in column 4 of Figure 5 and represent
6% of all generated conformations. We observe that these Aβ42
unique morphologies display β-strands at the C-terminal and
CHC. In particular, the first, third, and fifth unique clusters show

Figure 4. Contact maps between side chains. The contact maps of Aβ40,
Aβ42 and Aβ40(D23N) are shown in the top, middle, and bottom panels,
respectively. The upper left corner of each panel depicts the propensity
of contact between side chains in each alloform. The lower right corner
for Aβ42 and Aβ40(D23N) displays the contact differences between each
alloform and Aβ40. When there is more contacts in Aβ40, the propensity
is negative (blueish), and the opposite yields a positive propensity
(reddish).
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a β-hairpin motif with strands spanning the C-terminal at
residues 30�32 and 39�41. Structurally, these three clusters are
near each other differing only at the N-terminal. Another interest-
ing motif is seen in the second unique cluster, where we note that
the extremity of the C-terminal may also interact with the CHC
forming a β-sheet between residues 18�20 and 39�41.
3.4. Aβ40(D23N) Compared to Aβ40. Secondary Structure.

Averaged over all structures and residues, Aβ40(D23N is com-
posed of 10.1( 0.1% β-strand vs 7.7( 0.1% in Aβ40, 0.5( 0.1%
R-helix vs 3.4 ( 0.1% in Aβ40, 56.2 ( 0.1% turn, which is 6.0%
higher than in Aβ40, and 33.2 ( 0.1% random coil.
Differences are also observed in the per residue secondary

structure, as shown in Figure 3. For example, the β-strand
propensity of residues Tyr10-His14 is higher in Aβ40(D23N)
than in Aβ40 causing a lower β-strand propensity at Gln15-
Leu17. Aβ40(D23N) and Aβ42 show similar β-strand propen-
sities at positions Val18-Ala21 and Ala30-Ile32 that are absent in
Aβ40(Figure 3). Overall, 5.0% of Aβ40(D23N) structures vs 1.4%
of Aβ40 structures display β-strands at the CHC and the
C-terminal. From our simulations, we also see that Aβ40(D23N)
has a negligible propensity for R-helical configurations, with a
small signal at positions 22�27, a feature that may favor a faster
appearance of fibril-compatible intermediate oligomers with
β-strands at the CHC and the C-terminal in Aβ40(D23N) than
in Aβ40.
The turn propensity in the N-terminal, at His6-Gly9 and

His13-Gln15, is very similar to Aβ40 and Aβ42. Differences are
however observed for the CHC, the loop, region and the
C-terminal. At the CHC, residues 17�20 have a propensity for
turn of ∼50%, which is higher than in Aβ40 and Aβ42 by
∼20�30%, resulting in less random coils. The C-terminal also

exhibits a higher propensity for turn in Aβ40 and Aβ40(D23N)
than in Aβ42, particularly at residues 33�35, generating a longer
turn extending from residues 33 to 39. Finally, the loop region has a
higher propensity for turn in Aβ40(D23N) than in the wild-type
alloforms, and the contacts that stabilize this region are very
different from Aβ40 as described below.
Tertiary Structure. While 16% of Aβ42 conformations differ

from any observed Aβ40 conformations, cluster analysis reveals
that 35% of Aβ40(D23N) conformations are distinct from those
obtained for Aβ40 (CR-rmsd >2 Å). Differences in the contact
distribution between Aβ40 and Aβ40(D23N) are shown in
Figure 4. For instance, there is a shift of the contacts between
the N-terminal and the residues 15�30 toward the C- or
N-terminal. While this shift is qualitatively similar to what occurs
in Aβ42 as described previously, the overall reduction in contacts
is more important in Aβ40(D23N). The N-terminal of Aβ40-
(D23N) looses many contacts with the region 15�30 without
recovering them all with the C-terminal, as shown by Figure 4,
allowing more conformational freedom. Another main difference
is observed for the Asp(Asn)23-Lys28 contact propensity which
is reduced by 54% in going from Aβ40(D23N) to Aβ40
(Figure 4). This induces a rich polymorphism for the region
between Ala21 and Ala30 as opposed to the other two alloforms
studied. Noticeably, the side chains of Asn23 and Lys28 in
Aβ40(D23N) are then unconstrained as they do not form other
significant contacts (Figure 4).
The centers of the five dominant clusters of Aβ40(D23N) are

displayed in the third column of Figure 5. These represent 27.3%
of all generated conformations. As for Aβ40, they are mostly
disordered without any β-strands at the CHC or C-terminal as
could be expected, since 65% of Aβ40(D23N) and Aβ40

Figure 5. Clusters centers. Centers of the five dominant clusters for Aβ40 (first column), Aβ42 (second column), and Aβ40(D23N) (third column). The
fourth and fifth columns contain, respectively, the centers of the five dominant clusters of Aβ42 and Aβ40(D23N) uniquemorphologies. The percentages
shown are with respect to the total number of structures analyzed. The secondary structure was assigned using STRIDE.55 The N- and C-termini are
shown in green and orange, respectively, for all alloforms, Tyr10, Phe20, Ala30, and Val40, and for Aβ42 only, are shown in teal.
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conformations are structurally similar (CR-rmsd < 2 Å). For
instance, the centers of the clusters 2 and 3 of Aβ40(D23N) are
similar to the centers of the clusters 4 and 1 of Aβ40, respectively.
On the other hand, cluster 4 of Aβ40(D23N) is only similar to
Aβ40 marginal clusters (<1%), and its first cluster is not found in
the structural ensemble of Aβ40.
The Aβ40(D23N) unique clusters are shown in the fifth

column of Figure 5. The first unique cluster, which has a
population of 9%, is also the most dominant cluster for this
sequence (see column 3). In term of secondary structure, this
cluster is rather unstructured with β-strands only at residues 2�5
and 11�16. The fourth unique cluster displays aβ-sheet between
residues 18�20 and 30�32 and represents 1.6% of all visited
structures. While the other Aβ40(D23N) unique clusters are as
unstructured as Aβ40, their contact distributions differ in two
notable ways: (1) Their N-terminals can be isolated from the
loop region and interact less with the CHC (unique clusters 1
and 3); their contact maps show very few contact between
residues 1�15 and 22�29 and between residues 5�15 and
14�21 (data not shown), or (2) these unique clusters can have
few contacts between residues 1�9 and 22�40 (unique clusters
2 and 5). For these two latter unique clusters, we note also that
they exhibit electrostatic interactions between the positively
charged Lys28 and the negatively charged Glu11, as Lys28
now interacts very weakly with Asn23 as opposed to wild-type.
Overall, these unique morphologies do not have contacts be-
tween the N-terminal and the loop region allowing Aβ40(D23N)
to be less compact than Aβ40.

4. DISCUSSION

Knowledge of the Aβ conformations at the monomer level in
aqueous solution is of utmost importance since the monomer
interacts with higher order oligomers6 and fibrils19 and is a
building block of the cytotoxic dimer.21 Both Aβ40 and Aβ42
monomers have been studied by NMR, CD, and computer
simulations. Results show that these peptides are described by
a distinct ensemble of predominantly random coil structures.
While many simulations were performed,29 very few showed
thorough sampling of the relevant morphological ensemble.34,35

The similarities and differences of our results with previous
experiments and simulations on the Aβ40 and Aβ42 monomers
can be summarized as follows.

Our contact distributions of Aβ40 and Aβ42 can be compared
to the previous all-atom implicit solvent simulation results
obtained by Yang and Teplow.29 We note two differences. First,
while we observe a fourth region between residues 30 and 40 in
which intraregion contacts are important for both Aβ40 and Aβ42,
the role of this region was only identified for Aβ42 by Yang and
Teplow. Second, there is a slight shift in the contacts between the
N-terminal and the loop region. If these regions were seen to
interact by contacts between residues 6�10 and 22�28 in the
simulations of Yang and Teplow,29 our results show interactions
between residues 1�5 and 16�28 (Figure 4). On the other hand,
both simulations agree on several points: the N-terminal inter-
action with the loop region, the increased number of contacts
between the CHC and the C-terminal for Aβ42, the presence of
more localized contacts at the C-terminal for Aβ42, and the fact
that intraregion contacts are more dominant in the four regions
corresponding to the turn distribution observed in Figure 3.

Inspection of the four sequence regions show interesting
features. We find that the N-terminal (residues 1�16) of the

two wild-type alloforms is very similar with turns at His6-Gly9
and His13-Gln15, stabilizing extended morphologies having β-
strands. A weak turn was also observed at Asp7-Glu11 by NMR,16

and two turns were predicted at His6-Gly9 and His14-Lys16
using all-atom REMD simulations.28,29 On the other hand, the
presence of β-strands at the N-terminal of Aβ40 is clearly a matter
of debate from experimental and computational studies. While
some experiments show that the N-terminal of Aβ40 monomer
may form β-strands,63 others observe that it is extended and
highly fluctuating14,17 without any β-strands.16 Three all-atom
REMD simulations report either negligible28 or low29,35 β-strand
percentages. In contrast, coarse-grainedDMD simulations report
a propensity for β-strand of ∼40% at Ala2-Phe4.64 Taken
together, all these studies suggest that the N-terminal may be
in rapid exchange between an extended�turn�extended motif
free of any H-bonds and β-stranded configurations, with a turn at
His6-Gly9 being formed most of the time, as shown in our study
by the propensities in Figure 3. We find that Aβ42 has also a non-
negligible probability to populate a β-hairpin at the N-terminal, a
motif that has been predicted recently with two different all-atom
potentials.34,35 This motif has however a lower probability in
Aβ42 than in Aβ40. This motif, which was not observed experi-
mentally yet due to its low population, might have consequences
on the early formed Aβ42 oligomers.

The formation of a loop region between residues 22�29
stabilized by a salt bridge between Asp23-Lys28 is thought to be
one of the rate-limiting steps of Aβ40 fibrillation.

65 Recently, the
formation of this contact was shown to increase the population of
competent fibril-like monomers for Aβ10�35.

26 Here, we observe
many morphologies with a turn between Ala21 and Lys28
stabilized by interactions between the side chains of Asp23 and
Lys28 in the wild-type sequences (Figures 3 and 4), with a proba-
bility of ∼65%. This turn was suggested from proteolysis
experiment on the Aβ40 monomer,18 and its morphology
was resolved at the molecular level using solution NMR of the
Aβ21�30 peptide.18 The turn ensemble of residues 22�28 for
Aβ40, in our simulation, is marginally similar to the two NMR
conformations of the Aβ21�30 peptide with 20% of our con-
formations deviating by less than 1.5 Å. These differences can be
explained by the presence of contacts between the N-terminal
and the loop region with∼35% probabilities (Figure 4). Overall,
our results on Aβ40 are consistent with experiments on the Aβ40
monomer showing turns at positions 23�29,14 20�26,16 or
24�28.18 Our results on Aβ40 also agree with previous REMD
simulations on the Aβ40 monomer29 and MD simulations on the
Aβ10�35 monomer and dimer26 that suggest that the loop region,
residues 22�29, needs to undergo structural changes during
fibrillation, leading to further stabilization of the Asp23-Lys28
contact.

The CHC (residues 17�21) and the C-terminal (residues
30�42) are recognized experimentally as the driving regions for
aggregation through the formation of β-stranded and extended
structures.66�68 Experiments revealed that the C-terminal of
Aβ42 monomer is more rigid than that of Aβ40

15 and displays
β-strands at residues Val39-Ile41.14,16 Previous simulations
also observed a more structured C-terminal in Aβ42 than in
Aβ40.

28,29,35,64 In agreement with these experiments and simula-
tions, we observe in our study that the C-terminal residues Ala39-
Ile41 modulate, by direct interactions, the appearance of distinct
Aβ42 morphologies with β-strands at the CHC and the C-term-
inal that are absent in the Aβ40 ensemble. We isolated these
morphologies which exhibit a β-sheet between residues 39�41
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and 30�32 or between residues 39�41 and 18�20 (see fourth
column in Figure 5). Our results emphasize the important role of
Ile41-Ala42 in the monomer morphologies, and its role in the
early oligomerization process as was observed experimentally.3,69

Our findings on the aggregation prone mutant D23N can be
summarized as follows. Aβ40(D23N) appears to form a more
stable β-hairpin than the two wild-type peptides, as a significant
portion of their N-terminal structures. As could be expected,
Aβ40(D23N) monomer does not exhibit any significant interac-
tion between Asn23 and Lys28. This region displays rather a high
conformational flexibility giving the D23N alloform more free-
dom to adopt the loop conformations observed in its fibrillar
states39 and therefore reducing the free energy barriers. Inter-
estingly, solid-state NMR indicates that Aβ40(D23N) forms
fibrils with multiple morphologies, with a majority having anti-
parallel β-sheets and a minority having parallel β-sheets.39 From
our simulations, we see that this wide polymorphism may
originate in part from the unconstrained side chains of Asn23
and Lys28, the flexibility of the region 21�29, and their overall
consequences on Aβ40(D23N) equilibrium ensembles.

Our results show that, while Aβ40(D23N) does not contain
Ile41, the mutation D23N increases the β-strand content at the
CHC and the C-terminal when compared to Aβ40 (Figure 3).
Specifically, one of our unique Aβ40(D23N) morphologies dis-
plays a β-sheet between residues 18�20 and 30�32 (fifth
column in Figure 5). Even if its weight of 1.6% is small, this
motif is interesting as it involves two regions known to be crucial
during oligomerization.6,66,67

The higher propensity of Aβ40(D23N) monomer to form
β-strands at the CHC and the C-terminal and to prefer less
collapsed topologies than Aβ40 monomer suggests important
consequences on its dock-and-lock mechanism when it binds to
fibril edge. Previous simulations on the Aβ10�40 monomer at the
edge of a preformed fibril showed that the fibril edge induces a
conversion of the CHC to β-stranded configurations in the
monomer.31,70 In another computational study, interactions
between the C-terminal peptide Met35-Val40 and a fibril were
simulated showing a transition of the peptide from random coil
to extended configuration upon binding to fibril edge.71 Taken
together, our results suggest that Aβ40(D23N)may exhibit easier
conversion to extended configuration upon binding to the fibril
edge and therefore increases its fibril elongation rate.

Finally, it was observed using photoinduced cross-linking
experiments that D23N promotes the formation of high-order
oligomers when compared with wild-type Aβ40.

6 High-order
oligomers are also formed by Aβ42, which preferably forms
pentamer and hexamer, in contrast to Aβ40, which forms low-
order oligomers, such as monomers to tetramers in rapid equili-
brium.6 In our simulation, we observe that both Aβ42 and
Aβ40(D23N) monomers exhibit a noticeable reduction of con-
tacts between the N-terminal and the residues 22�29 and
between the N-terminal and the residues 18�21 of the CHC
(Figure 4), a feature that could favor the appearance of high-
order oligomers by freeing the segment 22�29 and the CHC.

5. CONCLUSION

In this study, we have revisited the structures of the Aβ40 and
Aβ42 monomers using the OPEP force field and the HT-REMD
technique and provided for the first time the structures of
the peculiar Aβ1�40(D23N) monomer, which self-assembles

without any lag phase to predominant amyloid fibrils with
antiparallel β-sheets.39

We observe that even if these three alloforms are mostly
disordered at the monomeric level, in agreement with experi-
ments and previous simulations on Aβ1�40 and Aβ1�42, striking
morphological differences exist. For instance, Aβ1�42 has higher
β-hairpin propensities at the C-terminal, residues 30�42, than
that of Aβ1�40. Moreover, 16% of all Aβ1�42 conformations do
not ressemble to any Aβ1�40 conformations.

The monomeric morphological ensemble of Aβ40(D23N)
also presents significantly different from that of Aβ40 with 35%
of unique conformations. In particular, we observe a β-hairpin-
like motif between residues 18�20 and 30�32 in Aβ1�40-
(D23N) that is not present in Aβ1�40. Moreover, D23N
enhances the conformational freedom of residues 22�30. It
changes the network of contacts, the N-terminal becoming more
independent from the rest of the protein, leading to less compact
morphologies than the wild-type Aβ1�40 peptide. These struc-
tural properties could explain why the kinetics and the final
amyloid products vary so extensively between the Aβ1�40 and
Aβ40(D23N) peptides, by increasing the population of the
amyloid-competent monomeric state.
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ABSTRACT:The crystallographic analysis of T1 lipase suggested an interaction between Na+ and the aromatic ring of Phe16 in the
active site. However, experimental approaches could not dismiss the possible presence of water instead of Na+. Our previous
molecular dynamics (MD) simulations suggested that the significantly large enthalpy gain of the Na+�π interaction was required to
preserve the catalytic core structure of T1 lipase. In this study, to examine the effects of water, we performed furtherMD simulations
of T1 lipase involving the water�π interaction, instead of the Na+�π interaction, exploiting various force fields, such as ff99, ff02,
and an accurate potential field to describe the water�π interaction, which was generated using our recently developed scheme
(referred to as the grid-based energy representation). The analyses revealed that the water�π complex was unstable in the catalytic
core of T1 lipase even when the accurate potential of the water�π complex represented by the grid-based energy function was
employed in theMD simulations and led to the disruption of the coordinated structure. In contrast, the catalytic core structure of T1
lipase involving the Na+�π complex was significantly stable in the 10 ns MD simulation using the grid-based energy representation
of the Na+�π interaction. Thus, the possible presence of water may be excluded, and our previous proposal concerning the
functional role of the structural element involving the Na+�π interaction in the catalytic site of T1 lipase has unambiguously been
confirmed. Further, the strong coordination of Na+ and Nε of His358 was also shown to be substantial to preserve the core structure
of the catalytic site.

1. INTRODUCTION

The cation�π interaction is a noncovalent binding interac-
tion, in which a cation is strongly attracted to the π electrons of
an aromatic molecule. The interaction is commonly found in
biological macromolecules and contributes to their structural
stability and to drug�protein interactions.1�6 Even though only
about 10 years have passed since such functional roles were
proposed, cation�π interactions are now recognized as being as
important as other conventional noncovalent interactions, i.e.,
hydrogen bonds, salt bridges, and hydrophobic interactions. The
cations participating in the interactions include metal cations,
such as Na+ andMg2+, which are abundant in living organisms, as
well as positively charged amino acid residues, including arginine
(Arg) and lysine (Lys). Substantial stabilization energy has been
detected in the gas phase7�12 and also in aqueous solutions2,13�15

upon the formation of metal�π interactions. However, only a
few experimental structures containing complexes of metal
cations and aromatic rings have been reported.16�20 Thus, the
functional roles of the interactions remain to be clarified.

The X-ray crystallographic analysis of a thermoalkalophilic
lipase from Geobacillus zalihae strain T1 (T1 lipase) revealed a
characteristic feature; i.e., a spherical electron density was
detected in the vicinity of the Phe16 side chain in the catalytic
site (Figure 1).21 Since T1 lipase exhibits its catalytic activity
under alkaline physiological conditions, which provide an abun-
dance of Na+ ions, such as in palm oil mill effluent (POME),22

the electron density was considered to correspond to Na+.

However, the possibility that the electron density corresponded
to a water molecule, rather than Na+, could not be ruled out.21

Actually, a survey of a set of 75 high resolution crystal structures
of proteins (less than 1.1 Å) revealed the existence of such
water�π interactions, and 18 water molecules were found facing
the planes of the aromatic rings.23

In our previous study, to investigate whether the electron density
actually corresponds to Na+, we performed molecular dynamics
(MD) simulations of T1 lipase, where Na+ was placed at the active
site.24 However, conventional force fields occasionally fail to
provide an accurate description of the metal�π interactions.
Accordingly, we developed a novel strategy, the “grid-based energy
representation” scheme, which enables us to calculate their inter-
action energy with an accuracy corresponding to that of advanced
ab initio post Hartree�Fock methods and a computational cost
comparable to that of force field calculations.24 A comparison of the
MD simulation results obtained using the grid-based energy
representation with those generated using the conventional force
fields (polarizable and nonpolarizable ones) showed that an
accurate estimation of the large binding energy (approximately
20 kcal/mol) was essential to correctly reproduce the experimental
structure of the catalytic core of T1 lipase. In other words, a smaller
interaction energy (∼10 kcal/mol, estimated by the nonpolarizable
force field, AMBER ff9925) caused serious structural disruptions.
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This excluded the possibility of the presence of water in the catalytic
core, since the energy gain of the water�π interaction is∼4 kcal/
mol.26 Moreover, we have proposed the functional roles of the
Na+�Phe16 interaction; i.e., it establishes a remarkably stable core
structure by combining a hydrophobic aromatic ring (Phe16) and
hydrophilic residues (Ser113 and His358), with the latter forming
the catalytic triad. It was also implied that the rigid core structure
formed by the Na+�π interaction may contribute to the large
structural changes from the complexwith ligands to the free formof
the enzyme.

In the present study, to clarify the identity of the electron
density, i.e., water or Na+, we performed additional MD simula-
tions in which a water molecule was, in turn, assigned to the
electron density (all of the MD simulations conducted in this
study are summarized in Table 1). Since our previous study
demonstrated the importance of an accurate description of the
interaction energy,24 in the present study, we also evaluated the
feasibility of the conventional force fields, i.e., ff99 and ff02,27 for
the estimation of the water�π interaction energy and confirmed
the poor accuracy of the force fields. Accordingly, we applied our
grid-based energy representation scheme to conduct the MD
simulation, which included the potential function for the accurate
estimation of the interaction energy. The results of the MD
simulation showed the serious instability of the water�Phe16
complex, leading to the structural disruption of the complex.
These results provide further evidence that Na+, rather than
water, is bound to Phe16 in the active site of T1 lipase.

Figure 1. Crystal structure of the Geobacillus zalihae T1 lipase (PDB
code: 2DSN). A close-up view of the configuration of the catalytic site is
also shown in the right panel (stereo view). In the active site, a spherical
electron density is observed, and the corresponding molecule is co-
ordinated to the side chains of Phe16, Ser113, and His358.

Table 1. Summary of the MD Simulations Conducted in This
Study

identify of the spherical electron density H2O Na+

potential field ff99 ff02 GERa GERa

single-protonated His358 5 ns 5 ns 5 ns 10 nsb

double-protonated His358 5 ns 5 ns 10 ns �c

aThe grid-based energy representation (GER) was exploited. b In our
previous study, a 5 ns MD simulation was performed;24 in the present
study, this MD simulation was extended up to 10 ns to confirm the
structural convergence. cNot performed.

Figure 2. (a) Model structures for water�π interactions, where the oxygen atom of the water is placed on a line perpendicular to the benzene ring and
passing through the center of mass of the benzene ring O. r1 denotes the distance of the oxygen atom from O. O0 is the point where r1 is 3.3 Å (which is
the optimal distance of r1 in the potential curve), and r2 denotes the distance of the oxygen atom from O0 along a line parallel to the benzene ring and
passing throughO0. Energy profiles of the interaction energies of the water and the benzene ring with respect to (b) r1 and (c) r2. The interaction energies
of the water�benzene system obtained by MP2/aug-cc-pvtz and the molecular mechanics calculations using ff99 and ff02 are shown in red, blue, and
light blue, respectively. The interaction energies obtained by ff02, in which the parameters responsible for the polarization are increased 8-fold (purple)
and decreased 0.3-fold (orange) with respect to the original parameter values, to describe the polarizability. The energy potential curves obtained by the
grid-energy representation are shown in green.
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’RESULTS AND DISCUSSION

Evaluation of Force Fields. First, we evaluated the feasibility
of a nonpolarizable force field, ff99, and a polarizable force field,
ff02, for the estimation of the interaction between a water
molecule and an aromatic ring, benzene. For the calculations,
we constructedmodel structures in which a hydrogen atom of the
water was pointed toward the benzene (Figure 2a). The inter-
action that generates the binding force in such a conformation is
referred to as an OH�π interaction, which is a hydrogen bond
where the π electrons of the aromatic ring act as the hydrogen
bond acceptor.23

Then, we calculated the potential curves with respect to the
distance between the oxygen atom of the water and the center of
mass of the benzene, using three methodologies, ff99, ff02, and
MP2/aug-cc-pvtz (Figure 2b). In this study, MP2 was employed
to obtain the reference values; the correction of the MP2 results
to estimate values calculated using the coupled-cluster with
singles, doubles, and perturbative triples (CCSD(T)), as con-
ducted in our previous study,24 would not be required in this case
for the following reason: The water�π interaction is dominated
by a hydrogen bond property that is accurately described by
MP2,26,28,29 whereas the correction is essential for the evaluation
of the π�π interaction, which MP2 significantly overestimates.
In fact, the MP2 results have been used as the reference in other
recent studies.30�32

According to the potential curve calculated using MP2, the
energy minimum is located at 3.3 Å, where the stabilization
energy is 3.11 kcal/mol. On the other hand, the energyminima in

the potential curves calculated using ff99 and ff02 are located at
3.0 Å in both cases, and the minimum energies were found to be
overestimated by 0.71 and 1.08 kcal/mol, respectively. To
consider other configurations, we constructed model structures
in which the oxygen atom was placed on the axis that is parallel to
the aromatic ring (Figure 2a). In the figure, O0 denotes the cross
point of the two axes (r1 is 3.3 Å), and r2 is defined as the distance
between the oxygen atom and O0. With respect to the second
configuration, the conventional force fields overestimated the
minimum energy, as observed in Figure 2c, whereas the
stabilization energies at larger distances (r2 > 1.0 Å) were
underestimated.
In this manner, the conventional force fields are not consistent

with the reference potential curve calculated using MP2/aug-cc-
pvtz. However, we performed the molecular dynamics (MD)
simulations of T1 lipase using those potential fields to evaluate
the effects of the differences in the energy potentials, since this
strategy was informative in our previous study. The initial
structure of the protein was obtained from its crystal structure
(Figure 1), but the Na+ in its active site was replaced with a water
molecule (the oxygen atom of the water was placed at the
coordinates of the Na+).
MD Simulation Using ff99. First, we examined ff99 in a 5 ns

MD simulation. Using the resultant MD trajectory, we calculated
the two-dimensional (2-D) free energy profile with respect to the
distance between the oxygen atom of the water molecule and the
center of mass of the aromatic ring of Phe16, and that between
the oxygen atom and Nε of His358 (Figure 3a). It showed that
the minimum corresponds to a structure that is not observed in

Figure 3. Free energy landscapes obtained by standard MD simulations (5 ns) of T1 lipase using ff99 (a), ff02 (b), and the grid-based energy
representation (c). The vertical axis shows the distance between the oxygen atom of the water molecule (Ow) andNε of His358, and the horizontal axis is
the distance between the oxygen atom and the center of mass of the Phe16 side chain. A cross (+) represents the crystal structure.
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the crystal structure. In particular, the inconsistency of the
water�Nε distance is remarkable, for the following reason: In
the MD simulation, the Nε of His358 is stably hydrogen-bonded
with the hydrogen atom of the hydroxyl group of the Ser113 side
chain (Figure 4a). This hydrogen bond prevents the water from
forming the hydrogen bond with Nε of His358, due to the steric
clash between the hydrogen atoms of the water and the Ser113

side chain, which causes the increased water�Nε distance (the
reasons for the structural changes are further discussed later).
It should be noted here that Asp317 is coordinated to His358

(Figure 1); its pKa value was calculated as 3.85 using
PROPKA 2.0.33 Due to the presence of this aspartate residue,
His358 is considered to be in the singly protonated form, where
theNδ is set to be protonated. This is also supported by the fact that
Nε should be deprotonated for the catalysis, since the enzymatic
reaction would be initiated by the abstraction of the hydrogen
atom of the hydroxyl group from the catalytic Ser113 by theNε of
His358. However, we also examined the effects of the doubly
protonated form of His358 as well as the singly protonated form.
The resultant free energy profile and the representative structures
corresponding to themetastable states of the profile revealed that
the water�π coordination was not maintained in the MD simula-
tion with ff99 (Figure 5a and 6a). This is consistent with the
previous results that a water molecule cannot replace the Na+ in
the active site of T1 lipase.
MD Simulation Using ff02. We next examined the MD

simulations using ff02, where His358 was set to the singly or
doubly protonated form. These simulations revealed that the
experimental configuration is also unstable in the presence of the
water�π interaction, leading to a similar structural disruption to
that of the MD simulations using ff99 (Figures 3b, 4b, 5b, and
6b). Note that this water molecule hydrogen-bonds with the Ser
and His residues (Figure 1); therefore, it is possible that even in
theMD simulations using ff99 and ff02, this water�π interaction
is stabilized through those hydrogen bonds. Moreover, the
interaction energies of ff99 and ff02 are larger than that of
MP2. Nevertheless, this possibility was rejected in the present
study, suggesting that the correct description of the interaction
between the spherical electron density and the aromatic ring of
Phe16 is essential to maintaining the structure of the catalytic site
of T1 lipase.
Previous studies indicated that the contribution of the disper-

sion and electrostatic energies is most important for the descrip-
tion of the water�π interaction.32,34,35 In fact, when the
parameters describing the polarization effect in ff02 are increased,
the potential curve generated by ff02 did not match that of MP2
for r∼ 0, although it could be fitted for r. 0 (Figure 2b). This is
consistent with the results of the previous studies. On the other
hand, when the parameters are decreased, the potential curve
obtained by ff02 converges to that of ff99, as shown in Figure 2b.
Thus, we could not find the parameters that allowed the potential
curve obtained by ff02 to completely match that of MP2;
therefore, ff02 cannot reproduce the MP2 result. In this manner,
the failure of ff02 is derived from an incorrect description of the
dispersion energy. Various attempts to improve such problems
found in the force fields have been reported.6,36�41

Thus, the water�π coordination in T1 lipase is not possible in
the MD simulations using the conventional force fields (the
reasons for the structural changes are further discussed later).

Figure 4. Conformations of the most stable state in Figure 3a (a) and
Figure 3b (b). The crystal structure of the Geobacillus zalihae lipase is
colored green. The green sphere represents the position of Na+ in the
crystal structure. The snapshots of the MD simulations are shown in
atom-specific colors.

Figure 5. Free energy landscapes obtained by standardMD simulations
of T1 lipase, in which the doubly protonated form is assigned to His358,
using ff99 (5 ns) (a), ff02 (5 ns) (b), and the grid-based representation
(10 ns) (c). The vertical axis shows the distance between the oxygen
atom of the water molecule (Ow) and Nε of His358, and the horizontal
axis is the distance between the oxygen atom and the center of mass of
the Phe16 side chain. The cross (+) represents the crystal structure.
Panel (d) shows the free energy profile obtained with the 10 ns MD
simulation where Na+ was assigned to the electron density instead of a
water, using the grid-based representation. In this calculation, the state of
His358 is the single protonated form.

Figure 6. Conformations of the most stable state in Figure 5a (a), Figure 5b (b), and Figure 5c (c). The crystal structure of theGeobacillus zalihae lipase
is colored green, and the snapshots of the MD simulations are shown in atom-specific colors.
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In the present study, we applied our general scheme, which may
be applicable to correctly reproduce any potentials using effective
functions, without detailed analyses of the defects of the potential
terms in the total energy functions, as described below.
MD Simulation Involving the Grid-Based Energy Repre-

sentation for the Na+�π Interaction. As in the case of our
previous study, the structural disruptions could be caused by the
differences in the potential curves provided by ff99 and ff02 from
the correct potential function. Accordingly, we applied our grid-
based energy representation scheme to obtain the effective
potential that reproduces the potential energy curve at the level
of MP2. In Figure 2b and c, the potentials generated by the grid-
based energy representation show that the reference energy
curves (obtained by the MP2) can be reproduced for both
configurations of the water�benzene complex. Then, using the
optimized parameter set, we performed MD simulations of T1
lipase, in which His358 was singly or doubly protonated. The
resultant 2-D free energy profiles showed that the experimental
configuration was not preserved in either case, as in the results
of the MD simulations using the conventional force fields
(Figure 3c, 5c, and 6c).
It should be noted here that, to evaluate the stability of the

conformation involving the doubly protonated His358, we
required 10 ns MD simulations for the structural convergence
(Figure 5c; see Supporting Information in detail). Correspond-
ingly, for the comparison, we also extended the MD simulation
where Na+ is assigned to the spherical electron density of the
catalytic site, up to 10 ns in this study. The resultant free energy
profile is well converged and thus unambiguously shows con-
sistency with the experimental data (Figure 5d). Thus, the
presence of Na+ rather than water is confirmed again.
The structural transitions observed in the present MD simula-

tions can be understood by comparison with our previous results:
In our previous MD simulation involving the grid-based energy
representation for the Na+�Phe16 interaction, both distances
concerning Na+�Nε and Na+�Phe16 were consistent with the
experimental values, thus preserving the experimental conforma-
tion of the catalytic core of T1 lipase.21 This would be accom-
plished by the strong interaction between Na+ and the Nε of
His358. In contrast, in the present MD simulations, the interac-
tion between the water molecule and the Nε of His358 is not as
strong as the Na+�Nε interaction, and so it competes for
interactions with the Ser113 and His358 side chains. Namely,
the weaker interaction between the water and His358 would
cause the disruption, as observed in the present MD simulations
using the ff99 and ff02 force fields. Conversely, this indicates that
strong coordination with the surrounding amino acid residues is
required to maintain the experimental structure of the catalytic
core of T1 lipase, supporting the presence of Na+, rather than
water, in the catalytic site.
Thus, we have concluded that the possible presence of a water

molecule, instead of Na+, in the active site can be ruled out.
Moreover, the results of our previous and present theoretical
studies demonstrated that the core structure of the catalytic site
of T1 lipase in the free state stably exists only in the MD
simulation where Na+ is assigned to the spherical electron
density, using the correct potential fields. This further suggests
that the Na+�Phe interaction is essential for the formation of the
stable core structure of the catalytic site through the formation of
“Na+ bridges”, which establish the packing of the hydrophobic
aromatic ring (Phe16) and the hydrophilic amino acid residues
(Ser113 and His358).24

In the crystallographic data of biological macromolecules,
similar spherical electron densities to that of the Na+�π complex
found in T1 lipase have been widely observed. Therefore, this
may be a general issue in protein science. In the present study, we
have indicated that MD simulation coupled with our scheme is
useful in defining the spherical electron densities, i.e., cation,
water, et cetera.

’CONCLUSION

In the present study, using our grid-based energy representa-
tion, we have confirmed that the core structure of T1 lipase is
established by a Na+�π interaction, rather than a water�π
interaction. In addition to the large enthalpy gain of the Na+�π
interaction, the strong coordination of Na+ andNε of His358 was
also shown to be substantial to preserve the core structure of the
catalytic site. Since the cation�π interactions have been widely
found in biological systems, the present study will be a solid
platform to further investigate crucial roles of cation�π interac-
tions involved also in other biological systems.

The grid-based energy representation scheme can be widely
applied to perform long-time MD simulations in which accurate
interaction energies must be calculated at advanced post-HF
method levels, with reasonable computational costs, thereby
enabling us to understand the dynamic properties and functional
roles of those interactions in biological macromolecules.

’MATERIALS AND METHODS

Grid-Based Energy Representation. The details of the grid-
based energy representation are described in the Supporting
Information.24 The outline of the scheme is as follows. The first
step is to calculate a density distribution function, F(r), for the
grid space defined by the coordinates of a π molecule (in this
work, benzene was used), using a parameter set that regulates the
shape of F(r). The second step is to calculate the electrostatic
energy, using an effective potential that includes F(r) with
respect to several configurations of the water�π complex. The
third step is to calculate the interaction energy between the water
and the π molecule for each configuration of the complex using
the total energy function, in which the original electrostatic
energy term is replaced with the F-containing energy term.
The last step is to evaluate the obtained interaction energy values
by calculating their deviations from the energy values obtained
from higher-level ab initio calculations performed beforehand.
For the MD simulations using this scheme, we employed the
parameter set that provided the lowest value of the deviation. The
formulations of the functions used in the first, second, and third
steps correspond to eqs 1, 2, and 5 in the Supporting Informa-
tion, respectively.
Quantum Mechanical Calculations. All ab initio molecular

orbital calculations of the water�benzene system were per-
formed using Gaussian 03.42 Geometry optimization for the
isolated benzene was performed at the B3LYP43,44/6-311+
G(d,p) level, and the optimized structure was used to construct
water�benzene complex structures. For single point calculations
of those structures to obtain the reference potential energy curve,
we employed the Møller�Plesset second order perturbation
(MP2) method45 with an aug-cc-pvtz basis set.46 The basis set
superposition error (BSSE) was corrected by the counterpoise
method.
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Molecular Dynamics Calculations. All calculations were
performed using the AMBER 9 program package.47 The MD
simulation of the solvated system was performed under a
constant pressure of 1.013 � 105 Pa, with a periodic boundary
condition at 300 K. Temperature and pressure were controlled
by the Berendsen algorithm.48 The SHAKE algorithm was used
to treat the bonds involving hydrogen,49 and the time step for
integration was set to 1 fs. Electrostatic interactions were
calculated by the particle mesh Ewald (PME) method,50 with a
dielectric constant of 1.0. A cutoff of 12 Å was used to calculate
the direct space sum for PME.
Initial coordinates of the protein were obtained from the

crystal structure of T1 lipase (Protein Data Bank accession code
2DSN21), but the Na+ in the active site was replaced with a water
molecule. First, hydrogen atoms were added to the crystal
structure, using the LEAP module implemented in AMBER 9.
The positions of the added hydrogen atoms were optimized by
the steepest descent method, and then the optimization was
performed for all protein atoms. The protein was subsequently
immersed in a box of water molecules, consisting of 48 561 atoms
modeled by TIP3P.51 TwoNa+ ions were added to neutralize the
system. Thus, the total atom number of the solvated protein
system was 54 538. To relax the configuration of the solvent
water molecules, the MD simulation was performed for 10 ps at
300 K, where a harmonic constraint was applied to all protein and
Na+ atoms with a force constant of 500 kcal mol�1 Å�2. With
respect to the density distribution function, the optimized values
of ax, ay, and az for the carbon atoms were 0.198, 0.198, and 0.337
Å, respectively, and those for the hydrogen atoms were 0.225,
0.225, and 0.312 Å, respectively. The value of R in the cutoff
function was set to 1.0� 10�5. A cube, with its center located on
the center of mass of the aromatic ring, was generated; the
volume of the cube was 103 Å3, and the grid-point space inside
the cube was set to 0.2 Å. Accordingly, the number of grid points
involved in the cube was 125 000.

’ASSOCIATED CONTENT

bS Supporting Information. Further descriptions concern-
ing the grid-based energy representation and the examination of
the doubly protonated form ofHis358 are available. This material
is available free of charge via the Internet at http://pubs.acs.org.
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ABSTRACT: We report a systematic analysis of the intermolecular interactions of cationic ethidium intercalated into a UA/AU
step of RNA for a single conformation based on crystallographic coordinates. Interaction energies at the MP2/6-31G** level were
partitioned into electrostatic, exchange, delocalization, and correlation components. Various pairwise interaction models built from
chemically intuitive fragments reproduce within a few percent values obtained when treating the intercalation site as a whole. Gas
phase results are very sensitive to the charge state of the two phosphate groups, with the electrostatic term nearly tripling when the
counterions are removed. But this is largely compensated by solvation, an effect represented here within the polarizable continuum
model. In a few cases, more diffuse and larger basis sets as well as QCISD(T) corrections were applied in an effort to estimate
plausible ethidium-nucleobase electron correlation effects.

1. INTRODUCTION

Since the earliest experimental reports by Lerman andWaring,1,2

intercalation has been defined by how it affects double helix
structure: nucleic acid strands extend and unwind in order to
accommodate aromatic ligands between base pairs. Alongside
other modes by which small molecules reversibly attach to
nucleic acids, such as groove binding and peripheral electrostatic
interactions,3 intercalation is characterized by the parallel align-
ment of a small aromatic between nucleic acid base pairs. And
while disrupting cellular metabolism is their most widely utilized
property, the potency of intercalating ligands is now attributed to
the inhibition of DNA-binding enzymes such as topoisomerases
rather than intercalative binding itself.4 Nonetheless, the specific
type of stacking interaction involved makes these ligands inter-
esting in other ways, for example, as fluorescent probes5 and
switchable ligands.6 The trademark binding mode of intercala-
tors is even hypothesized to be rooted in an evolutionary role,
such as promoting oligonucleotide polymerization during the
prebiotic RNA world.7

It is clear that in all of these areas the interactions of intercalating
molecules with the nearest fragments of their hosts are important.
What is still not clear today, however, is how these interactions
relate to the process of inserting a ligand into a nucleic acid strand,
the molecular basis of which is just starting to be studied.8

Thermodynamic data concerning intercalation are quite abundant,
and generally speaking the stabilizing effect of desolvation and
intermolecular interactions balance unfavorable entropic contribu-
tions to intercalation arising from conformational changes in the

nucleic acid chain and from lost degrees of freedom.9�11 Such
compensation can be used to differentiate between intercalation
and groove binding, even if the binding energy is similar.12

Unfortunately, this compensation also complicates the interpreta-
tion of experimental data, since the measured binding free energy
is several times smaller than any of the single contributions it is
typically divided into.

Here, we turn to the already mentioned local intermolecular
interactions, denoted by ΔGmol following Graves and Valea,10

interactions which in line with Lerman’s original interpretation
include π�π aromatic stacking between the intercalator’s chro-
mophore and nearest nucleic acid bases. Although various
computational methods have been applied to study intercalation
complexes already in the previous century,13�17 works that probe
their quantum chemical nature have appeared only in the past
decade. This is due to the sizes of the systems involved and also
due to the recognized importance of dispersion forces (interactions
between instantaneous electron density moments), prohibiting the
use of standard density functional theory.

Probably the first to venture in the direction of ab initio
chemical calculations were Bondarev et al.,18 who calculated second
order Mo̷ ller�Plesset (MP2) interaction energies separately
between the intercalator amiloride and the four DNA bases
using the 6-31++G(d,p) basis set. Soon afterward, �Reha et al.19

followed with a similar, more extensive investigation of four

Received: February 18, 2011
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intercalators, among them ethidium. The main conclusion of
these first reports was that in electronic structure calculations of
this kind it is indispensable to account for dispersion effects,
as they constitute a substantial part of the interaction energy
similarly to conventional stacks of nucleic acid bases.20 More
recently, Kuba�r et al.21 have combined molecular dynamics with
quantum chemical calculations to estimate the various free
energy terms involved in, among other things, a variant of the
system studied here (their system comprised ethidium inter-
calated into a TA/AT step of DNA). They achieved a net binding
free energy of �4.5 kcal/mol, close to the corresponding
experimental value of �7 kcal/mol, with a stabilization energy
component of �70 kcal/mol. This disparity of an order of
magnitude again underscores the fact that various free energy
contributions are compensated, and that intermolecular stabili-
zation effectively plays a decisive role.

MoreMP2 calculations have followed, also by Langner et al.,22

for the same ethidium�UA/AU complex studied here, wherein
they focused on the role of the first-order electrostatic compo-
nent of the interaction energy, and on the horizontal alignment of
the intercalator between base pairs. Dra�cinsky and Casta~no23

performed a similar study earlier, of the interaction energy
between ellipticine and base pairs for various distances and
twists. Single point energies have also been published by Xiao
andCushman24 for camptothecin in an attempt to correlate them
with experimental site selectivity in ternary cleavage complexes.
Due to problems with the proper representation of dispersion
interactions by the standard exchange-correlation functionals,
density functional theory (DFT) has been adopted relatively
late.25 Time-dependent DFT and Car�Parrinello dynamics have
also been employed, for example, by Fantacci et al.,26 in order to
characterize the influence of base pairs on the excited states of an
intercalated ruthenium compound.

The MP2 method, despite being the method of choice for
sizable systems that include π�π contacts, is also problematic as
far as dispersion forces are concerned. It has been pointed out
that it overestimates their magnitude significantly compared to
CCSD(T) values,27 and recently some effort has gone into
correcting for this. In the context of nucleic acid intercalation,
Hill and Platts28 have applied local correlation methods and
density fitting for several intercalators together with four sur-
rounding nucleobases.

Another problem concerning π�π stacking interactions is
that the dispersion energy saturates slowly with growing Gauss-
ian basis sets. A practical measure applied in many previous
studies has been tomake polarization functions of small basis sets
more diffuse by decreasing their exponents. For example, de-
creasing the exponent of d functions on heavy atoms from 0.8 to
0.25 in the 6-31G* basis set brings interaction energies for
stacked nucleic acid bases closer to results obtained in a more
saturated basis sets,29,30 and this protocol has already been used
for studying intercalation complexes.19,21,23

The focus in almost all of these studies has been on interac-
tions between intercalators and nucleobases. While little has
been written about the remaining parts of the nucleic acid strand
and the physical nature of their interactions with intercalators,
they must also play a role and lately have been garnering
increased interest. For example, Horowitz et al.31 have been
the first to compare the NMR structures of intercalated RNA
linked at its 20,50 ends and previously known 30,50-linked RNA
intercalation geometries. They showed that while a modified
backbone conformation does not change the characteristics of

intercalation binding (the unwinding angle and helical rise), it
does influence the enthalpic part of the free binding energy. This
result hints that intermolecular interactions within the intercala-
tion site are affected by changes in nucleic acid backbone
structure, and certainly also by the surroundings.

When they are included in ab initio calculations, the phosphate
groups are normally capped with protons to simulate the
proximity of counterions.21 Meanwhile, it is known that the
behavior of counterions around nucleic acids is not trivial, with
monovalent cations being highly diffusive32 and divalent ions
binding more tightly.33 Definitely in the native, dynamic envir-
onment of nucleic acids one would expect significant variations in
the hydration shell and counterion positions and therefore also in
the electron distribution around phosphate groups.

Geometry fluctuations are definitely also important for non-
covalent interactions in intercalator binding sites, a point demon-
strated by Svozil et al.34 for dinucleotides in the gas phase. They
find significant variability in stacking interaction energies along
molecular dynamics trajectories, and the same may be true for
intercalation complexes such as the one studied here. Molecular
dynamics calculations suggest35 that nucleic acid configurational
entropy can change considerably upon intercalation, affecting the
phosphate groups the most and depending strongly on the host
sequence. It would be best to follow these examples and take
multiple MD snapshots as input for subsequent interaction
energy calculations, but such a systematic treatment is beyond
the reach of current computational resources.

We take a first step by considering the various charge states of the
phosphate groups. To this end, single point gas phase calculations
were performed for ethidium intercalated into a AU/UA base pair
step of RNA, in which the phosphate groups were protonated
(capped with protons), quenched with counterions, hydrated with
single water molecules, or simply left anionic. This selection of
charge states gives an idea of the range of possible interaction
energies (neglecting conformation effects). Further polarizable
continuum calculations roughly correct these values for the more
physiologically relevant setting of water solvent.

Another aim here is to probe the validity of dividing inter-
calation sites into nucleobases and other fragments within the
minimal model proposed by Kuba�r et al.,21 which consists of the
intercalator, four nearest nucleosides, and two phosphate groups
between them. We also compare several theoretical approxima-
tions and interaction energy components, calculated between
ethidium and the RNA fragment as a whole, with selected pairwise
interaction schemes. Besides additivity and polarization effects, in
this way, we gain information about the relative importance and
independence of the molecular fragments within the intercalation
site. Finally, a reasonable magnitude for the dispersion interaction
is sought by evaluating QCISD(T) energies (quadratic configura-
tion interaction including unlinked triples)36 and using larger basis
sets for themost sensitive part of the system, i.e., theπ�π stacking
interaction of ethidium with nucleobases.

2. COMPUTATIONAL METHODS

Despite recent advances and increasingly accurate quantum
chemical descriptions of unprecedentedly large molecules,37,38

including aromatic stacking complexes,30,39�44 almost all sys-
tems relevant to biological processes are still simply too large to
be treated en masse from first principles routinely. Studies of
intercalated nucleic acids have been typically limited to two or
four nearby nucleobases, and interactions are usually analyzed
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pairwise between the intercalator and each base separately. This
seemingly straightforward way to proceed, that is, to divide a
system into smaller parts that are as chemically independent as
possible, is also the conceptual starting point for many fragmen-
tation strategies such as effective fragment potentials,44 local
correlation approaches,45 the fragment molecular orbital (FMO)
method,46 and density fitting methods.28,47,48

As already mentioned, here, we revisit the ethidium cation
intercalated between AU/UA base pairs in a conformation
obtained from the crystallography literature.49 The system will
be referred to shortly as Eth(+1)�UA/AU throughout this report.
In a previous study of the same complex,22 the ethidium cation
was fragmented into its chromophore, ring, and side chain, and
interactions with only the four nearest nucleobases were taken
into account in a pairwise fashion—in the present work, such an
approach defines one of the models used, namely, A4 (parts). In
the previous report, interactions at the MP2 level between the
ethidium chromophore and nearest four bases were shown to be
sufficient in order to reproduce with crystallographic accuracy
the alignment of the intercalator in the intercalation plane. This
was repeated there, albeit with limited success, using electrostatic
interactions based on atomic multipole moments.

In order to be consistent with previous results, the 6-31G**
basis set was also used in this study, unless stated otherwise. For
all of the models considered, the interaction energy between
ethidium and the intercalation site was decomposed into several
terms with generally understood physical meaning according to a
hybrid variation�perturbation scheme,50 and all calculations
were done consistently in the dimer-centered basis set following
the prescription of Boys and Bernardi.51

In a few cases, higher order correlation effects were evaluated
by employing additional QCISD(T) calculations and larger
basis sets. Only results for the aug-cc-pVDZ basis set (for all
methods) are presented here, but several additional MP2
results can be found in the Supporting Information. It is
appropriate to comment on our choice of the higher level
method (QCI)—the major reason being that the program
used52 is more efficient for QCISD than CCSD. On the other
hand, it has been demonstrated that the quadratic corrections
satisfactorily account for size-consistency and that there is little
difference between the results of QCISD and CCSD, provided
that the wave function is dominated by a single reference
configuration.53 Janowski and Pulay have recently confirmed
this in the case of a qualitatively similar system (the benzene
dimer), for which the intermolecular binding energies calcu-
lated at the QCISD(T) level are almost identical with results
obtained by means of CCSD(T).39

In the following two subsections, we provide a short introduc-
tion to the interaction energy decomposition approach used and
describe the various interaction models to which it was applied.
2.1. Hybrid Variation�Perturbation Interaction Energy

Analysis. Theoretical details for this type of analysis and its
applications published to date can be found in previous articles
and in the references cited therein.22,50,54 Essentially, a selection
of interaction terms is obtained that is analogous to the ones
found in state-of-the-art symmetry-adapted perturbation theory
(SAPT).55 Combined with an integral direct version of the SCF
algorithm56 and new implementation of parallelization within
GAMESS (US),57 this hybrid solution allows much larger
problems to be tackled than was previously possible.
In its simplest form, a second-order Møller�Plesset (MP2)

interaction energy calculation for an interacting dimer is broken

down in the following way:

ΔEMP2 ¼ ΔEð1Þel +ΔEð1Þex +ΔEðRÞdel +ΔEcorr ð1Þ
where these four components are usually interpreted as corre-
sponding to certain quantummechanical effects in the electronic
wave function of the dimer, relative to the wave functions of
isolated monomers in the dimer-centered basis set. These
contributions are as follows:
ΔEel

(1): first-order electrostatic interaction between monomer
Hartree�Fock densities, unperturbed by their mutual influence
ΔEex

(1): the associated exchange repulsion attributed to the Pauli
exclusion principle
ΔEdel

(R): charge delocalization, which includes the induction and
exchange-induction effects that complement the Hartree�Fock
interaction energy
ΔEcorr: dynamic electron correlation at the MP2 level (in this
case), which includes uncoupled dispersion effects and intra-
molecular corrections
Summing the four terms in eq 1 successively from left to right,

one obtains a series of interaction energies at different levels,
rising in theoretical accuracy as well as computational cost:

ΔEð1Þel < Eð1ÞHL < ERHF < EMP2 ð2Þ
where ΔEHL

(1) = ΔEel
(1) + ΔEex

(1) is usually called the Heitler�
London energy and ΔERHF is the interaction at the (restricted)
Hartree�Fock level.
This analysis can be readily generalized tomany-body systems,

which leads to a partitioning of the various interaction energy
terms into two-, three-, ..., n-body contributions, aside from the
electrostatic term ΔEel

(1) which is pairwise additive (see G�ora
et al.54 for a detailed discussion and application of many-body
calculations). Since many-body effects inherently include inter-
actions between all subsets (or fragments) of a system, in the
present case, they include interactions between nucleobases as
well as dimers containing the intercalator. To avoid confusion,
we will use Δε when referring to the sum of all possible many-
body interaction contributions and reserve ΔE for interactions
involving only the intercalator.
Since several of the cases investigated in this study involve

charged species, interaction energies estimated in the gas phase
will be quite different from those in a polar solvent such as water.
We attempt to estimate the magnitude of such a solvent effect
using the polarizable continuum model (PCM),58 which should
adequately render the electrostatic shielding of the charged
phosphate groups by a polarizable environment.
To this end, the hybrid variation�perturbation scheme out-

lined above can be generalized to complexes in an external
potential and can readily be used to study intermolecular
interactions in a PCM-type solvent. The particulars of the
methodology can be found in a recent article by G�ora et al.59

and references cited therein. In short, the solute molecules are
placed in a cavity inside an isotropic dielectric medium, repre-
sented by apparent charges on a solvent-accessible surface. These
charges give rise to an external potential that modifies the one-
electron Hamiltonians of the interacting species and their com-
plex. Consequently, their wave functions and the resulting
intermolecular interactions also change, and the final value is
estimated in a self-consistent procedure. In passing to the
solvent, however, the basic energetic quantity is changed58

and an additional component ΔΔG(AB) arises. This additional
term represents indirect solvent-mediated interactions, or the
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differential free energy of solvation:

ΔΔGðABÞ ¼ ΔGsolðABÞ �ΔGsolðAÞ �ΔGsolðBÞ ð3Þ
where the terms on the right-hand side are the free energies of
solvation of the complex and its constituents.
The last two quantities in eq 3 can be evaluated either in the

cavity formed by a dimer or in their respective monomeric
cavities. Using a dimeric cavity to evaluate ΔGsol(A) and ΔGsol(B)
is in the spirit of the definition of the interaction energy,59 and the
corresponding differential free energy of solvation will therefore
be referred to as ΔΔGint; the value obtained using monomeric
cavities will be called ΔΔGstab since conceptually it involves
reorganization of the solvent due to dissociation. We also reserve
the term internal energy for the expectation value of the gas-phase
Hamiltonian using the solvent-modified wave function, following
the usual PCM definition. All of the PCM results reported were
estimated using the integral equation formalism version of the
PCM approach (IEF-PCM), as implemented in GAMESS (US),
including only electrostatic terms and assuming the standard
parameters of a water solvent.
2.2. Interaction Models Used. All of the selected models are

subsets of the intercalation site, which is based on an X-ray
crystallographic geometry published by Jain and Sobell.49 The
crystallographic coordinates were treated here in the same way as
in the previous study of this ethidium�RNA system by Langner
et al.22 In short, hydrogen atoms were added with the Reduce
code,60 and their positions were optimized in GAMESS (US)57

using a PM3model Hamiltonian (non-hydrogen atoms were kept
frozen). Presently, we reoptimized the positions of the hydrogen
atoms using the UFF force field61 as well as DFT/B3LYP
calculations. In both cases, one or several external hydrogen atoms
on the RNA backbone changed their orientations, whereas no
hydrogen atoms with close contacts moved more than 0.1 Å. This
did not influence the interaction energies we are interested in by
more than 0.2 kcal/mol (data not shown), and we thus retained
the PM3 coordinates of hydrogen atoms for consistency.
The systemwas divided into fragments in several ways, most of

which are illustrated by the schematic representations in Figure 1.

Names beginning with A were limited to the ethidium molecule
and four neighboring base pairs. Model AC4 is the smaller,
previously used version,22 which contains only the ethidium
chromophore. The A4 variant labeled additionally parts con-
siders the entire ethidiummolecule but divides it into three parts—
its chromophore, side chain, and ring. The versions with B in
their names include the sugars and phosphate groups connecting
the base pairs, whereas the intermediate model Bns disregards
the phosphate groups and represents the RNA fragment only by
nucleosides (adenosine or uridine).
There is an additional number (Nint) in each name (e.g., 1 or 4

in AC1 or AC4) that denotes the actual number of RNA�
intercalator dimers evaluated when estimating the interaction
energy ΔE in a pairwise fashion. In Figure 1, the subsystems in
each case are indicated by different colors. For clarity, we also
append this number to the name of the largest models, so that A1
stands for the case where the interaction energy of ethidium was
evaluated with all four nucleobases in a single calculation (one
dimer).
Whenever the number of interacting dimers Nint was more

than one, the interactions of the intercalator with each RNA
fragment were summed in a pairwise fashion. For instance, in the
case of A2, the total pair interaction energy consists of two parts,
corresponding to uncoupled contributions from the interaction
of ethidium with two base pairs:

ΔEA2 ¼ ΔEEth 3 3 3A=U +ΔEEth 3 3 3U=A ð4Þ

where ΔE can be substituted by the interaction energy at any
chosen level of theory, or by any term from eq 2.
The interaction energies on the right-hand side of eq 4 are

estimated in different dimer-centered basis sets, and this rule was
adopted for all of the models used. Therefore, the pairwise
interaction energies of A2 and A4 differ from that of model A1
not only due to neglect of many-body interactions but also by
virtue of basis set extension effects. The same is true when
comparing B1 to B2 or B4 or to any of the other variants.
In contrast to the A-type models, differences can also arise due

to capping effects when phosphate groups are included. For

Figure 1. Schematic drawings of the models considered for the Eth(+1)�UA/AU intercalation complex. Each color represents a piece of separately
interacting RNA fragment around the binding site. The total interaction was constructed as the sum of all pairwise interactions among these pieces with
the ethidium cation (see text for details).
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example, in the B4- and B6-type models, four covalent bonds are
severed, between each nucleobase and the sugar residue it is
attached to, and the cut bonds are hydrogenated with protons.
This means that in these two cases the intercalator effectively
interacts with four extra nuclei and electrons compared to B1. In
B4.3 and B4.5 on the other hand, two bonds were cut, between
the phosphate groups and sugar residues at the 30 (closer to
uracil) and 50 (closer to adenine) ends, respectively. Therefore, in
B4.3, both phosphate groups were in the same monomer as
adenosines, while in model B4.5, they were attached to uridines.
In all of these cases where bonds were cut, the positions of
the capping hydrogen atoms were optimized using the UFF
force field.
Furthermore, the phosphate groups in the B class of interac-

tion models were considered in several variants with respect to
their charge state, specified by additional labels and illustrated in
Figure 2. In models labeled as neutral (H), the anionic phosphate
groups were neutralized by attaching protons to the most anionic
oxygen, as has been practiced in the literature.21 Variants
quenched with counterions were also prepared, in which the
positions of Na+ and K+ were optimized near each phosphate
group—these are labeled neutral (Na) and neutral (K). In the
interaction models labeled charged �2, the charge on the RNA
fragment was left entirely unbalanced, and charged �2 (H2O)
indicates that both anionic groups were hydrated with single
water molecules (one per phosphate group). The position of the
additional proton in the neutral (H) variant was optimized using
the UFF force field, and counterions and water molecule posi-
tions were optimized at the DFT/B3LYP level in the vicinity of
the relevant RNA backbone fragment, which was kept fixed.

3. RESULTS AND DISCUSSION

3.1. Pair-Wise Models. In all of the models tested (AC, A,
Bns, B, and their variants), dividing the RNA fragment into
nucleobases and backbone strands or into nucleotides is justified
from the energetic point of view (Table 1). For the neutral
models, partitioning of the system in this way changes the total
interaction by no more than 2%. In particular, for the smallest
AC-type models, the difference between the sum of pairwise
interactions (the ethidium chromophore with each nucleobase
separately, AC4) and the interaction calculated with all four
nucleobases at once (AC1) was 0.4 kcal/mol. For the model
including the ethidium side chain and ring (A), the analogous
difference between A4 and A1 was only 0.2 kcal/mol. Such small
differences indicate that, while the properties of adenine�uracil
base pairs may be significantly changed from that of single
nucleobases, this does not noticeably influence their interactions
with ethidium.
The largest error associated with a pairwise approximation of

the interaction energy was found in the case of the charged
version (B 3 charged �2), around 8 kcal/mol or 6% for B4.5
compared to B1. This relatively large difference is understand-
able, since the delocalization of unbalanced charge is hindered
more strongly when fragmentation occurs near the phosphate
groups. Separating the two strands (as in B2) already increases
the interaction by almost 5 kcal/mol.
All these conclusions hold for both the total interaction energy

at the MP2 level as well as the particular components into which
it is divided, although the electrostatic partΔEel

(1) seems to be the
most affected by fragmentation. The good performance of such a
pairwise approximation provoked us to calculate the nonadditive

contributions to the interaction energy at the Hartree�Fock
level and its components for the models AC and A (containing
ethidium or its chromophore and four nucleobases) as well as for
selected B variants (ethidium with two dinucleotides). Since in

Figure 2. The five phosphate group variants considered in this work, in
the order of increasing interaction energy (from top to bottom) for the
intercalated ethidium cation in the gas phase (according to Table 1).
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these cases there is no capping or overlap between fragments, the
interaction energy can be expressed as a sum of pairwise and
nonadditive components evaluated consistently in the basis set of
the entire system. The results of these calculations (Table 2)
show that all of the nonadditive terms are virtually negligible and
that the observed consistency of the full and fragmented models
in Table 1 is in fact due to the small magnitude of these effects
and not to a fortuitous cancellation of errors. The nonadditiv-
ities are also small in the case of B-type models, in which the
charged phosphate groups are either compensated by coun-
terions or hydrated. Only in the latter case, the nonadditive
polarization effects are larger, since hydration does not quench
the excess charge as effectively as compensation by protons or
counterions. And in this case, the pairwise approximation
overestimates the extent of delocalization effects by approxi-
mately 12%, while for the other studied systems, this error is
between 2% and 5%.
It needs to be stressed that the nonadditivities discussed above

include interactions between all nucleobases (or strands) along-
side ethidium�nucleobase (or strand) interactions and thus are
not directly comparable to the primary results of this work, which
include only the latter. To illustrate this point explicitly, consider
ΔERHF in the AC-type models, that is, the energy obtained by
bringing the intercalator from infinity into its position between
the base pairs, assuming there are no relaxation or deformation
effects. On the other hand, ΔεRHF is the energy needed to
simultaneously dissociate all five molecules of the intercalation
site. Nonetheless, the nonadditivities that exist inΔεRHF (Δ

3εex
(1),

Δ3εdel
(R), and higher order terms) are inherent also toΔERHF, so it

is worthwhile to show that they are small. Our goal here,
however, is not to provide precise values but rather to confirm
that these effects are in fact small, since this in turn confirms that
the effects of nucleobase polarization are similarly small.

Table 1. Components of the Interaction Energy for the Eth(+1)�UA/AU Intercalation Complex in the Gas Phase Following eq 1
in the Texta

Nint NAO ΔEel
(1) ΔEex

(1) ΔEdel
(R) ΔEcorr ΔEMP2

model AC1 1 878 �24.8 31.8 �4.8 �33.4 �31.3

model AC2 2 615 �25.3 32.0 �4.7 �33.5 �31.5

model AC4 4 475 �26.0 32.3 �4.7 �33.3 �31.7

model A1 1 1030 �28.6 40.2 �6.1 �39.7 �34.3

model A2 2 733 �28.9 40.2 �6.0 �39.4 �34.2

model A4 4 601 �29.8 40.7 �6.2 �39.2 �34.5

model A4 (parts) 12 475 �30.1 41.6 �6.4 �39.6 �34.5

model Bns 4 753 �35.7 51.7 �10.6 �51.9 �46.6

model B1 3 neutral (H) 1 1776 �41.9 54.9 �10.9 �54.7 �52.6

model B2 3 neutral (H) 2 1106 �43.0 55.4 �11.1 �54.4 �53.1

model B4 3 neutral (H) 4 829 �42.6 55.7 �11.1 �54.7 �52.7

model B6 3 neutral (H) 6 829 �43.5 56.2 �11.3 �54.4 �52.9

model B4.3 3 neutral (H) 4 799 �43.5 56.7 �12.1 �54.7 �53.6

model B4.5 3 neutral (H) 4 832 �40.3 46.2 �10.5 �49.4 �54.0

model B1 3 neutral (Na) 1 1802 �50.7 55.1 �10.9 �55.0 �61.5

model B1 3 neutral (K) 1 1830 �52.7 55.1 �10.9 �55.1 �63.6

model B1 3 charged �2 (H2O) 1 1814 �117.1 55.2 �11.0 �56.4 �129.3

model B1 3 charged �2 1 1766 �121.1 55.2 �11.1 �56.5 �133.5

model B2 3 charged �2 2 1101 �123.5 56.0 �13.9 �56.6 �138.0

model B4 3 charged �2 4 824 �122.5 56.5 �15.8 �57.1 �138.9

model B6 3 charged �2 6 824 �123.3 57.0 �16.0 �56.8 �139.2

model B4.3 3 charged �2 4 794 �126.0 56.7 �15.2 �57.0 �141.6

model B4.5 3 charged �2 4 827 �120.5 46.5 �15.5 �51.8 �141.2
aThe symbols in the left column correspond to various molecular interaction models as illustrated in Figure 1 and described in the text. The columnNint

contains the number of pair-wise calculations comprising the interaction, andNAO denotes themaximumnumber of atomic orbitals used in any pair-wise
calculation within a particular model. All energies were obtained using the 6-31G** basis set, and are given in kcal/mol.

Table 2. Many-Body Partitioning of the Total Interaction
Energy for the Eth(+1)-UA/AU Intercalation Complexa

Δεel
(1) Δ2εex

(1) Δ3εex
(1) Δ2εdel

(R) Δ3εdel
(R) ΔεRHF

model AC �90.6 108.0 0.0 �32.4 0.8 �14.2

model AC/aug-cc-pVDZ �87.5 109.1 0.0 �35.2 1.3 �12.5

model A �94.5 116.6 �0.2 �33.9 1.1 �10.9

model B 3 neutral (Na) �117.1 132.1 �0.2 �38.9 1.7 �22.4

model B 3 neutral (K) �119.0 132.2 �0.2 �39.0 1.8 �24.2

model B 3 charged
�2 (H2O)

�161.8 134.1 �0.2 �42.0 4.8 �65.1

aΔn, where n = 2, 3, 4+, denotes two-, three- and higher-order many-
body effects, respectively. In contrast toΔERHF and other values given in
Table 1, these interaction energies include not only ethidium�nucleobase
(or ethidium�strand) interactions but also nucleobase�nucleobase or
strand�strand interactions; hence, the two are not directly comparable. In
the B-type models, counterions (or water molecules) together with the
corresponding strands were treated as single monomers. In all cases,
energies are in kcal/mol, and four-body and higher contributions, namely,
Δ(4+)εex

(1) and Δ(4+)εdel
(R), were insignificantly small and are therefore

omitted here. Unless otherwise noted, all results were obtained using
the 6-31G** basis set.
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It is known that in order to accurately evaluate many-body
effects beyond the Hartree�Fock level correlated methods higher
than MP2 need to be employed. This point has been recently
demonstrated for a uracil tetramer,62 although the magnitude of
these effects remains a fraction of the total interaction energy. This
may be attributed to an intrinsically local nature of electron
correlation effects, and therefore we expect similar magnitudes
for the systems studied here. Furthermore, Ghosh et al.44 have
demonstrated that for oligomers of nucleic acid bases pairwise
interactions between only nearest neighbors are a sufficient
approximation. Combined with our results, this opens a potential
efficient route for calculations of intercalators bound to entire
nucleic acid strands.
Recently, Hill and Platts reported similar considerations for

three intercalators, ethidium being among them.28 They com-
pared interaction energies calculated for the intercalator between
two base pairs separately and for the entire base pair step, which
respectively correspond to A2 and A1 in our case. Interestingly,
they also found only small differences between the two for
ethidium, although in their case, the molecule was intercalated
in the AT/AT step and slightly different methods and basis
sets were used. They reported larger deviations in the case of
daunomycin situated between GC/GC base pairs, namely,
around +5 kcal/mol or 15% of the interaction energy with both
base pairs. Therefore, the question remains whether these
deviations originate from different properties of GC base pairs
compared to AT or AU, or rather from differences between the
chromophores of these intercalators. In any case, the accuracy of
this type of fragmentation will depend heavily on the molecular
details and cannot be recommended for all scenarios.
3.2. Electron Correlation Corrections. It is well established

that the MP2 method overestimates the dispersion part of
stacking interaction energies, due to missing response effects,27

and it is now quite common to correct for this. [In general,
perturbative corrections are doomed to fail for conductors where
the HOMO�LUMO gap goes to zero and energy denominators
accordingly diverge. This effect is partially responsible for the
deteriorating quality of MP2 results as the sizes of aromatic
systems increase and orbitals become more delocalized.] Here,
we perform additional QCISD(T) calculations for the smallest,
nonfragmented (AC1) and fragmented (AC4) models in order
to assess the extent of these effects (Table 3). A correction of
around 9 kcal/mol is obtained (about 30% of both ΔEcorr and
ΔEMP2 for models AC and A). Surprisingly, the contribution of
triple excitations is relatively minor compared to polycyclic
aromatic hydrocarbons such as the recently studied coronene
dimer,43 although this difference might be caused by the limited
basis set used here. Another reason might be the fact that that the
system under study consists of separate molecules, smaller than
coronene. In any case, the description provided by MP2 is quite
accurate here, closer in quality to the benzene dimer and other
small aromatic systems. Although the largest model studied here
(AC1) is not small, the π�π stacking interaction of the ethidium
cation decomposes easily into smaller, pairwise components
between the intercalator and separate nucleobases.
On the other hand, dispersion interactions are also quite

difficult to saturate with respect to the basis set,30,38 and in our
case, an additional �17 kcal/mol are added to the MP2 inter-
action energy for model AC1 when 6-31G** is replaced with aug-
cc-pVDZ (Table 3). Combined with the 9 kcal/mol correction
discussed above (connected to the overestimation of dispersion
by MP2 that is relatively unaffected by basis set extension), this

gives an overall correction of about �8 kcal/mol. Since these
effects are essentially local in nature, we shall assume that this
correction is also applicable to B-type models. This gives a
corrected gas phase interaction energy of roughly �61 kcal/mol
for modelB 3 neutral (H) and�142 kcal/mol forB 3 charged�2 .
For comparison, Kuba�r et al.21 also reported a correlated (RI-MP2)
interaction energy of�70 kcal/mol for ethidiumbetween anAT/TA
step in a system corresponding to the present B 3 neutral (H). We
also tested the modified basis set 6-31G** (d = 0.25), where d
functions were made more diffuse by lowering their exponents
from 0.8 to 0.25, as well as the smaller basis set 6-31G* (d = 0.25)
that is more widespread (see the Supporting Information), and
both of these produced correlation energies close to the aug-cc-
pVDZ basis set. Although electron correlation effects are domi-
nant and in fact are the origin of stabilization in the case of the
smaller neutral models, where ΔERHF is repulsive, it is the electro-
static component that differentiates between different charge states
of the phosphate groups in the gas phase. An analogous observation
has been made for 16 stacked DNA bases,63 where relative
stabilities correlate more strongly with the electrostatic term than
with the dominant dispersion component.
3.3. Phosphate Group Charge and Solvation Effects. As

already mentioned, several variants of the extended model B
were considered. In the first case, neutral (H), the anionic
phosphate groups were neutralized by protonation. Quenching
by adding one of two counterions (Na+ or K+) to each phosphate
group was designated as neutral (Na) and neutral (K). The
charged�2model on the other hand leaves the phosphate groups
charged or hydrated by a single water molecule. In order to
consider the relevance of these different situations, one should
keep in mind the significant fluctuations an intercalation site and
its surroundings may undergo in solution, and that it has been
shown that the movement of counterions is diffusive around
DNA.32,33 Therefore, the quenching in models B (Na+) and B
(K+) is at best a temporary configuration. At times when no
counterion is present in the immediate vicinity of a phosphate
group, it will simply be hydrated.
Our results show that monohydration damps the interaction

compared to bare charged phosphate groups only slightly (about +5
kcal/mol). Hydration with further water molecules should
increase this effect, and counterions that are farther awaymay still
quench them indirectly by polarizing adjacent water molecules.
In an attempt to estimate the effect of solvation, we performed
PCM calculations at the Hartree�Fock level in selected cases

Table 3. Interaction Energy at Various Levels of Theory for
Models AC1 and AC4 of the Eth(+1)�UA/AU Intercalation
Complex in the Gas Phase (All Values in kcal/mol)a

model/basis set ΔEel
(1) ΔEHL

(1) ΔERHF ΔEMP2 ΔEQCISD ΔEQCISD(T)

AC1/6-31G** �24.8 7.0 2.1 �31.3 �18.1 �22.0

AC4/6-31G** �26.0 6.3 1.7 �31.3 �18.4 �22.4

AC1/6-31G**

(d = 0.25)

�24.5 6.4 0.8 �44.3 �28.3 �33.9

AC4/6-31G**

(d = 0.25)

�25.5 5.7 0.0 �44.7 �29.1 �34.7

AC4/aug-cc-pVDZ �25.1 7.6 1.0 �48.8 �32.2 �39.2
aThe triples contribution, and consequently QCISD(T), for AC1/aug-
cc-pVDZ is expected to be within 1 kcal/mol of AC4/aug-cc-pVDZ and
was judged too expensive to calculate (see the Supporting Information
for details).
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(Table 4). The individual components of the internal interaction
energy are not substantially modified when passing to the
solvent. In particular, one notes a slight increase in ΔEel

(1), which
is balanced by an increase in exchange-repulsion and a decrease
in ΔEdel

(R) . The resulting internal interaction energy has almost
the same magnitude as its gas phase counterpart.
The polarizable environment, however, shields the electro-

static interactions to a large extent, and in effect the Hartree�
Fock interaction free energies ΔGRHF are repulsive, close
to 20 kcal/mol for all three chosen models. It should be noted
that more than 90% of the ΔΔGRHF

int coupling term comes from
the corresponding Heitler�London component which includes
electrostatic interactions with the polarized solvent. Therefore,
ΔΔGRHF

int can be interpreted as an effective correction to the
ΔEel

(1) term. Although we did not compute the corresponding
solvent-adjustedΔEcorr terms, these should not differ much from
their gas phase counterparts. We therefore roughly estimate the
interaction free energy ΔGMP2 for all of the cases presented in
Table 4 to be�35 kcal/mol and the alternateΔΔGstab calculated
using monomeric cavities in eq 3 to be about �43 kcal/mol.
It should be stressed that the approximations made here are
quite crude, and we do not aim to establish quantitative results.
This is impossible, since the PCMmethod was not parametrized
for such systems and the result will depend heavily on the
choice of the solute cavities. We also neglect the effects of
geometry relaxation here and account only for the electrostatic
contribution to the free energy required to bring the interacting
molecules from an infinite separation to the complex in a dilute
solvent.
Nonetheless, a particularly intriguing observation is that the

polarizable environment seems to equate all of the considered
charge states of the phosphate groups. What relevance then does
the large magnitude of the gas phase interaction energy in the
case of the charged models have? This is an especially pertinent
question since the overall binding free energies for various
intercalators are typically estimated around �10 kcal/mol by
both experimental9 and theoretical16 methods. Moreover, the
final phase of intercalation—insertion of the planar chromophore
between two base pairs—facilitates significant changes in the
hydration shell and entails a significant free energy barrier.8 If the
charge density around the phosphate groups fluctuates as a result,
the instantaneous interactions may intensify in a way reminiscent
of the charged models studied here. Therefore, our results can be
viewed as identifying the broadest range of intermolecular
interaction strengths possible for this conformation of the
intercalation site with B 3 neutral (H) and B 3 charged �2 giving
the approximate lower and upper limits. It would be interesting
to confront the present static scenario with a dynamic range that

takes conformational changes of the binding site and surround-
ing solvent molecules into account on equal footing.

4. CONCLUSIONS

In this contribution we have taken a detailed look at the
intermolecular interactions in the intercalation siteEth(+1)�UA/AU,
which consists of the ethidium cation and the RNA AU/UA base
pair step, built on the basis of crystallographic data. We consider
the effect of dividing the system into fragments and calculating
ab initio interaction energies in a pairwise fashion, as well as many-
body effects and the influence of phosphate group quenching by
various surroundings. We also explore the effects of solvation on
these interactions by assuming a polarizable continuummodel of
water around the intercalation site.

Our results can be summarized in three basic conclusions, the
first pertaining to system fragmentation into parts interacting
pairwise with the intercalator. Namely, the various ways chosen
of partitioning the system reproduce the supermolecular inter-
action energy within a few percent, even when the anionic
phosphate groups are left unbalanced. But not all of the interac-
tion models are equal in this regard. For example, breaking the
RNA strand into backbone and/or nucleobase fragments (as in
B2 and B6) results in interaction energies closer to model B1
than when the strands are split near the phosphate groups (as for
example in B4.3 and B4.5). It is important to remember that the
success of such fragmentation schemes varies on a case-by-case
basis, so we cannot recommend it as a general approach.
Specifically, the present exploration of interaction models allows
us to conclude that the previously adopted partitioning scheme22

was satisfactory, as far as the energetics of the intercalator itself
are concerned.

A second outcome, concerning the electron correlation part of
the π�π stacking interaction with the nucleobases, is the
addition of almost �10 kcal/mol to the correlated interaction
energy in model AC. This result was obtained by additional
calculations at the QCISD(T) level of theory and employing
more saturated basis sets.

Finally, for differently quenched phosphate groups, we esti-
mate the possible range of interactions experienced by ethidium
in the gas phase for this particular intercalation site conformation,
roughly 60�140 kcal/mol. On the one hand, capping the
phosphate group with a hydrogen atom mimics an overly tightly
bound counterion and represents the weakest possible interac-
tion of the cationic intercalator with the RNA backbone. Con-
versely, leaving the charge on the phosphate groups unbalanced
represents the strongest possible interaction. Quenching with
counterions and hydrating with water molecules leads to

Table 4. The Effect of Polarizable ContinuumModel (IEF-PCM) Solvation on the Interaction Energy at Various Levels of Theory
for Neutral and Charged Variants of Model B1a

ΔEel
(1) ΔEex

(1) ΔEdel
(R) ΔΔGRHF

int ΔEcorr ΔEMP2

model B1 3 neutral (Na) in vacuum �50.7 55.1 �10.9 �55.0 �61.5

in solvent �58.2 56.6 �6.7 29.0 (21.2) �34.3(�42.1)

model B1 3 neutral (K) in vacuum �52.7 55.1 �10.9 �55.1 �63.6

in solvent �60.5 56.6 �6.7 31.2 (23.5) �34.5(�42.2)

model B1 3 charged �2 (H2O) in vacuum �117.1 55.2 �11.0 �56.4 �129.3

in solvent �122.3 56.6 �7.2 92.7 (84.8) �36.6(�44.5)
aThe ΔΔGRHF

int values in parentheses are the corresponding ΔΔGRHF
stab energies; ΔGMP2 values in italics were estimated assuming the gas phase ΔEcorr

energies. All energies were obtained using the 6-31G** basis set, and are given in kcal/mol. See the text for further details.
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intermediate interaction energies, and in fact we find that all of
these cases produce interaction energies between the two
extremes. Including solvation via a PCMmethod has the intuitive
effect of shielding electrostatic interactions and bringing the
interaction energies in these different models to comparable
values, namely, around�35 kcal/mol. The disparity between this
and the wide range found in the gas phase suggests that the forces
acting on the intercalator during insertionmay depend heavily on
conformational changes and fluctuations in the hydration shell.

It is important to keep inmind that these results were obtained
for a single crystallographic binding site conformation and could
likely be changed by dynamic effects. In this study, we focused on
the intermolecular interaction energy ΔGmol, calculated for struc-
tures that are fully prepared for the insertion of the intercalator.
Intercalation inevitably involves the untwisting of the helix and
other deformations that present a significant endothermic contribu-
tion to the total free energy, as well as hydration and potentially
other effects. Therefore, the impact of our results, and ΔGmol in
general, on intercalation energetics should be considered in the
context of these other contributions that make up the total binding
free energy.
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ABSTRACT: The first reaction step of the redox cycle of bovine erythrocyte glutathione peroxidase from class 1 (GPX1) was
investigated using hybrid quantummechanics/molecular mechanics (QM/MM) calculations using the ONIOMmethodology. The
reduction of hydrogen peroxide by the active-site selenocysteine in selenolate form assisted by the Arg177 residue was modeled
based on a proposal from previous molecular dynamics simulations and pKa calculations (J. Chem. Theory Comput. 2010, 6,
1670�1681). The redox reaction is predicted as a concerted SN2 nucleophilic substitution with a concomitant proton transfer from
Arg177 onto leaving hydroxide ion upon reduction of hydrogen peroxide. The height of the reaction barrier was predicted in range of
6�11 kcal mol�1, consistent with an experimental rate constant of ca. 107 M�1 s�1. The proposed GPX1-Se�-Arg177H+

mechanism for GPX1 is compared with the GPX3-SeH-Gln83 one proposed for human glutathione peroxidase from class 3 (GPX3)
and with the solvent-assisted proton exchange mechanism proposed for GPX-like organic selenols. The structural and energetic
parameters predicted by various density functional theorymethods (B3LYP,MPW1PW91,MPW1K, BB1K,M05-2X,M06-2X, and
M06) are also discussed.

1. INTRODUCTION

Glutathione peroxidase from class 1 (GPX1, EC 1.11.1.9) is a
selenoprotein1 which protects cells from oxidative damage by
catalyzing the reduction of H2O2, lipidhydroperoxides, and other
organic hydroperoxides using a selenocysteine residue (Sec) and
glutathione (GSH, γ-glutamylcysteinylglycine) as a reducing
substrate. A general scheme of the overall catalytic cycle is shown
in Figure 1a. It has been experimentally suggested that the catalytically
active form of the enzyme is the selenolate anion (E-Se�).2,3

In the first redox step, E-Se� is oxidized to the selenenic acid
(E-SeOH) with the accompanying reduction of a hydroperoxide
substrate to a corresponding alcohol (or water in the case of
hydrogen peroxide) with an experimentally measured4 rate
constant of 4.1 � 107 M�1 s�1. In the second step, the E-SeOH
reacts with GSH to produce a selanyl sulfide adduct (E-SeSG). In
the third step, a secondmolecule of GSH attacks E-SeSG to regenerate
the active reduced form of the enzyme, and the oxidized form of
GSH (GSSG) is formed as a byproduct. This step is the rate-
determining step of the overall mechanismwith a rate constant of
2.3�5.1 � 105 M�1 s�1.4,5 As it can be seen in the reaction
scheme (Figure 1a), a proton must be supplied for the first redox
step and be abstracted in the third reaction step to maintain
overall stoichiometry of the catalytic process. Themode of action
of these proton transfers is not clear because no ionizable amino
acid residues were found in the proximity of the Sec reaction
center in available X-ray structures of GPX12,6 and other
glutathione peroxidases.7�10 The active site is characterized by
the highly conserved Sec-Trp-Gln triad, however, five ionizing
residues (Arg50, 96, 177, and 178 and His79) do place in the
active site with a radius of 6�12 Å from Sec45 inGPX1 (PDB ID:
1GP1).2 A similar situation occurs in other glutathione peroxidases,
e.g., for human plasma glutathione peroxidase 3 (GPX3), six

ionizing residues (Arg123, 168, 180, and 201, Lys106, and His200)
can be found within a radius of 12 Å around Sec73 (PDB ID:
2R37).7,10 It is supposed that these residues influence the catalytic
process and are involved in specific binding of GSH.2,7,11 Molecular
dynamics (MD) simulations on GPX1 indicated that side chains
of Arg177 or His79 can approach to proximity of Sec45, thus,
possibly acting as the acid/basic catalyst in reduction of peroxides
by GPX1 (the GPX1-Se�-Arg177H+mechanism in Figure 1c).11

A chemical role of arginine as an acid catalyst in the redox
reactions of GPX1 (or GPX3) has not been verified yet. Recently,
a mechanism based on the solvent-assisted proton exchange
(SAPE) was proposed for redox reactions of GPX-like organosele-
nium compounds12�15 and for human plasma GPX316�18

using quantum mechanics (QM) calculations. In the proposed
mechanism for GPX316 (Figure 1b) water molecules participate
in proton exchange between the selenol (and thiol groups) of
selenocysteine [and thioredoxin (TRX)] and the amide groups
of protein amino acids. It is based on the assumption that nonionizing
Gln83 (side chain amide nitrogen) and Leu51 (backbone amide
nitrogen) play roles of catalytic bases, and the active reduced
form of Sec is selenol rather than selenolate. The calculated
reaction barriers of the GPX3 mechanism (GPX3-Se�-H2O-
Gln83H+, SeH-Gln83, and GPX3-Se�-H2O-Leu51H

+) are in
the range of 17�22 kcal mol�1 and correspond to chemical
reactions of ca. 107 times slower, as it was found in the experimental
measurements.4,5 The calculated barriers in that work16,17 are in
good agreement with benchmark calculations14 for GPX-like
organoselenium compounds, indicating that a more favorable
scenario of the redox mechanism of GPX3 and other glutathione
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peroxidases, consistent with the experimental rate4,5 of 2.3�
5.1 � 105 M�1 s�1, could be operative. The proposed GPX3
mechanism16,17 has the reaction barriers comparable to those
calculated for the redox reactions in the gas phase and in aqueous
solution rather than in the enzyme.12�15,19�23 Indeed, the QM
calculations on the redox reactions of selenols and thiols without
assistance of the proton exchange catalyst predicted unreason-
ably high reactions barriers.24�26

Here we modeled the first reaction step of the redox cycle of
bovine GPX1 based on the proposed GPX1-Se�-Arg177H+

mechanism (Figure 1c) from the previous MD simulations and
pKa calculations

11 using density functional theory (DFT) meth-
ods.Wewill show that themechanismwith the selenolate form of
Sec45 and a direct participation of a weak acid or base, in our case
Arg177, in the reduction of hydrogen peroxide has a reaction
barrier consistent with an experimental rate constant measured
for this reaction step in human GPX1 and is energetically favorable
over theGPX3-Se�-H2O-Gln83H

+,27 GPX3-SeH-Gln83,28 and the
SAPE mechanisms.12�15 We will also briefly discuss inaccuracies in
the prediction of the reaction barrier calculated with three hybrid
(B3LYP,MPW1PW91,MPW1K) and fourmeta-hybrid functionals
(BB1K, M05-2X, M06-2X, and M06).

2. COMPUTATIONAL DETAILS

The reaction mechanism of the first redox step was calculated
using an enzyme model, which consisted of the structure of

GPX1, enzyme substrate (H2O2), and explicit solvent molecules
(water cap around the active-site Sec45 consisted of 246 water
molecules). The structure of GPX1 and water was built from a
snapshot selected from a trajectory calculated in the previous
MD simulations11 based on the crystal structure of bovine GPX1
(PDB ID: 1GP1).2 The GPX1 embedded in a box with water
molecules was equilibrated 4 ns in the MD simulation with
selenolate redox state (E-Se�) without a substrate and a glu-
tathione cofactor. Then, in a selected snapshot all water mol-
ecules except those located around Sec45 (up to ca. 15 Å) were
deleted, and the structure was subsequently minimized without
any constrains at the molecular mechanics (MM) level prior to
quantum mechanics/molecular mechanics (QM/MM) calcula-
tions. The ionization states of the ionizing amino acid residues of
the enzymewere predicted by the PropKa program27 considering
an in vivo pH of 7.

Transition states and corresponding intermediates of the
reaction were optimized at the hybrid QM/MM level with the
ONIOM methodology28 with the mechanic embedding scheme
(ONIOM-ME-DFT/6-31G(d,p):Amber)17,18 using the Gaussi-
an 09 package29 (Gaussian inputs of the MPW1PW91 optimized
geometries are available in Supporting Information). The elec-
trostatic effects of the enzyme were evaluated with the electronic
embedding (ONIOM-EE) scheme by single point energy calcu-
lations on optimized structures in the ONIOM-ME scheme
(ONIOM-EE-DFT/6-311+G(3df,2p):Amber//ONIOM-ME-
DFT/6-31G(d,p):Amber). We used for the optimization the

Figure 1. (a) A general scheme for the catalytic cycle of GPX1 after Epp et al.2 The resting state of Sec is selenolate. A proton donor and acceptor in the
first and third redox steps are not known. (b) A catalytic mechanism proposed for GPX3 by Prabhakar et al.16 based on DFT calculations. The resting
state of Sec is selenol. The concomitant proton transfers occur between Sec and amide nitrogen of Gln83 and between TRX and amide nitrogen of Leu51
facilitated by solvent water molecules. (c) A proposed catalytic mechanism of GPX1 by Ali et al.11 of which the first redox step is calculated at the hybrid
QM/MM level in this work. (d) The calculated reaction step with the atom numbering.
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ONIOM-ME scheme since optimization of GPX3 with the
ONIOM-EE scheme did not improve the results and gave a
slightly larger rms deviation when the ONIOM-EE geometries
were compared with the X-ray structure of the enzyme.18 For the
QM part of the ONIOM model (Sec45, Gly46, side chain of
Thr47 without amethyl group, side chains of Gln80, Trp158, and
Arg177, 3 molecules of H2O located around the Sec45 residue,
and the substrate H2O2), various DFT functionals were used:
The hybrid generalized gradient approximation (GGA) Becke
exchange functional with the Lee�Yang�Parr correlation func-
tional (B3LYP),30,31 the modified Perdew�Wang exchange
functional combined with the Perdew�Wang-1991 correlation
functional (MPW1PW91),32,33 MPW1PW91 modified for
kinetics (MPW1K),34 the meta-hybrid GGA Becke88-Becke95
1-parameter for kinetics (BB1K),35 and Minnesota functionals
with double the amount of nonlocal exchange (M05-2X36 and
M06-2X)37 as well as meta-hybrid GGA M06 functional.37 In
addition, the second-order Møller�Plesset theory (MP2)38,39

method was used for single point energy calculations on the
optimized B3LYP, MPW1PW91, and MPW1K structures using
the ONIOM-EE and ONIOM-ME schemes and the Pople’s split
valence triple-ζ basis set augmented by diffuse and polarization
functions [6-311+G(3df,2p)]. The MM part of the system was
treated with the standard AMBER40 (enzyme) and TIP3P41

(water) force fields. For H2O2, selenolate (Sec45-Se�) and
selenenic acid (Sec45-SeOH) redox forms of selenocysteine
parameters were derived either from the AMBER and GAFF
force fields or built from data obtained by ab initioHartree�Fock
calculations42 [HF/6-31G(d)] using the Gaussian 09 package.29

Atom types, charges, and added force field parameters are
provided in Supporting Information. The electrostatic potential
fitting algorithm of the Merz�Singh�Kollman scheme43 was
used to estimate atomic charges from theHF/6-31G(d) calculations.

All stationary points were characterized as minima or as
transition states by vibrational frequency calculations. Transition
states were verified as having one and only one imaginary
frequency. In addition, for each transition state, intrinsic reaction
coordinate (IRC) calculations were performed to confirm that it
connects the correct reactant and product minima. Thermody-
namic quantities were calculated at 298 K and 101 325 kPa using
standard rigid rotor and harmonic oscillator partition function
expressions. Zero-point and thermal corrections to enthalpy and
Gibbs free energies were calculated from unscaled frequencies
obtained at the same level as the geometry optimizations.

The stability of wave function of the transition state in
calculations with the restricted HF formalism was tested with
the unrestricted MP2 and B3LYP calculations. We found for
both methods no differences in energies; therefore, all calcula-
tions in this work were performed with the restricted formalism.

3. RESULTS AND DISCUSSION

In the first part we describe and discuss results obtained by the
B3LYP and MPW1PW91 functionals in order to compare
structural and energetic parameters with those calculated by
the same functionals for GPX316,17 and organic selenols.12�14

Then, we will discuss structural and energetic differences found
among seven functionals.
3.1. RedoxMechanismGPX1-Se�-Arg177H+.Based on scan

calculations along the Se5�O1 reaction coordinate (for atom
numbering see Figure 1d) at the B3LYP/6-31G(d,p) level, a
preliminary structure of a transition state was obtained. By

subsequent transition-state optimization, the structure of TS12
was localized at a distance d(Se5�O1) = 2.52 Å (B3LYP) and
2.43 Å (MPW1PW91) (Table 1 and Figure 2). The TS12 was
verified by vibrational frequency calculations with one large
imaginary frequency [vi = 286i (B3LYP) and 355i cm�1

(MPW1PW91)] belonging to the breaking�forming bonds
(O1�O2, Se5�O1, and O2�H7). The IRC calculations started
fromTS12 resulted in aMichaelis complex 1 and a selenenic acid
intermediate 2. The reaction path 1f TS12f 2 is predicted by
the hybrid QM/MM methodology as a general acid-catalyzed
nucleophilic substitution proceeding by the SN2 mechanism, in
which addition of the nucleophile (selenolate ion of Sec45-Se�),
elimination of the leaving group (hydroxide ion from the
hydrogen peroxide substrate), and proton transfer from the acid
catalyst (Arg177�H+) onto the leaving group take place in a
concerted manner [d(Se5�O1) = 2.52 Å, d(O1�O2) = 1.71 Å,
d(O2�H7) = 1.87 Å, and d(H7�N8) = 1.04 Å (B3LYP)]. The
proton transfer significantly lags behind the breaking of the
O1�O2 bond of the substrate, indicating mainly its role in
stabilization of the formed byproduct (H2O) rather than in
facilitating the departure of the leaving group in the transition
state. When we compared pKa values of arginine (12.5), the
forming selenenic acid intermediate (12.0),22 and the byproduct
H2O (15.7), the proton transfer Arg177�H+ + OH� f Arg177 +
H2O would be only slightly preferred compared to Sec45-SeOH +
OH� f Sec45�O� + H2O. However, the geometry of TS12
disfavors the direct proton transfer from Sec45-SeOH onto
OH�. In TS12, the value of the angle between the nucleophile
selenium atom, the reaction oxygen center, and the leaving group
approaches 180� [φ(Se5�O1�O2) = 172.59� (B3LYP) and
173.1� (MPW1PW91)]. Thus, the position of the atoms is more
optimal for transfer of H7 fromArg177 than for H3 fromH2O2 to
OH� [also d(O2�H7) = 1.87 Å is shorter than d(O2�H3) = 2.06
Å (B3LYP)]. It is known from the other QM calculations19,21,24�26

performed for the reaction of selenols with hydroperoxides without
a proton exchange catalyst, that the leaving hydroxide ion has to
abstract a proton directly from the oxygen of the forming selenenic
acid. Thus, in the transition state the Se�O�O linear structure is
deformed to a more bent geometry [for example, φ(Se�O�O) =
73�112�,24 82�138�,26 or 164�].19
The longer distance d(Se5�O1) = 2.52 Å (B3LYP) and 2.43 Å

(MPW1PW91) compared with TS geometries of selenols with
the SAPE mechanism [d(Se�O) = 2.14 Å (MPW1PW91)]12

indicates an earlier transition state when Sec45 is in the selenolate
form, and the acid catalyst directly participates in the redox
process.
Our best prediction of the thermochemical kinetics para-

meters, including larger basis set [6-311+G(3df,2p)] and elec-
trostatic effects of the enzyme (ONIOM-EE), is 11.0 kcal mol�1

(MPW1PW91), 11.2 kcal mol�1 (M06), and 6.0 kcal mol�1

(B3LYP) for the activation free energy (ΔG‡) and�24.2,�31.5,
and �23.8 kcal mol�1 for the reaction energy (ΔGr, Table 3).
These values were further validated using the MP2 method as an
ab initio reference method. Under assumption that DFT meth-
ods used in this work have an average error of 2�5 kcal mol�1 for
the reaction barriers,34�37,44�47 the results correlate quite well
with the MP2 ones, where values of ΔG‡ = 8.4 kcal mol�1

(MP2//MPW1PW91) and 8.3 kcal mol�1 (MP2//B3LYP)
were predicted (Figure 3). They also reasonably converge to
an experimentally measured rate constant for the first redox step
of human GPX1 (ΔGexp

‡ of ca. 7 kcal mol�1 can be estimated
from kexp = 4.1 � 107 M�1 s�1).4
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The calculated mechanism with the GPX1-Se�-Arg177H+

dyad has the reaction barrier ca. 7�8 kcal mol�1 lower compared

with those calculated for the first redox step of GPX3 with the
GPX3-SeH-Gln83 dyad [18.0 kcal mol�1, ONIOM-ME-
B3LYP/6-311+(d,p):Amber//ONIOM-ME-B3LYP/6-31G-
(d):Amber]17 or the SAPE mechanism E-Se�-H2O-Gln83-H+

[17.1 kcal mol�1, IEF-PCM-B3LYP/6-311+G(d,p)//B3LYP/
6-31G(d)].16 For the sake of clarity, we compare the ONIOM-
ME results (Table 2) since the mechanism with the GPX3-
SeH-Gln83 dyad17 was not performed with the ONIOM-EE
methodology. Based on the previous experimental study3 and
pKa calculations for selenocysteine in GPX111 and in water,48

Sec45 can be in either selenol or selenolate form, with the
preferable selenolate form in physiological pH. Our calcula-
tions on the first redox step of GPX1 further support seleno-
late as the resting reduced state of GPX1. We show that if a
weak acid or base (roughly said a catalyst with pKa > 7) can
directly participate in proton exchange with a hydroperoxide
substrate, the redox step can proceed very fast with a rate of
ca. 107 s�1.
The SAPE mechanism proposed by Bayse and Antony12�15

has not been tested yet for any enzyme GPX system at the
QM/MM level, but it is plausible mainly for the redox reaction of
organic selenol converted to selenenic acid in absence of an acidic

Table 1. Selected Geometry Parameters, Interatomic Distances (d) (in Å), Valence (j), and Torsion angles (Φ) (�) of the Optimized
Transition States and Intermediates at the Various DFT Levels Using the ONIOM-ME-DFT/6-31G(d,p):Amber Methodology.a

d(Se5�O1) d(O1�O2) d(O2�H7) d(H7�N8) d(O2�H3) j(C6�Se5-O1) j(Se5�O1�O2) Φ(C6�Se5�O1�O2)

B3LYP

1 3.085 1.449 2.133 1.021 1.940 117.21 121.14 �125.71

TS12 2.523 1.713 1.868 1.035 2.060 107.14 172.59 162.69

2 1.833 2.631 1.028 1.655 1.846 98.02 140.26 �127.81

MPW1PW91

1 3.057 1.427 2.107 1.018 1.923 117.40 120.81 �126.96

TS12 2.426 1.729 1.812 1.036 2.043 107.29 173.09 166.43

2 1.814 2.609 1.031 1.613 1.813 98.15 139.46 �128.75

MPW1K

1 3.063 1.406 2.064 1.013 1.898 117.12 120.37 �129.27

TS12 2.339 1.752 1.776 1.032 2.019 107.18 173.17 166.09

2 1.818 2.631 1.000 1.698 1.848 94.51 139.79 �131.26

BB1K

1 3.117 1.411 2.069 1.013 1.894 114.74 119.11 �135.31

TS12 2.350 1.756 1.802 1.029 2.030 107.23 173.83 163.74

2 1.821 2.664 0.995 1.736 1.871 94.67 137.68 �128.32

M05-2X

1 3.132 1.422 2.041 1.016 1.906 113.02 119.78 �137.91

TS12 2.310 1.781 1.785 1.036 2.034 107.35 172.62 151.39

2 1.827 2.636 1.037 1.600 1.776 94.798 131.71 �130.60

M06-2X

1 3.142 1.422 1.998 1.022 1.908 111.03 119.47 �141.71

TS12 2.317 1.778 1.760 1.041 2.043 107.08 172.11 142.55

2 1.825 2.636 1.028 1.626 1.796 94.791 132.95 �129.57

M06

1 3.127 1.423 2.035 1.024 1.908 115.13 119.77 �132.41

TS12 2.461 1.724 1.837 1.036 2.054 109.73 169.28 147.61

2 1.827 2.676 1.010 1.727 2.811 95.44 139.81 �125.58
a For atom numbering see Figure 1d.

Figure 2. The MPW1PW91 optimized transition state TS12 with
selected distances (in Å) (selenium is in yellow, carbons in green,
nitrogens in blue, oxygens in red, and hydrogens in gray).
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or basic catalyst in aprotic solvents, e.g., the reaction of selenol in
tetrahydrofuran49 or dichloromethane50 where a catalytic amount of
water needed for the SAPE process is produced as a byproduct
in the reduction of hydroperoxide substrate. Indeed, the
reaction barriers for the SAPE mechanism12�15 in the range
of 19�22 kcal mol�1 are comparable to the proposed GPX3-
SeH-Gln83 mechanism but 2�3 times higher compared with
the GPX1-Se�-Arg177H+ mechanism investigated in this
work. Clearly, the GPX1 could catalyze the reduction of
hydroperoxides in the resting selenol form, as an alternative
when the selenolate form is not available, but this reaction
would proceed only slowly with a rate of ca. 10�2 s�1.

3.2. DFT Benchmark on Selenium Reactivity. We tested
seven functionals for the structural prediction of transition states
and reaction barriers. Two functionals fitted for thermochemical
kinetics (MPW1K and BB1K) and new hybrid meta-GGA
functionals (M05-2X,36 M06-2X,37 and M0637), which all
have an average error on the reaction barriers in kinetics
benchmarks34�37,44�47 less than 2 kcal mol�1, together with the
MPW1PW9132,33 functional used for modeling redox reactivity
of selenium compounds with the SAPE mechanism12�15 and
with the B3LYP30,31 functional used for the modeling of the
redox cycle of GPX316,17 were applied. The MPW1PW91 and
B3LYP functionals were less accurate in benchmarks on thermo-
chemical kinetics parameters, and they underestimated the
reaction barriers ca. 3�5 kcal mol�1, from which MPW1PW91
performs slightly better.34�37,44�47

As can be seen in Table 1 [ONIOM-ME-DFT/6-31G(d,p):
Amber] the most important structural parameters, the distances
d(Se5�O1) and d(O1�O2), differ in the transition state more
significantly for the d(Se5�O1) (0.007�0.213 Å) and less
apparently for the d(O1�O2) (0.016�0.068 Å). The functionals
with a smaller portion of the Hartree�Fock (HF) exchange
(25%, MPW1PW91; 27%, M06 and 20%, B3LYP) predicted an
earlier transition state, i.e., with the longer d(Se5�O1) and
shorter d(O1�O2) distances compared with others (MPW1K,
BB1K, M05-2X, and M06-2X; 42�56% of the HF exchange).
For such TS geometries the reaction barriers in a large range of
13�28 kcal mol�1 [ΔG‡, ONIOM-ME-DFT/6-31G(d,p):
Amber] were found (Table 2). The results calculated with
MPW1K, BB1K, M05-2X, and M06-2X converged to each
other with ΔG‡ = 27�28 kcal mol�1 and ΔGr = �50 to �55
kcal mol�1. The MPW1PW91, M06, and B3LYP predicted
reaction barriers with significantly lower values of 17.0, 18.6,
and 13.0 kcal mol�1 and comparable reaction energies of
�50.6, �60.4, and �53.3 kcal mol�1 with the other DFT
methods. The relatively high values of ΔG‡ for the enzymatic
chemical step predicted by the former functionals were further
validated using more flexible basis set. When the 6-311+G-
(3df,2p) basis set was applied on the 6-31G(d,p) optimized
structures, a dramatic decrease of the reaction barrier by about

Table 2. Relative Gibbs Free Energies (ΔG) Calculated for theOptimized Transition States and Intermediates at the VariousDFT
Levels a

ONIOM-MEb B3LYP MPW1PW91 MPW1K BB1K M05-2X M06-2X M06

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TS12 13.0 (286i) 17.03 (355i) 27.1 (481i) 26.8 (461i) 28.2 (499i) 28.3 (490i) 18.6 (405i)

2 �53.3 �50.6 �51.9 �54.1 �50.4 �54.9 �60.4

ONIOM-MEc B3LYP MPW1PW91 MPW1K BB1K M05-2X M06-2X M06

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TS12 10.3 14.4 24.1 22.5 23.7 22.8 13.5

2 �57.0 �56.6 �56.9 �59.5 �56.6 �60.4 �69.8

ONIOM-MEc M06d M06e M06f MP2g MP2h MP2i

1 0.0 0.0 0.0 0.0 0.0 0.0

TS12 13.8 13.7 9.3 13.8 12.0 10.9

2 �66.3 �67.6 �69.2 �62.2 �64.9 �67.8
aUsing the ONIOM-ME-DFT/6-31G(d,p):Amber methodology (in kcal mol�1), single point calculations energies with the 6-311+G(3df,2p) basis set
applied with the MP2 and DFT methods, and imaginary vibrational frequencies (values in round brackets) for the transition states (ν‡, in cm�1).
bONIOM-ME-DFT/6-31G(d,p):Amber. cONIOM-ME-QM/6-311+G(3df,2p):Amber//ONIOM-ME-DFT/6-31G(d,p):Amber. dM06//B3LYP.
eM06//MPW1PW91. fM06//M06-2X. gMP2//B3LYP. hMP2//MPW1PW91. iMP2//MPW1K.

Figure 3. A reaction profile (ΔG) of the first redox step of GPX1
calculated with the MP2 and various DFT methods at the ONIOM-EE-
QM/6-311+G(3df,2p):Amber//ONIOM-ME-DFT/6-31G(d,p):Am-
ber level. ΔGexp

‡ (dashed line) of 7 kcal mol�1 is estimated from kexp =
4.1 � 107 M�1 s�1.4
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3�5 kcal mol�1 to values of 10�23 kcal mol�1 was found
(Table 2). This indicates that at least medium-size basis set
augmented by diffuse functions should be used for more
accurate prediction for the kinetics parameters of the GPX-
like systems. The differences in the prediction of the reaction
barrier by the B3LYP, MPW1PW91, and M06 functionals are
still extremely high (more than 8 kcal mol�1) compared to the
MPW1K, BB1K, M05-2X, and M06-2X functionals. The
MPW1PW91 functional predicted the barrier (14.4 kcal mol�1)
in the best agreement with the MP2 method (12.0 kcal mol�1,
MP2//MPW1PW91), which was used as a reference QM
method. The MPW1PW91 functional was also used by Bayse
and Antony12�15 for modeling redox reactivity of selenium
compounds and showed the best performance in a DFT
benchmark14 on the reaction barriers of the redox reaction of
methaneselenol with hydroperoximethane via the SAPE me-
chanism. The reaction barrier for reduction of hydrogen peroxide
by selenocysteine and methaneselenol in their selenolate forms
in gas phase, and an aqueous solution with a height of 15�21 kcal
mol�1 was also predicted by MP2 and QCISD(T) methods.19,21

To evaluate electrostatic effects of enzyme surrounding and
water environment on the reactivity of Sec45, the ONIOM
methodology with electronic embedding was used [ONIOM-
EE-DFT/6-311+G(3df,2p):Amber//ONIOM-ME-DFT/6-31G-
(d,p):Amber]. The ONIOM-EE methodology together with the
MPW1PW91, M06, and B3LYP functionals further decrease the
reaction barrier ca. 2�4 kcal mol�1 to values of 11.0, 11.2, and 6.0
kcal mol�1, indicating the importance of electrostatic effects of
the enzyme (Table 3). However, for other functionals the
ONIOM-EE barrier decreases only ca. 1�2 kcal mol�1, predict-
ing still high activation energies (22�23 kcal mol�1) compared
with the experimentally measured rate constant4 of 4.1 � 107

M�1 s�1 (Figure 3). We conclude that the MPW1PW91, M06,
and B3LYP functionals predict the activation energies in the best
agreement with the experimental results (estimated ΔGexp

‡ is ca.
7 kcal mol�1) and with our reference MP2 calculations (8.3�9.6
kcal mol�1, Table 3). The other DFT methods, which have the
higher portion of the HF exchange, seem to overestimate the
reaction barrier for the first redox step of the GPX1 cycle by at
least 10 kcal mol�1. When the new hybrid meta-GGA M06
functional, with a similar portion of the HF exchange as
MPW1PW91 and B3LYP have, was applied changing M06-
2X (54% HF) with M06 (27% HF),37 the reaction barrier
dramatically decreases from 21.9 to 9.6�11.2 kcal mol�1

(Table 3, M06, M06//M06-2X, M06//B3LYP, and M06//
MPW1PW91). The M06 values are now very close to the
MPW1PW91 and MP2 results.

4. CONCLUSION

Using the QM/MM methodology in this work as well as the
MD simulations and pKa calculations in the previous work,

11 we
demonstrated that the ionized selenolate state of Sec45 in GPX1
is the favorable form for the reduction of hydroperoxide sub-
strates. The efficient reduction of hydroperoxides by GPX1 can
only proceed in the enzyme environment, with a general acid/
base catalyst which directly participates in proton exchange with
the substrate. Such a role could play a weak acid or base, i.e., the
catalyst with pKa > 7. In GPX1 it could be Arg177. The GPX1-
Se�-Arg177H+ mechanism has the activation barrier of 6�11
kcal mol�1 consistent with the experimentally measured rate
constant for the first redox step of GPX14 and is 2�3 times lower
compared with those calculated for the GPX3-Se�-H2O-
Gln83H+,16 the GPX3-SeH-Gln8317 of glutathione peroxidase
from class 3, and the SAPE mechanism12�15 of GPX-like
organoselenium compounds. The acidic strength and the proper
position of the catalytic acid/base in the active-site for direct
proton exchange with the hydroperoxide substrate seem to be
crucial factors for a rate of ca. 107 M�1 s�1 of the redox
enzymatic reaction. This can explain why the QM calculations19

on the redox reaction of selenocysteine without the assistance
of the proton exchange catalyst predicted the higher reaction
barrier corresponding to a slow chemical process of a rate of ca.
0.25 M�1 s�1.

Our DFT benchmark calculations indicate that for the more
accurate prediction of the selenium reactivity, at least a medium-
size basis set augmented by diffuse function and proper descrip-
tion of surrounding electrostatic effects are required. The DFT
methods, which were designed for kinetics (MPW1K and BB1K)
as well as the newMinnesota functionals with double the amount
of nonlocal exchange (M05-2X and M06-2X), all with a higher
portion of the HF exchange, seem to significantly overestimate
the reaction barrier for GPX1 by more than 10.0 kcal mol�1

compared with the experimental results,4 the MP2 method, or
with the MPW1PW91, M06, and B3LYP functionals. We re-
commend for modeling the selenium reactivity the functionals
with a lower portion of the HF exchange.
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Table 3. Single Point Energy Calculations of Relative Gibbs Free Energies (ΔG) Calculated at the MP2 and Various DFT Levelsa

ONIOM-EE B3LYP MPW1PW91 MPW1K BB1K M05-2X M06-2X M06

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TS12 6.0 11.0 21.9 20.6 23.0 21.9 11.2

2 �23.8 �24.2 �14.9 �16.6 �15.6 �17.8 �31.5

ONIOM-EE M06b M06c M06d MP2e MP2f MP2g

1 0.0 0.0 0.0 0.0 0.0 0.0

TS12 9.6 10.8 9.6 8.3 8.4 9.6

2 �34.8 �34.8 �26.7 �29.6 �32.7 �25.8
aUsing the ONIOM-EE-QM/6-311+G(3df,2p):Amber scheme (in kcal mol�1). bM06//B3LYP. cM06//MPW1PW91. dM06//M06-2X. eMP2//
B3LYP. fMP2//MPW1PW91. gMP2//MPW1K.
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ABSTRACT: A computational tool that offers accurate pKa values and atomically detailed knowledge of protonation-coupled
conformational dynamics is valuable for elucidating mechanisms of energy transduction processes in biology, such as enzyme
catalysis and electron transfer as well as proton and drug transport. Toward this goal we present a new technique of embedding
continuous constant pH molecular dynamics within an explicit-solvent representation. In this technique we make use of the
efficiency of the generalized-Born (GB) implicit-solvent model for estimating the free energy of protein solvation while propagating
conformational dynamics using the more accurate explicit-solvent model. Also, we employ a pH-based replica exchange scheme to
significantly enhance both protonation and conformational state sampling. Benchmark data of five proteins including HP36, NTL9,
BBL, HEWL, and SNase yield an average absolute deviation of 0.53 and a root mean squared deviation of 0.74 from experimental
data. This level of accuracy is obtained with 1 ns simulations per replica. Detailed analysis reveals that explicit-solvent sampling
provides increased accuracy relative to the previous GB-based method by preserving the native structure, providing a more realistic
description of conformational flexibility of the hydrophobic cluster, and correctly modeling solvent mediated ion-pair interactions.
Thus, we anticipate that the new technique will emerge as a practical tool to capture ionization equilibria while enabling an intimate
view of ionization coupled conformational dynamics that is difficult to delineate with experimental techniques alone.

’ INTRODUCTION

Solution pH has a profound effect on the stability and the
function of proteins by changing the protonation states of
titratable groups. Proteins can become denatured under extreme
pH conditions. Enzymes are often catalytically active in a narrow
pH range.1 Protein�protein interactions2 and protein�ligand
binding3 are also modulated by the protonation states of titra-
table groups. Accurate determination of active-site pKa values
informs about the catalytic mechanism of proteins.4 Knowledge
of the native- and denatured-state pKa values can be used to
quantify electrostatic effects on protein stability.5

Although the importance of solution pH has long been
recognized, molecular simulation techniques have traditionally
neglected it. In a standard molecular dynamics (MD) simulation
the protonation states of ionizable side chains are set at the
beginning of the simulation based on the comparison of the
desired pH condition and the solution or model compound pKa

values. This fixed protonation scheme can be a source of error in
several instances. For example, if the pKa values are near the pH of
interest, then the protonated and deprotonated states should
coexist, which obviously is not reflected in simulation with fixed
protonation states. Additionally, even when reasonable proton-
ation statesmay be set for the initial conformation, conformational
rearrangementmay favor an entirely new set of protonation states.

In recent years, considerable effort has been made to develop
methodologies that explicitly include pH as an external parameter
in MD simulations, similar to temperature, allowing protonation
states of ionizable groups to respond to changes in the chemical
environment and the external pH.6�11 These constant pH
techniques differ in the way protonation states are updated. In
the discrete methods, protonation states are periodically updated
using Monte Carlo sampling, while in the continuous approach

titration coordinates are introduced and propagated simulta-
neously with the spatial coordinates (see a most recent review).12

One of the most promising constant pH techniques, termed
continuous constant pH molecular dynamics (CPHMD)9,13 is
based on the λ dynamics approach to free energy calculations,14

allowing ionizable groups to switch continuously between proto-
nated and unprotonated forms. Protonation and deprotonation
are accomplished in a manner similar to many free energy
simulation techniques, where an alchemical coordinate, λ, is
introduced. The novelty of the λ dynamics approach lies in the
fact that the alchemical coordinate is assigned to a fictitious λ
particle, and the force on the particles is derived analytically.
CPHMD has been shown to give accurate and robust predictions
for protein pKa values

12 and has opened a door to theoretical
studies of pH-dependent protein dynamics and folding.15�17

In the aforementioned CPHMD method, the generalized
Born (GB) implicit-solvent model is used to calculate forces
on both spatial and titration coordinates. The major advantage of
using GB models in constant pH methodologies is that conver-
gence of pKa’s can be achieved with a reasonable amount of
sampling time, which has not been demonstrated feasible with
explicit-solvent models (see more discussions later). Another
benefit of using GB models within the CPHMD framework is
that forces on the titration coordinates can be computed
analytically. However, as CPHMD and other GB-based constant
pH techniques are maturing into practical tools, problems
inherited from the underlying GB models are becoming the
limiting factor for further improvement of accuracy. Recent GB
simulation studies have revealed several problems that seem

Received: February 28, 2011
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difficult to overcome. Specifically, attractive electrostatic interac-
tions are overestimated,18,19 and improvement through adjust-
ment of GB input radii that define dielectric boundary18,19 is
limited.20 Also, due to the lack of solvent granularity, GB simula-
tions cannot reproduce the solvation peaks seen in the interaction
free energy profiles from explicit-solvent simulations.18 Further-
more, there have been noted problems with the stability of
hydrophobic interactions21,22 and the overly compact and rigid
unfolded states,23,24 which are likely due to the approximate nature
of the nonpolar solvation term based on solvent-accessible surface
area (SA model). Finally, the inaccuracies of the GB/SA model in
the representation of electrostatic and nonpolar energetics result in
amore favorable sampling of helical relative to extended states.25,24

The limitations of GB models affect the accuracy and the
applicability of the CPHMD method in several ways. First, a
small error in the electrostatic solvation energy calculated by the
GB model alters the relative deprotonation free energy in
reference to solution and therefore the pKa shift. This type of
“electrostatic” error is typically small for solvent-exposed resi-
dues, because the GB model, in particular GBSW used in this
work, has been tuned to reproduce the explicit-solvent data of
solvent-exposed polar or charged interactions.18 However, the
“electrostatic” error becomes significant for deeply buried
residues26,12 because the inaccuracy in the desolvation energies
of deeply buried atoms remains an unsolved problem in GB
models. Nonetheless, the electrostatic error is systematic
(Wallace and Shen, unpublished data), and a post correction
may be introduced if necessary. The second type of GB-related
error which affects the accuracy of ΔΔGdeprot arises from the
small distortion in the conformation or distribution of conforma-
tions. The impact of this “conformational” error on the proton-
ation-state sampling is typically not systematic, and the extent of
the error is unpredictable. Finally, the dependence of conforma-
tional sampling on the GB model also hinders the application of
the CPHMD method to polyionic systems, such as DNA and
RNA, for which GB models are not well suited.

In light of the above considerations, we introduce here a
method to extend the CPHMD framework to explicit-solvent
simulations. In principle, forces on both spatial and titration
coordinates can be derived from explicit-solvent sampling.
However, the latter is not practical because a lengthy simulation
time is required to accurately compute solvation-related forces
based on explicit-solvent sampling. Consequently, we devise a
method which takes advantage of the efficiency of the GB model
to compute solvation forces on titration coordinates while
propagating conformational dynamics via all-atom interactions
in explicit solvent. Additionally, we implement a replica-exchange
protocol based on the pH biasing energy to significantly accel-
erate the convergence of the simultaneous sampling of proton-
ation and conformational space. Thus, by making use of the more
accurate explicit-solvent sampling, the new method aims to
improve the accuracy of CPHMD by reducing the aforemen-
tioned “conformational” error and to allow applications to many
problems where implicit-solvent models are not feasible.

The rest of the paper is organized as follows. First, we describe
in detail the CPHMD method in explicit solvent and the pH-
based replica-exchange protocol. We then examine potential
artifacts due to the use of both explicit- and implicit-solvent
schemes and the response of solvent molecules to titration. Next,
we present and discuss results of model compound titrations and
analyze the convergence behavior with the new sampling proto-
col. Finally, we benchmark the accuracy of the new method by

calculating pKa values of five proteins including HP36, NTL9,
BBL, HEWL, and SNase. We compare the results with the GB-
based CPHMD simulations and experiment. We find that the
explicit-solvent CPHMD offers slightly more accurate pKa pre-
dictions but significantly deeper physical insights. Surprisingly,
convergence of the explicit-solvent CPHMD titrations is achieved
for all proteins with a simulation length of 1 ns per replica,
suggesting that the new method will emerge as a powerful and
practical tool for theoretical studies of electrostatic phenomena.

’METHODS

Continuous Constant pH Molecular Dynamics in Implicit
Solvent. To prepare for the discussion of the explicit-solvent
based CPHMD method, we first briefly review the CPHMD
method employing the generalized Born (GB) implicit-solvent
model; more details can be found elsewhere.9,13,26 Based on the
λ dynamics technique,14 CPHMD utilizes an extended Hamilto-
nian to simultaneously propagate spatial (real) and titration
(virtual) coordinates. Thus, the total Hamiltonian of the system
can be written as

H ðfrag, fθigÞ ¼ ∑
a

ma

2
_r2a + U

intðfragÞ +Uhybrðfrag, fθigÞ

+ ∑
i

mi

2
θ_2i + U�ðfθigÞ ð1Þ

where a = 1,Natom is the index for atomic coordinates, and i = 1,
Ntitr is the index for the continuous variables θiwhich is related to
the titration coordinate λi by

λi ¼ sin2ðθiÞ ð2Þ
Boundaries are naturally imposed on the titration coordinate
through the sine function, where λi = 0 corresponds to the
protonated state and λi = 1 corresponds to the deprotonated
state. For residues with two competing titration sites, a second
continuous variable can be included to allow interconversion
between proton tautomeric states. This is indicated in eq 1 by
bold θ.
In eq 1 the first term is the kinetic energy of the real system

(atoms), Uint is the internal potential energy which is indepen-
dent of titration, andUhybr is a hybrid effective energy term which
enables the coupling between conformational and protonation
degrees of freedom. In the GB-based CPHMD method, it is
written as a sum of the van der Waals, Coulombic, and GB
electrostatic solvation free energies:

Uhybrðfrag, fθigÞ ¼ UvdWðfrag, fθigÞ +UCoulðfrag, fθigÞ
+ UGBðfrag, fθigÞ ð3Þ

where the latter is given as27,28

UGB ¼ � 1
2∑a, b

1� e�krab

Ew

� �
qaqbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ab + RaRbexpð � r2ab=FRaRbÞ
p

ð4Þ
Here rab is the distance between two atoms, qa and qb are the
respective partial charges, ɛw is the dielectric constant for water,
and Ra and Rb are the effective Born radii, which can be
interpreted as the spherically averaged distance from the atom
to the dielectric boundary. To approximately account for the
effect of salt screening, a Debye�H€uckel term29,28 is included in
the above equation, where k2 = 8πq2I/ekbT, and I is the ionic



2619 dx.doi.org/10.1021/ct200146j |J. Chem. Theory Comput. 2011, 7, 2617–2629

Journal of Chemical Theory and Computation ARTICLE

strength. The dependence of UCoul and UGB on λ is realized
through linear scaling of the partial charges on titratable residues
between the protonated and the unprotonated forms. In an
analogous fashion, the van der Waals interactions involving
titratable hydrogens are also attenuated by the titration coordi-
nates. The last term in eq 1 represents the biasing energy acting
on the titration coordinates:

U�ðfθigÞ ¼ ∑
i
�UmodðθiÞ +UpHðθiÞ + UbarrðθiÞ ð5Þ

whereUmod is a potential of mean force function for deprotonat-
ing a model compound in solution along the titration coordi-
nate,Ubarr is a harmonic potential which suppresses the residence
time of unphysical intermediate values of λ, andUpH provides the
additional free energy for the protonation equilibrium due to
solution pH:

UpHðλiÞ ¼ logð10ÞkbTðpKmod
a � pHÞλi ð6Þ

where pKa
mod is the experimentally determined pKa of a model

compound in solution.
Continuous Constant pH Molecular Dynamics in Explicit

Solvent. The key to CPHMD and other continuous titration
methods is to simultaneously derive forces on the spatial and
titration coordinates. While it is straightforward to compute
forces on spatial coordinates in explicit-solvent simulations, there
is inherent difficulty in the latter due to the need for very accurate
estimate of the electrostatic desolvation free energy (see UGB in
eq 3). In fact, attempts to directly calculate the free energy of
charging titratable residues repeatedly during molecular dy-
namics by considering explicit interactions between solvent
molecules and solute have encountered severe convergence
problems in the context of both discrete7 and continuous
constant pH MD methods.6,30 Our own tests revealed that the
variance in the instantaneous forces on the titration coordinates
is up to an order of 100 kcal/mol per λ unit, whereas the forces
exerted from the pH biasing energy 1 pH unit away from the
model compound pKa is only 1.3 kcal/mol per λ unit. Therefore,
we decided to use a “mixed-solvent” scheme, where the GB
model is used to derive forces on the titration coordinates, while
the explicit-solvent model is used to propagate the spatial
coordinates. To enable a direct coupling between solvent dy-
namics and proton titration of solute, we retain the λ-dependent
scaling of van der Waals interactions involving titrating hydro-
gens and solvent molecules. An analogous “mixed solvent”
scheme has been developed by Baptista and co-workers and
applied in the context of the discrete constant pHMD for protein
titration studies.8 One important difference is that their scheme
does not include a direct (van der Waals) coupling between
solvent dynamics and solute titration.
The caveat of the “mixed solvent” scheme is that no formal

Hamiltonian exists and that potential artifacts may occur. Since
the solvation-related force on titration coordinates is treated in a
mean-field manner without explicitly accounting for the electro-
static interactions with nearby water molecules, inadequate or
lagged response of solvent to the change in the charge state of the
titrating site may occur. We expect this undesirable side effect to
be minimal because of the aforementioned van der Waals
coupling between solute protonation and solvent dynamics,
and because in continuous evolution of titration coordinates,
the energy change is small at each time step. Nevertheless, a
preventive fix is to increase the time step for λ coordinates

(currently the same as spatial coordinates), thereby allowing
relaxation of surrounding solvent molecules. Such a strategy has
been demonstrated to be very effective in the discrete constant
pH molecular dynamics simulations using the “mixed-solvent”
scheme.8 Another source for potential artifacts in this and other
“mixed-solvent” simulations is related to the fact that the total
energy is no longer strictly conserved, which may result in a drift
or pronounced fluctuation in temperature and energy of the
sytem. We will examine these potential artifacts later in detail.
pH-Based Replica-Exchange Sampling Protocol. It has

been noted previously9,13,10 that in constant pH molecular dy-
namics, the convergence of protonation-state sampling and result-
ing pKa values is slow due to the tight coupling of conformational
dynamics and protonation equilibria. To address this issue, the
temperature-based replica-exchange (T-REX) protocol31 was
applied to enhance conformational sampling in the GB-based
continuous26 and discrete32 constant pHmethods, which has led
to significant improvement in the convergence of calculated pKa

values. A straightforward implementation of the T-REX protocol
in explicit-solvent simulations is however not effective because of
the large number of replicas needed to account for the solvent
degrees of freedom.33 Recently, Simmerling and co-workers have
proposed a mixed-solvent scheme to reduce the number of
replicas,34 which may be incorporated into the explicit-solvent
CPHMDpresented in this work. One issue that was noted,34 and
is currently being addressed,19 is the distorted conformational
distribution due to inaccuracy of the underlying implicit-solvent
model. To avoid this problem, we decided to enhance the
sampling of protonation space directly by making use of a REX
protocol based on the pH-biasing energy (eq 6). This protocol is
a specific application of the reaction-coordinate replica-exchange
method.35

In the pH-based REX protocol, simulations of independent
replicas are run at the same temperature but different pH
conditions. The exchange of pH conditions between a pair of
replicas adjacent in pH is periodically attempted according to the
Metropolis criterion, which gives the exchange probability as

P ¼ 1 ifΔ e 0
expð �ΔÞ otherwise,

(
ð7Þ

where Δ represents the change in the total pH-biasing energy
defined as

Δ ¼ βðUpHðfθig; pH0Þ +UpHðfθ0
ig; pHÞ �UpHðfθig; pHÞ

�UpHðfθ0
ig; pH0ÞÞ ð8Þ

Here β is the inverse temperature, the first two terms are the pH-
biasing potential energies (eq 6) for the first and second replicas
after the exchange, and the last two terms are the corresponding
energies before the exchange.

’SIMULATION DETAILS

Model Compounds. As in the previous work,13,26 model
compounds for Asp, Glu, His, and Lys side chains are single
amino acids acetylated at N-terminus (ACE), and N-methyla-
midated at C-terminus (CT3). The model pKa values (used in
eq 6) were 4.0, 4.4, and 10.4 for Asp, Glu, and Lys, respectively.36

Themodel pKa of His was taken as 6.6 and 7.0 for the Nδ and Nɛ
sites, respectively.37 The model compound for the C-terminus
attached to phenylalanine (CT-Phe) in HP36 was the acetylated
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C-terminal hexapeptide (KEKGLF) fromHP36 with a measured
pKa of 3.2.

38 The parameters in the potential of mean force
function Umod were determined using thermodynamic integra-
tion (TI) in explicit solvent.13 Parameterization simulations at
each combination of λ and x for double-site titratable residues
were run for 1 ns. In the TI procedure, the protonation states of
other titratable residues in the model peptide for CT-Phe were
fixed because their pKa’s are at least 1 pH unit higher than the
C-terminus. Except for CT-Phe, the ionic strength in the GB
calculation was set to zero during the TI simulations following
the previous protocol.13 For CT-Phe the ionic strength was
150 mM in accord with experiment.38

Proteins. Five proteins were studied in this work: the 45-
residue binding domain of 2-oxoglutarate dehydrogenase multi-
enzyme complex, BBL (PDB: 1W4H), the 36-residue subdomain
of villin headpiece, HP36 (PDB: 1VII), the 56-residueN-terminal
domain of ribosomal L9 protein, NTL9 (PDB: 1CQU), the 149-
residue, of which 129 residues were resolved in the crystal
structure, hyperstable variant of staphyloccal nuclease Δ+PHS,
SNase (PDB: 3BDC), and the 129-residue hen egg white
lysozyme, HEWL (PDB: 2LZT). For all structures, the HBUILD
facility of CHARMM39 was used to add hydrogens. Unless
otherwise specified, no explicit ions were added in the pH-REX
simulation because of the small simulation box and the low ionic
strengths used in experiment. See later discussions. The ionic
strengths in the GB calculations were set to 200, 150, 100, 100,
and 50 mM for BBL, HP36, NTL9, SNASE, and HEWL,
respectively, consistent with the experimental conditions.38,40�43

Unless otherwise noted, both N- and C-termini of proteins were
left in the free, charged form. For SNase, the published crystal
structure was missing residues 1�6 and 142�149. To avoid
potential errors, the structure was acetylated at N-terminus and
amidated at C-terminus. ForNTL9, the C-terminus was amidated
in accord with experiment.41

Simulation Protocol. We have implemented the explicit-
solvent CPHMD method in a developmental version of
CHARMM (c35b3)39 and the pH-REX sampling scheme in
the MMTSB tool set.44 All of the simulations described in this
work were performed with the all-atom CHARMM22/CMAP
force field for proteins45 and the CHARMMmodified version of
the TIP3P water model.46 The solvation forces on the titration
coordinates were calculated using the GBSW implicit-solvent
model28 with the refined18 atomic input radii of Nina et al.47 The
SHAKE algorithm was applied to all hydrogen bonds and angles
to allow a 2 fs time step. Nonbonded electrostatic interactions
were calculated using the particle-mesh Ewald summation with a
charge correction to reduce pressure and energy artifacts for
systems with a net charge.48 In the GB calculation, all input
parameters were identical to the previous work.26

All simulations were performed under ambient pressure and
temperature conditions using the Hoover thermostat49 with
Langevin piston pressure coupling algorithm.50 Proteins and
model compounds were built and then placed in a truncated
octahedron water box of a specified size such that the distance
between the solute and the edges of the box was at least 14 Å.
Water molecules within 2.6 Å of any heavy atom of the solute
were deleted. Energyminimization was carried out in three stages.
First, a harmonic restraint with a force constant of 50 kcal/mol 3Å
was applied to solute heavy atoms, and the structure was energy
minimized with 50 steps of the steepest descent (SD) and 200
steps of the adoptive basis Newton�Ralphson (ABNR)methods.
Then the force constant was reduced to 25 kcal/mol 3Å, and the

same minimization protocol was applied. Finally, the force
constant was reduced to 10 kcal/mol 3Å, and the structure was
energy minimized with 5 SD and 20 ABNR steps.
In the pH-REX simulation of a model compound, three pH

replicas, one at the reference pKa and two at 1 pH unit above and
below the reference value, were used. Three independent pH-
REX simulations were conducted, where each REX simulation
lasted 1.2 ns per replica and the first 200 ps was discarded in the
pKa calculation. For proteins, one pH-REX simulation was
performed. In the pH-REX protocol, the pH spacing was 1 pH
unit, and the pH range extended at least 1 unit above and below
the highest and lowest experimentally determined pKa value for
the protein. Specifically, for BBL the pH range is 2�9, for HP36,
NTL9, and SNase it is 0�7, and for HEWL it is 0�9. Each pH
replica was subjected to 4 ps of restrained equilibration without
pH exchange, where a harmonic potential with the force constant
of 10 kcal/mol 3Å was applied to all solute heavy atoms. Follow-
ing equilibration, unrestrained simulation with the pH-REX
protocol was performed. The exchange in pH was attempted
every 100 dynamic steps or 0.2 ps for model compound and
500 steps or 1 ps for protein simulations. The success rate for
exchanges was at least 40%. Protein simulations lasted 2 ns, and
the first 0.25 ns was discarded in the analysis and the pKa

calculation. Simulation of HP36 was run for 4 ns in order to
observe pKa behavior at longer simulation times.
Calculation of pKa Values.To calculate the pKa of a titratable

site, we first recorded the population of protonated (λ < 0.1,
Nprot) and unprotonated (λ > 0.9, Nunprot) states from simula-
tions of different pH replicas. The resulting unprotonated
fractions S at multiple pH values were then fitted to the following
modifiedHill equation, in accord with the commonly usedmodel
for fitting pH-dependent NMR chemical shifts:42

SðpHÞ ¼ sA� + sHA10nðpKa � pHÞ

1 + 10nðpKa � pHÞ ð9Þ

where n is the Hill coefficient, which represents the slope of the
transition region of the titration curve,42 sA� and sHA are fitting
parameters, which represent the extrapolated S values at extreme
acidic and basic pH conditions for the observed titration event.
Equation 9 becomes the Hill equation when protonation or
unprotonation is complete in the simulated pH range, e.g., sA�= 1
and sHA = 0, which was the case for nearly all residues.
Occasionally, for acidic residues with significant negative pKa

shifts, sHA deviated significantly from 0 as a result of incomplete
protonation at the lowest pH condition. Finally, to account for
the small systematic deviations of calculated pKa’s of model
compounds relative to the reference values, we made the
following postcorrections: Asp (+0.2), Glu (+0.3), and His
(�0.3) to the pKa values of proteins.

’RESULTS AND DISCUSSION

Stability of Trajectory. Before applying the explicit-solvent
CPHMD to titration simulations, it is important to examine
potential artifacts due to caveats in the mixed scheme and the
change in total net charge. As mentioned earlier, the proposed
method does not conserve energy because the protonation states
of titratable groups are changed using an implicit description of
the electrostatic interactions with solvent, which may lead to drift
or increased fluctuation in temperature and energy of the
simulated system. Another source for potential artifacts is related
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to the fluctuating net charge on the system during proton
titration. In the default implementation of Ewald summation a
neutralizing plasma, which is a uniform distribution of a charge
equal and opposite to the net charge, is added to the summation
to avoid divergence in Coulomb energy for periodic systems.51

This background plasma has been noted to introduce pressure
artifacts for small net-charged systems, which could dramatically
affect the dynamics of simulations at constant pressure.48 Brooks
and co-workers showed that the artifacts are drastically reduced
by invoking a charge correction term.48 We applied this correc-
tion term in all of our simulations.
To assess the extent of the spurious effects, we examined the

temperature, pressure, and total potential energy of the system
along the trajectory using two protocols. In the first protocol, a
blocked lysine was subjected to CPHMD titration at pH of 10.4.
In the second protocol, a fixed-charge simulation was conducted
using a neutral lysine with an otherwise identical simulation
setup. As shown in Figure 1, the time series for temperature,
pressure, and potential energy in the CPHMD titration of lysine
(with 1:1 protonated and deprotonated states) is virtually
indistinguishable from the conventional simulation of neutral
lysine with fixed protonation state. The pressure fluctuations are
quite large for both systems, but this is expected because of the
small size of the simulation box. Also, any energy leaking into or
out of the system due to the nonconservative change in proton-
ation state is not readily apparent, as there is no visible drift in the
total potential energy for this system. To further verify the
stability of pressure, temperature, and potential energy, we
performed CPHMD titrations for other model compounds and
proteins. No systematic drift or increased fluctuation was ob-
served in any of the three quantities at the simulation time scales
(several nanoseconds) for either model compounds or proteins.
Thus, we conclude that, with the net charge correction and the
Hoover thermostat, potential artifacts in pressure, temperature,
and potential energy are negligible.
Response of Explicit Solvent to Titration. Although the

van der Waals interactions between titratable hydrogen atoms

and solvent molecules are explicitly described, the lack of explicit
treatment of electrostatic interactions may have an undesirable
effect such that water molecules cannot adjust quickly to a low-
energy position following a change in the titration coordinate,
resulting in an unrealistic arrangement of solvent around the
titrating site. To examine the response of explicit water molecules
to solute titration, we calculated the radial distribution functions
(RDF) for the charged (protonated) and neutral (unprotonated)
lysine from the (conventional) simulations (one for charged and
one for neutral) and compared them with the RDF’s from one
CPHMD titration simulation. The latter simulation was con-
ducted at a pH condition such that the charged and neutral
populations are almost equal. As seen in Figure 2, the positions of
maxima andminima in the RDF’s of the charged and neutral forms
of Lys are identical in the conventional simulations and the
CPHMD titration, which demonstrates that the water structure
is qualitatively indistinguishable. To further investigate the reor-
ientation of water molecules in response to titration, we took a
closer look at the solute�solvent interactions that give rise to the
peaks of the RDF’s. Interestingly and reassuringly, the relative
orientation of lysine and the nearby water is identical in the
conventional simulations and the CPHMD titration. Figure 2 also
shows the representative snapshots of the charged and neutral
lysines interacting with an adjacent water molecule. When lysine is
charged, it acts as a hydrogen-bond donor, interacting with the
oxygen atomof water.When lysine is neutral, it acts as a hydrogen-
bond acceptor, interacting with the hydrogen atom of water.
Despite the remarkable agreement in the positions of maxima

and minima of the RDF’s, the amplitude of the peaks from the

Figure 1. Instantaneous pressure, potential energy, and temperature in
the explicit-solvent CPHMD simulation of lysine at pH of 10.4 (blue)
and in the simulation of the neutral lysine with fixed protonation state
(red).

Figure 2. Response of explicit solvent to titration. Radial distribution
function for the titratable nitrogen atom of lysine to the hydrogen (blue)
or oxygen (red) atom of water. Dashed lines are from the simulation with
the fixed protonation state; solid lines are from the CPHMD titration
with protonated (charged) and deprotonated (neutral) states coexisting.
Snapshots of the interacting water and lysine are shown. The charged
lysine donates a hydrogen bond to water (upper), while the neutral
lysine accepts a hydrogen bond from water (lower). Simulations with
fixed protonation states were run for 1 ns. The CPHMD titration time
was 2 ns, and the deprotonated fraction was about 0.5. The inset gives
radial distribution functions when a very stringent cutoff (λ > 0.99) is
used to define the deprotonated state (green) and when λ values are
updated every 10 MD steps in addition to the stringent cutoff (orange).
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CPHMD titration is reduced as compared to those from con-
ventional simulations. This reduction in the amplitude of RDF
can be mainly attributed to the slight lagging in water equilibra-
tion following a switch in protonation state and to a lesser extent
the cutoff chosen in our definition of protonated and deproto-
nated states. The inset in Figure 2 shows that with a very
stringent cutoff (λ > 0.99) there is small improvement in the
amplitude of the RDF. If we use the stringent cutoff combined
with a λ update of every 10 MD steps, the amplitude of the RDF
is dramatically increased to nearly superimpose on the result
from the simulation with fixed protonation state. If the frequency
of switching protonation state is much slower, then the RDF’s
would exactly match those calculated from the simulations at
fixed charge. Baptista and co-workers showed that in the MD
simulation, the reorganization time of water following the most
dramatic protonation event from the fully neutral to doubly
charged state of succinic acid is 1�3 ps.8 Considering the average
residence time at either protonation state in our simulation was
on average about 1 ps and the transition between protonation
states is continuous, water molecules have sufficient time to rotate
to a favorable position following titration. Nevertheless, the data
of lysine titration shows that the update frequency or time step for
propagation of titration coordinates (currently set to be the same
as the propagation of conformational dynamics) can be increased
to ensure the full extent of water relaxation. A potential drawback
is the slow down of protonation-state sampling.
Convergence and Accuracy of Model Compound Titra-

tions. Before attempting to perform titration simulations of
proteins, it is important to assess the required simulation time
to reach converged values for the unprotonated fraction (S) of
model compounds as well as the accuracy and the precision of the
calculated pKa’s. We first examine titration simulations con-
ducted at a single pH value. Explicit-solvent CPHMD titration
of a blocked lysine was performed at the pH equal to the
reference pKa of 10.4. The S values stabilized at about 5 ns,
and there was little change over the remainder of the 10 ns

simulation. We repeated the simulation twice with different
randomly assigned velocities and observed a similar convergence
time. Similar results were also found for the blocked Asp, Glu,
and His which have two titration sites. The lengthy simulation
time (5 ns) required for the convergence of pKa values for single
amino acids indicates the need for accelerated sampling. To
directly enhance the protonation-state sampling, we applied the
pH-based replica-exchange protocol with three replicas placing at
pH values of 9.4, 10.4, and 11.4 in the lysine titration. The S
values were converged within 1 ns for all model compounds,
demonstrating significant acceleration over the single pH simula-
tion. We summarize these results in Table 1. The uncertainty or
random error in the calculated model compound pKa’s ranges
from 0.02 to 0.11, which is similar to the range found in
potentiometric and NMR titration experiments (see Table 1).
To further assess convergence, we examine the reproducibility of
S values and the quality of fitting to the Henderson�Hasselbach
equation. In Figure 3 results of three independent pH-REX
simulations (1 ns/replica) for Asp, Glu, His, and Lys are shown.
The error in the S value ranges from 0.02 to 0.12, and the
χ-square value of the fitting is virtually 0. Thus, the above
data demonstrate that 1 ns pH-REX titrations offer converged
sampling for protonation equilibria.
Next we examine the accuracy of the calculated pKa’s of model

compounds. As compared to the target reference values, the
pKa’s of Asp, Glu and Lys are underestimated by 0.2�0.3 pH
units, while that of His is overestimated by 0.3 pH units

Table 1. Calculated and Experimental pKa Values of Model
Compounds

residue calcda calcdb refc pace labd

Asp 3.79 ( 0.09 3.77 ( 0.02 4.0 3.67 ( 0.04

Glu 4.09 ( 0.11 4.05 ( 0.01 4.4 4.25 ( 0.05

His 6.89 ( 0.08 6.89 ( 0.01 6.6/7.0 6.54 ( 0.04

Lys 10.21 ( 0.02 10.41 ( 0.02 10.4 10.40 ( 0.08

CT-Phe 3.38 ( 0.06 3.2e �
aResults using the standard simulation protocol where the λ value was
updated every MD step and the simulation length was 1.2 ns per pH
replica. The average pKa’s obtained by fitting S data from three
independent pH-REX titrations are listed along with one-half of the
difference between the highest and lowest calculated values. bResults
from test simulations where the λ value was updated every 10 MD steps
and the simulaton length was 10 ns per pH replica. cMeasured pKa’s
based on the blocked single amino acids from Nozaki and Tanford.36

These model pKa’s were used in the pH biasing energy (eq 6). For His,
the listed pKa’s are the microscopic values for δ and ɛ sites. The resulting
macroscopic pKa is 6.45.

13 Errors in the measurements are typically
(0.1�0.2.57 dThe most recent data from Pace lab based on potentio-
metric titrations of alanine pentapeptide Ac-AA-X-AA-NH2 , where X
denotes the titrating residue.57 eMeasured pKa of the C-terminal
carboxylic acid in the C-terminal peptide of HP36 (sequence KEKGLF)
based on the NMR titration data from Raleigh lab.38

Figure 3. Titration curves for the blocked model compounds from the
explicit-solvent CPHMD simulations. Three independent pH-REX
simulations were performed. Each REX simulation utilized three pH
replicas with each replica running for 1 ns. The average unprotonated
fractions S (calculated from the three runs and shown as circles) at three
pH values were fit to the Hendenson�Hasselbach equation and shown
as lines. At each pH, an error bar indicates the range of the calculated S
values, which is the largest at the pH closest to the pKa value. These
ranges are 0.10, 0.12, 0.10, and 0.02 for Asp, Glu, His, and Lys,
respectively.
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(Table 1). There are two possible sources for the systematic
deviations. The first possibility has to do with artifacts in
simulations of net charged periodic systems using Ewald poten-
tial. Even with the net charge correction, Brooks and co-workers
noted that the charged form may be slightly favored in the free
energy simulation of a single ion, and this deviation depends on
the size of the simulation box.48 Our tests however showed that
increasing the box size did not affect the pKa results for model
compounds. We further ruled out the net charge related artifact
because the same systematic errors, e.g., underestimation of the
pKa’s for Asp andGlu and overestimation of the pKa for His, were
also observed in the GB-based CPHMD simulations.26

The systematic errors in pKa’s indicate that the deprotonation
free energy based on the potential of mean force function, which
is determined by the thermodynamic integration (TI) procedure,
does not exactly match that in the titration simulation. One
possible reason for the discrepancy is the difference in water
relaxation because in the TI simulation water has more time to
relax at a specific λ value than in the titration simulation. To
investigate this issue, we repeated the titrations with slower
λ dynamics, updating λ every 10 MD steps. Interestingly,
the deviation for the pKa of Lys is abolished, but the deviation
for Asp, Glu and His remained. Examination of the λ and x
trajectories revealed that the two degenerate protonation states
(doubly deprotonated in the case of Asp or Glu and doubly
protonated in the case of His) occasionally experience prolonged
residence time. In the absence of extensive analysis and con-
sideration, we suggest that one route for correcting this bias is to
make the barrier in the x (tautomeric) dimension a function of
λ such that when λ approaches the degenerate protonation state,
interconversion becomes increasingly difficult. This is clearly a
limitation that needs to be addressed in our future work. Never-
theless, since this bias is present in both model compound and
protein titrations, the effect on the calculated pKa shifts is
negligible. To correct for the systematic deviations, we added
post corrections for all the calculated pKa values of proteins (see
Simulation Details Section).
Enhanced Sampling of Protonation and Conformational

States of Proteins. We have demonstrated that the pH-REX
protocol significantly accelerates the pKa convergence for model
compounds. Now we show that the pH-REX protocol signifi-
cantly enhances sampling in both protonation and conforma-
tional space for proteins. Take the titration of HP36 as an
example. Figure 4 displays the time series of the unprotonated

fraction for Asp44 from one pH-REX simulation and three single
pH simulations. In the single pH simulations, Asp44 was trapped
in the unprotonated form at pH 2.3, as a result of the persistent
salt-bridge interaction with Arg15. In the pH-REX simulation,
however, both protonated and unprotonated forms of Asp44 were
sampled at pH 2 and 3, because the simulation was able to capture
both formation and disruption of the salt bridge. Thus, by making
use of the direct coupling between protonation events and
conformational dynamics, the pH-REX protocol allows the pro-
tein to overcome local energy barriers, while retaining the correct
thermodynamic distribution. In this regard, pH-REX has a similar
effect as the temperature-based REX protocol, which significantly
accelerates the sampling convergence of both protonation and
conformational states in the GB-based CPHMD simulations.26

Convergence and Overall Accuracy of Protein Titrations.
In order for titration simulations to be practical, protonation-state
sampling needs to converge within a reasonable amount of time.
While we have shown that 1 ns of pH-REX titration is sufficient for
obtaining converged pKa’s for model compounds, we also ob-
served that 1 ns titration also yields converged pKa’s for proteins,
despite the fact that the degrees of freedom in a protein system
may be orders of magnitude greater as compared to a model
compound. This seemingly surprising observation is consistent
with data from the GB-basedCPHMD simulations26,12 and can be
attributed to the fact that pKa’s are mainly determined by local
environment. To illustrate the rapid convergence in protein
titrations, we monitor the times series of the S value and pKa as
well as the quality of fitting. In Figure 4 we can see that the S values
for HP36 stabilize at 1 ns. The small fluctuation after 1 ns does not
cause noticeable change in the pKa value because of the logarithmic
relationship between S and pKa. Figure 5A shows that, after only a
few hundred ps, the calculated pKa’s of the two histidines in BBL
become stable and do not change in the remaining simulation

Figure 4. Enhancement of protonation-state and conformational sam-
pling for protein titrations. Cumulative unprotonated fraction of Asp44
of HP36. Data from the pH-REX simulations are shown in red for replica
at pH of 2 and orange for replica at pH of 3. Data from three independent
single pH simulations at pH 2.3 are shown in blue.

Figure 5. Convergence of protein titrations. (A) Time series of the
calculated pKa’s for BBL from the explicit-solvent CPHMD simulations
with pH-REX protocol. The S values at pH of 7 and 6 are used forHis142
andHis166, respectively. (B) Titration data based on the 1 ns simulation
and best fits to the modified HH equation (eq 9).
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time. This is encouraging given the fact that one of the histidines is
buried and as suchmay requiremore sampling. Another indication
of convergence is the quality of fitting to the HH equation.
Figure 5B shows nearly perfect fits (R2 > 0.95) for both residues
based on the 1 ns titration data.
To assess the overall accuracy of the explicit-solvent CPHMD

method, we performed titration on five test proteins, HP36, BBL,
NTL9, SNase, and HEWL and compared the calculated pKa’s
with experiment as well as the GB-based simulations, where the
latter used the same pH-REX protocol and salt as well as
temperature conditions. The results are presented in Tables 2, 4,
and 5 along with the estimates of statistical uncertainty, which
were calculated as half of the difference between the pKa’s
calculated from the first and last half of the 750 ps simulation.
The total simulation length was 1 ns, and the data from the first
250 ps were discarded. As a validation of convergence, the pKa’s
calculated using 2 ns simulations are also listed. In reference to
experimental data, the overall root-mean-squared deviation
(rmsd) from the explicit-solvent titrations is 0.74, which is
slightly lower than the rmsd from the GB-based titrations
(0.82). As a more informative measure of calculation accuracy,
linear regressions of the calculated vs measured pKa shifts are
shown in Figure 6 for the explicit-solvent and GB simulations.
While the R2 value and the slope are 0.48 and 0.61, respectively,
from the explicit-solvent titrations, they are 0.23 and 0.36 from
the GB titrations. Since the correlations are relatively low, we
repeated the regression analysis by removing the data points with
the four largest absolute pKa shifts. The R2 value from the
explicit-solvent simulations dropped from 0.48 to 0.25, while
R2 from the GB simulations also dropped dramatically, from 0.23

to 0.06. Thus, the results show that the improvement due to
explicit solvent is robust. Since the data set comprised of mainly
acidic residues, the slopes being below 1 suggest that both
simulations overestimate the negative pKa shifts or underesti-
mate the pKa’s. A close examination of the correlations reveals
that the significantly improved agreement with experiment in the
explicit-solvent titrations is due to reduction of relatively large
errors for several groups. Thus, overall the explicit-solvent
simulations offer an increased accuracy for predicting protein
pKa’s. The reasons in specific cases will be delineated next.
Small Proteins BBL, HP36, and NTL9. We first examine the

performance of the explicit-solvent CPHMD titrations for three
small proteins with 36�56 residues and all R as well as mixed
R�β topologies. The results are listed in Table 2 along with the
GB titration data. The convergence of both explicit- and implicit-
solvent titrations is excellent. The largest difference between the
pKa’s calculated from the first and the last half of the simulation is
0.3 units. Extending the explicit-solvent simulations to 2 ns leads
to a maximum pKa change of 0.15 units and does not improve the
agreement with experiment. Overall, the explicit-solvent data are
similar to the GB data. The rms as well average absolute and
maximum deviations from experiment in the explicit-solvent
titration are 0.50, 0.44 and 0.87, respectively, similar to the GB
titration. The deviations from experiment arise from the over-
estimation of the negative pKa shifts of acidic residues in both
explicit- and implicit-solvent titrations.
We examine two cases where the pKa’s from the explicit-

solvent titration are at least 0.6 pH units different from the GB
titration. In both cases, the explicit-solvent titration improves
agreement with experiment. Asp23 is a residue where the explicit-
solvent titration reduces the overestimation of the pKa downshift
of Asp23 from 0.9 to 0.3 units. This is because the salt-bridge

Table 2. Calculated and Experimental pKa Values in HP36,
BBL, and NTL9

residue explicit solventb GB expta

BBL

His142 6.94 ( 0.06 (6.83) 6.47 ( 0.03 6.47 ( 0.04

His166 5.78 ( 0.04 (5.90) 4.84 ( 0.19 5.39 ( 0.02

HP36

Asp44 2.66 ( 0.09 (2.77) 3.17 ( 0.11 3.10 ( 0.01

Glu45 3.36 ( 0.31 (3.28) 3.49 ( 0.09 3.95 ( 0.01

Asp46 3.03 ( 0.09 (3.12) 3.51 ( 0.03 3.45 ( 0.12

Glu72 3.50 ( 0.21 (3.45) 3.53 ( 0.10 4.37 ( 0.03

CT-Phe 3.31 ( 0.20 (3.16) 3.16 ( 0.14 3.09 ( 0.01

3.24 ( 0.12

NTL9

Asp8 2.83 ( 0.07 (2.80) 3.19 ( 0.20 2.99 ( 0.05

Glu17 3.57 ( 0.14 (3.50) 3.67 ( 0.13 3.57 ( 0.05

Asp23 2.75 ( 0.16 (2.82) 2.11 ( 0.11 3.05 ( 0.04

Glu38 3.38 ( 0.30 (3.40) 3.70 ( 0.19 4.04 ( 0.05

Glu48 3.47 ( 0.17 (3.42) 3.74 ( 0.20 4.21 ( 0.08

Glu54 3.65 ( 0.22 (3.49) 3.64 ( 0.08 4.21 ( 0.08

avg abs dev 0.44 (0.45) 0.36

rmsd 0.50 (0.52) 0.47

max abs dev 0.87 (0.92) 0.99
a pKa’s determined by NMR titration for BBL,40 HP36,38 and NTL9.41
bValues in parentheses were obtained from the 2 ns simulation.

Figure 6. Comparison between calculated and experimental pKa values
and pKa shifts relative to model values. Calculated pKa values from the
explicit-solvent and GB-based titrations are shown in A and B, respec-
tively. Calculated pKa shift from explicit-solvent and GB-based titrations
is shown in C and D, respectively. Regression line (solid), slope, and R2

value are shown on each plot as wells as y = x line (dashed) to facilitate
visual comparison.
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interaction with the nearby amino terminus was overstabilized in
the GB simulation, a known problem in GB models.13 His166 is
the only buried residue in this data set. While being excluded
from solvent, it also interacts with three nearby lysines. Thus,
both desolvation and electrostatic repulsion destabilize the
protonated or charged form of His166, leading to a downward
pKa shift relative to the model value. This is reflected in the
experimental pKa of 5.39, about 1.1 pH units lower than the
model value. In the explicit-solvent titration the pKa shift is
underestimated by 0.41 pH units, while it is overestimated in the
GB titration by 0.55 pH units. Detailed analysis of the trajectories
reveals the major cause of the difference to be structural.
Figure 7A shows that in the explicit-solvent simulation, the
conformations stayed close to the starting structure with the
backbone rmsd centered at 2 Å. In the GB simulation, however, a
conformational cluster developed that significantly deviates from
the initial structure with the backbone rmsd centered at 4.9 Å.
Figure 7B shows that while His166 is slightly exposed to solvent
in the explicit-solvent simulation, it is fully enclosed in the GB
simulation. Examination of the average distances to the nearby
lysines reveals that the Coulomb interactions in both explicit-
solvent and GB simulations are similar. Therefore, we suggest
that the overestimation of the pKa shift for His166 in the GB
simulation is mainly due to the overestimation of desolvation
penalty as a result of exaggerated cloistering of His166. Reduced
mobility, especially of buried sites, has been also observed in
other GB simulations.24

Although for these small proteins the explicit-solvent pKa

calculations are quite accurate, it is important to further discuss
another issue concerning the explicit-solvent CPHMD method.
Since the net charge is changing and may become large depend-
ing on the protonation state of the protein, we examined the
effect of adding an approximate number of counterions to
minimize the net charge of the system in all pH conditions.
Because of the large number of basic residues of NTL9 and the

resulting net positive charge, NTL9 is an ideal test case to
quantify the magnitude of the effect. As shown in Table 3 the
calculated pKa values in the simulations with neutralizing coun-
terions are virtually identical to those where no net charge
neutralizing ions were added. Thus, at least for the short
simulation time required to obtain converged pKa values, the
data indicate that it is not necessary to include neutralizing ions.
SNase. The calculated pKa’s for a larger protein, a hyperstable

variant of the 149 residue SNase, are summarized in Table 4.

Figure 7. Structural comparison of BBL from explicit-solvent (solid)
and GB (dashed) simulations at pH 5. (A) Probability distributions of
backbone rmsd. (B) Ratio of the solvent accessible surface area (SASA)
of His166 in BBL relative to the solvent-exposed value.

Table 3. Effects of Adding Explicit Ions on Calculated pKa

Values in NTL9

residue calcdb ionsc expta

Asp8 2.83 ( 0.07 2.91 ( 0.31 2.99 ( 0.05

Glu17 3.57 ( 0.14 3.38 ( 0.19 3.57 ( 0.05

Asp23 2.75 ( 0.16 2.98 ( 0.16 3.05 ( 0.04

Glu38 3.38 ( 0.30 3.48 ( 0.04 4.04 ( 0.05

Glu48 3.47 ( 0.17 3.42 ( 0.34 4.21 ( 0.08

Glu54 3.65 ( 0.22 3.52 ( 0.25 4.21 ( 0.08

avg abs dev 0.41 0.40

rmsd 0.48 0.49

max abs dev 0.73 0.78
a pKa’s determined by NMR titration.41 bCalculated pKa’s from explicit-
solvent titrations without counterions (as listed in Table 2). cCalculated
pKa’s from simulations with an identical set up except for the addition of
Cl� ions such that the net charge of the protein at all pH conditions was
minimimzed.

Table 4. Calculated and Experimental pKa Values in SNase

residue explicit solventc GB expta

Glu10 3.14 ( 0.09 (3.33) 3.47 ( 0.01 2.82 ( 0.07

Asp19 2.29 ( 0.15 (2.49) 3.51 ( 0.02 2.21 ( 0.07b

6.54 ( 0.06

Asp21 3.45 ( 0.28 (3.55) 3.59 ( 0.00 3.01 ( 0.01

6.54 ( 0.02b

Asp40 3.13 ( 0.23 (3.35) 3.37 ( 0.09 3.87 ( 0.09

Glu43 3.83 ( 0.08 (3.76) 3.45 ( 0.00 4.32 ( 0.04

Glu52 3.92 ( 0.01 (3.88) 3.52 ( 0.02 3.93 ( 0.08

Glu57 3.67 ( 0.16 (3.64) 3.52 ( 0.01 3.49 ( 0.09

Glu67 3.66 ( 0.06 (3.67) 3.45 ( 0.06 3.76 ( 0.07

Glu73 3.53 ( 0.11 (3.54) 3.36 ( 0.13 3.31 ( 0.01

Glu75 3.54 ( 0.27 (3.58) 3.40 ( 0.06 3.26 ( 0.05

Asp77 <0.0 (<0.0) 3.14 ( 0.03 <2.2

Asp83 2.54 ( 0.12 (2.84) 3.50 ( 0.04 <2.2

Asp95 2.71 ( 0.57 (2.97) 3.37 ( 0.06 2.16 ( 0.07

Glu101 3.64 ( 0.11 (3.67) 3.51 ( 0.01 3.81 ( 0.10

Glu122 3.61 ( 0.03 (3.75) 3.57 ( 0.01 3.89 ( 0.09

Glu129 3.74 ( 0.11 (3.71) 3.57 ( 0.12 3.75 ( 0.09

Glu135 3.39 ( 0.20 (3.44) 3.56 ( 0.03 3.76 ( 0.08

avg abs dev 0.46 (0.48) 0.63

rmsd 0.86 (0.85) 0.96

max abs dev 3.09 (3.00) 2.95
a pKa determined by NMR titration.42 bThe major transition when the
experimental data was fit to a two pKa model. cValues in parentheses
were obtained from the 2 ns simulation.
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SNase is a good test system because the structure-based con-
tinuum calculations gave very poor agreement with experiment
presumably due to the lack of explicit treatment of protein
flexibility.42 Overall, the explicit-solvent titration offers a better
agreement with experiment. The rms as well as the average
absolute and maximum deviations in the explicit-solvent titration
are 0.86, 0.46, and 3.09, respectively, while they are 0.96, 0.63,
and 2.95 in the GB titration. Extending the explicit-solvent
simulations to 2 ns gives results that are very similar.
We first examine Asp95, for which the explicit-solvent

titration was able to reduce the overestimation of pKa from
the GB-based titration from 1.21 to 0.55 units. The major
reason for the improvement is related to the strength of the
interaction with Lys70. In the crystal structure obtained at pH
of 8, the minimum distance between the charge centers on
Asp95 and Lys70 is 4.7 Å, which suggests a salt-bridge interac-
tion. Figure 8 gives the probability distribution of the minimum
distance between the charge centers from the explicit-solvent
and the GB simulations. Although the average distance is
identical at 6.1 Å, the difference lies in the distribution. The
GB simulation sampled a unimodal distribution centered
around 7 Å. By contrast, the explicit-solvent simulation sampled
two distinct populations, one centered at 2.8 Å, representing
the conformations where Asp95 and Lys70 are closely asso-
ciated, and another one centered at 7.1 Å, representing the
conformations where the two side chains are rotated away from
each other. The bimodal distribution seen in the explicit-
solvent simulation is a direct result of including discrete solvent
molecules and reflects a more realistic description of the ion
pair interaction. However, the GB simulation neglects solvent
granularity and models the ion pair interaction in a mean-field
manner, which results in a less tight salt-bridge pairing and an
underestimation of the pKa shift for Asp95.
Another case where the inclusion of explicit solvent resulted in

the more accurate pKa calculation is for Asp77. The experimental
measurement provides an upper bound of 2.2 for the pKa. In the
explicit-solvent simulation, the pKa was calculated to be in the
correct range, but in the GB simulation, the pKa shift was
underestimated by at least 1 pH unit. Asp77 is within a hydro-
gen-bond distance of two backbone amide hydrogens of Asn119
and Thr120, which are located in a loop connecting a β-sheet
motif to anR-helix (Figure 9, upper left snapshot). In Figure 9 we
monitor the minimum distance between the carboxylate oxygens
of Asp77 and the backbone amide hydrogen of Asn119 or
Thr120. In the explicit-solvent simulation the distance was stable,

fluctuating around 2 Å during the entire trajectory, revealing that
the backbone hydrogen bonding between Asp77 and Asn119/
Thr120 was intact. However, in the GB simulation, this interac-
tion was disrupted as a result of the high mobility of the afore-
mentioned loop (see Figure 9, upper right snapshot). This
analysis suggests that the underestimation of the pKa shift for
Asp77 in the GB simulation is due to the distortion of local
structure.
The largest pKa error from the explicit- and implicit-solvent

titrations is for Asp21, which interacts with Asp19 on the other
end of the β-hairpin. NMR titration data showed two distinct
transitions for the two residues.42 The major transitions have the
pKa of 2.21, assigned to Asp19, and 6.54, assigned to Asp21.

42 The
latter is the only upward shifted pKa relative to themodel value for
SNase. Both the explicit- and implicit-solvent titrations were not
able to reproduce the direction of the pKa shift for Asp21 and
underestimated the pKa by about 3 pH units, although the
explicit-solvent simulation was able to differentiate between the
two pKa’s. During the explicit-solvent simulation at pH of 3, the
average distance between the carboxylate oxygens of both resi-
dues was 3.7 Å. This close proximity was stabilized by a persistent
hydrogen bond between the carboxylate oxygen of Asp19 and the
backbone amide nitrogen of Asp21. However, the coupled
titration behavior with two transitions was not observed when
fitting the data for either Asp19 or Asp21. The only indication of
coupling was a low Hill coefficient (0.56) for Asp19, which
indicates anticooperativity, consistent with experiment.42We also
examined the GB titration data. The interaction between Asp19
and Asp21 was very strong but both residues titrated with the
same pKa, and the Hill coefficients were about 1. Thus, compared
to the GB titration, the explicit-solvent simulation was able to
provide, to some extent, the description of the coupled proton
binding events for Asp19 and Asp21. However, the explicit-

Figure 8. Probability distribution of theminimum distance between the
carboxylate oxygens of Asp95 and amino nitrogen of Lys70 of SNase
from the explicit-solvent (solid) and GB (dashed) titrations at pH of 3.

Figure 9. Comparison of the local environment of Asp77 of SNase from
the explicit- and implicit-solvent titrations at pH 3. Upper panel: In the
initial structure Asp77 forms backbone hydrogen bonds with Asn119
and Thr120 (left snapshot). These interactions were broken in the GB
simulation (right snapshot). Lower panel: Time series of the minimum
distance between the carboxylate oxygens of Asp77 and the backbone
amide hydrogen of Thr119 or Asn120 from the explicit-solvent (red)
and GB (blue) simulations at pH of 3.
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solvent simulation was not able to fully capture the negative
cooperativity, which may be due to insufficient sampling.
HEWL.The last protein we consider is HEWL, which has been

used as a standard test system for many pKa prediction
methods.52,53 Also, the most recent study of Nielsen and co-
workers, where a consensus set of pKa’s was derived from pH-
dependent chemical shifts of different nuclei, makes HEWL the
most vetted protein pKa benchmark system available.43 Table 5
lists the calculated pKa’s from the explicit- and implicit-solvent
titrations. Overall, the calculated pKa’s from the explicit-solvent
titration are closer to experiment than the GB titration. The rms
as well as the average absolute and maximum deviations in the
explicit-solvent titration are 0.84, 0.70, and 1.50, respectively,
while they are 0.93, 0.72, and 1.75, respectively, in the GB
titration. Below we examine the cause for the significant differ-
ences between the explicit- and implicit-solvent titration data for
residues Glu35 and Asp52.
The catalytic residues of HEWL are Glu35 and Asp52

reside at the interface between two domains and have the
concensus pKa’s of 6.1 and 3.6, respectively. The experimental
range of pKa’s calculated from chemical shifts of different nuclei
was 6.0�6.8 for Glu35 and 3.4�4.0 for Asp52.43 The pKa’s from
the explicit-solvent simulation are 7.19 and 2.88, while those
from the GB simulation are 4.35 and 4.56, respectively. Thus,
considering the model values of 4.4 and 4.0 for Glu and Asp, the
calculated pKa shifts are in the correct direction in the explicit-
solvent simulation but wrong in the GB simulation. Since the
optimum pH for the activity of HEWL is around 5,54 the pKa

calculation using the explicit-solvent CPHMD method is able to
offer the correct protonation or charge states for the catalytic
residues, which is not the case with the GB-based method. We
note that the previous GB-based CPHMD simulations with the
temperature-based replica-exchange protocol gave a correct
direction of the pKa shift for Glu35.

26We examined the trajectory
to delineate the cause for the significantly different pKa’s. In the
GB simulation, there is a significant rearrangement of the native
structure. We plot the radius of gyration vs the heavy atom rmsd
using the explicit- and implicit-solvent simulation data
(Figure 10). The conformations in explicit solvent have rmsd

values, with respect to the crystal structure, ranging from 1.1 and
1.6 Å, and Rg values ranging from 14.1 to 14.4 Å. However, the
conformations in the GB simulation have much larger rmsd
(1.6�2.8 Å) andmuch smaller Rg (13.8�14.2 Å), which suggests
a significant compaction and global deviation from the crystal
structure. This global rearrangement of structure is propagated to
the local conformational environment around the active-site
residues, which can be seen from the differences in the solvent
exposure of side chains. At pH 6, Glu35 has a SASA of 18.9 Å2 in
the explicit-solvent simulation, which is similar to the value of
10 Å2 based on the crystal structure but much smaller than the
value of 38.9 Å2 from the GB simulation. The significant increase
in solvent exposure for Glu35 in the GB simulation leads to an
overestimation of the self-solvation energy of Glu35 and thus an
underestimation of the upward pKa shift. For Asp52 the story is
exactly reversed. The solvent exposure of Asp52 is underesti-
mated in the GB as compared to the explicit-solvent simulation.
At pH 4, the average SASA of Asp52 is 2.4 Å2 in the GB
simulation, whereas it is 25.4 Å2 in the explicit-solvent simula-
tion, which is much closer to the initial value of 26.6 Å2.
Therefore, the self-solvation energy of Asp52 is underestimated
in the GB simulation leading to a calculated pKa value that is too
high. Thus, HEWL is a clear case where elimination of the
“conformational” error introduced by GB can dramatically im-
prove the accuracy of pKa calculations for residues of biological
significance.

’DISCUSSION

Like temperature and pressure, solution pH is another im-
portant experimental condition that needs to be taken into
account in molecular simulations in order to accurately capture
physical reality. Motivated by the recent success of the GB
implicit-solvent based CPHMD method in the accurate pKa

predictions and mechanistic studies of pH-dependent conforma-
tional dynamics of proteins, we have developed a robust
approach to extend the CPHMD framework to explicit-solvent
molecular dynamics simulations. In this approach, the explicit-
solvent force field is used to drive conformational dynamics,
while the GB model is used to efficiently estimate the role of
solvent in modulating the cost of electrostatic free energy for
protonation/deprotonation. The resulting explicit-solvent
CPHMD method offers an increased accuracy and a wider
applicability as compared to the GB-based CPHMD method
while retaining the efficiency and the robustness of the capability
for proton titration. To overcome a critical hurdle related to the
slow convergence of pKa calculations, which has plagued

Table 5. Calculated and Experimental pKa Values in HEWL

residue explicit solventb GB expta

Glu7 2.67 ( 0.01 (2.69) 2.58 ( 0.06 2.6 ( 0.2

His15 6.64 ( 0.10 (6.60) 5.34 ( 0.47 5.5 ( 0.2

Asp18 3.05 ( 0.13 (3.15) 2.94 ( 0.01 2.8 ( 0.3

Glu35 7.19 ( 0.15 (6.83) 4.35 ( 0.18 6.1 ( 0.4

Asp48 1.57 ( 0.48 (1.77) 2.84 ( 0.15 1.4 ( 0.2

Asp52 2.88 ( 0.08 (3.21) 4.56 ( 0.02 3.6 ( 0.3

Asp66 1.47 ( 0.60 (0.46) 1.15 ( 0.43 1.2 ( 0.2

Asp87 1.48 ( 0.41 (1.46) 2.03 ( 0.07 2.2 ( 0.1

Asp101 2.99 ( 0.09 (3.06) 3.27 ( 0.32 4.5 ( 0.1

Asp119 2.85 ( 0.05 (2.98) 2.45 ( 0.13 3.5 ( 0.3

CT-Leu 1.95 ( 0.37 (1.89) 2.20 ( 0.14 2.7 ( 0.2

avg abs dev 0.70 (0.70) 0.72

rmsd 0.84 (0.80) 0.93

max abs dev 1.50 (1.44) 1.75
aConsensus pKa’s based on NMR titration using multiple nuclei.43
bValues in parentheses were obtained from the 2 ns simulation.

Figure 10. Comparison of the conformational states of HEWL sampled
in the explicit-solvent (red) and GB (blue) simulations at pH 6.
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CPHMD and other constant pH methodologies, we have
implemented a replica-exchange protocol based on the pH-
biasing energy to directly accelerate protonation-state sampling.
Remarkably, due to the tight coupling between titration and
conformational degrees of freedom, this protocol also led to
significant enhancement in conformational sampling, allowing
pKa’s to converge within 1 ns for small model compounds and
large proteins. The random errors in the calculated pKa’s for
model compounds were about or below 0.1 pH units.

To benchmark the accuracy of the explicit-solvent based
CPHMD method, we have calculated pKa’s for five proteins
and compared with results from the GB-based method and
experiment. We found that the explicit-solvent titrations resulted
in an average absolute error of 0.53 and rmsd of 0.74, on par with
those from the GB-based titrations. However, by bringing the
outliers closer to experimental values, the explicit-solvent method
offers significantly improved correlation with experiment as
compared to the GB-based method. Detailed analysis revealed
that this improvement is due to more accurate conformational
sampling in explicit solvent. For example, the explicit-solvent
simulation preserved the structural integrity of the loop region,
bringing the calculated pKa of Asp77 from SNase closer to
experiment. Compaction of HEWL in the implicit-solvent simu-
lation caused distortion of the active site and large deviations in
the calculated pKa values for Glu35 and Asp52, while explicit-
solvent simulation preserved the native conformation leading to
a correct prediction of the protonation states at the optimum pH
value for catalytic activity. Including solvent granularity enabled a
more realistic description of ion-pair interactions, as was the case
for Asp95 of SNase, where the explicit-solvent simulation gave a
bimodal distribution representing both the close-range and
solvent-separated interactions with Lys70, which resulted in a
more accurate estimate of pKa. Finally, in the explicit-solvent
simulation the hydrophobic cluster in BBL showed an increased
mobility relative to the GB simulation, allowing His166 to be
partially exposed to solvent, which resulted in a reduction in the
pKa shift due to desolvation penalty. The latter aspect is some-
what surprising, but is compatible with previous GB simulation
studies revealing overly rigid hydrophobic assemblies.23,24 It is
also consistent with the experimental evidence55 and previous
simulation study56 suggesting water penetration into the hydro-
phobic core of SNase. Although in the presented cases, the
differences between the explicit-solvent and GB-based pKa

results are small (all within 0.5 pH units), our unpublished data
shows that the explicit-solvent method offers improvement as
high as 4 pH units for the worst prediction cases in the
engineered mutants of SNase (Wallace and Shen, unpublished
data).

While the results demonstrated in this work are encouraging,
we note that several potential issues merit attention. First, a
potential delay in the response of solvent reorganization to
protonation/deprotonation may lead to unfavorable interactions
or inaccuracy in the solvation energetics of the titration site. This
problem can be effectively avoided by allowing a few additional
dynamics steps between titration updates to allow relaxation of
solvent around the titrating site, as has been demonstrated in the
discrete constant pH techniques.11 Also, we identified a small
bias toward the charged form in the titration of Asp, Glu and His
residues due to the occasionally prolonged residence time of the
two degenerate protonation states (doubly deprotonated in the
case of Asp or Glu and doubly protonated in the case of His).
Although the effect of this systematic error on the calculated pKa

shifts is likely minimal, it is clearly a limitation that needs to
addressed in the future. Finally, the accuracy of pKa calculations is
still limited by the accuracy of the GB model to determine the
deprotonation free energy. The largest deviation and the single
outlier found in this work is Asp21 in SNase, where both explicit-
and implicit-solvent simulations were not able to reproduce the
direction of the positive pKa shift, and underestimated the pKa by
3 pH units. NMR data showed that the titration of Asp21 is
coupled to that of Asp19, which has a negative pKa shift.
Although the explicit-solvent simulation was able to differentiate
between the two pKa’s, it could not quantitatively reproduce the
extent of the negative cooperativity in proton binding. One
possible cause is that more exhaustive sampling may be required
to fully capture coupled titration events. This issue deserves
further investigation in our future studies. Another aspect that
deserves further investigation is related to the effect due to ions.
In the current work and previous GB-based CPHMD studies, an
approximated Debye�H€uckel model is applied in the GB
electrostatic calculation to account for the bulk effect of salt
screening, which may not be accurate for highly charged systems
such as nucleic acids where local charge density can be very high.
Finally, in order to apply the explicit-solvent CPHMD to studies
of large-scale conformational changes, it may become necessary
to combine with a method for global enhancement of conforma-
tional sampling such as the temperature-based replica-exchange
scheme. Despite these remaining limitations, the current accu-
racy and precision of the explicit-solvent based CPHMD tech-
nique are encouraging, considering the fact that experimentally
determined pKa’s can deviate by 0.5�1 pH units depending on
the nuclei monitored.43 Thus, we anticipate that explicit-solvent
CPHMD simulations will emerge as a practical tool for gaining
novel insights into protonation-related phenomena that are
ubiquitous in biology and chemistry. Examples include the
mechanism of proton channels, drug-efflux pumps, pH-depen-
dent catalytic reactions of ribozymes, as well as titration behavior
of mixed micelle systems.
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ABSTRACT: Under certain circumstances β-sheets prefer to be twisted instead of flat. To get insight into the reasons of such
preference, bare andmicrosolvated parallel and antiparallel two-strand polyalanine β-sheets are investigated using density functional
theory. Full geometry optimizations show that microsolvation increases interstrand twisting and promotes a flat to twist transition. It
is found that the latter behavior is connected to compressive strain resulting frommicrosolvation. Residues in flat β-sheets adjust the
sense of its local intrastrand twist, which leads to the appearance of interstrand twist, to release strain and to favor water�water
hydrogen bonding. The predictedmicrosolvation effect is corroborated analyzing the geometry of residues formingβ-sheet motifs in
protein crystals.

1. INTRODUCTION

β-sheets are characteristic structural motifs of proteins and
polypeptides. Such motifs consist of two or more parallel or
antiparallel hydrogen-bonded peptide strands.1 There is a renewed
interest in studying β-sheets since it was discovered that its
aggregation plays a central role in the mechanism underlying
several diseases, including alzheimer’s, Huntington’s, Parkinson’s,
and the prion encephalopathies.2�6 A large number of theoretical
studies have been devoted to investigate formation, stability, and
geometric peculiarities of β-sheets.7�17 Nevertheless basic ques-
tions regarding their structure are still open. For example,
polypeptides, like polyalanine, segments from proteins that form
amyloid-like fibrils, fibrous proteins, like silk and β-keratin, crystal-
lize as flat β-sheets, i.e., the chain axes of the strands forming the
sheet lay on the same plane. β-sheet motifs in globular protein
crystals, however, show large and systematic structural deviations
with respect to the classical (flat) geometry.18�20 They show an
interstrand right-handed twist coupled to an intrastrand left-
handed twist,18 i.e., chain axes are not coplanar, and strand
peptide units are converted into the next along the backbone by a
rotation that systematically differs from 180�. There is no
consensus on the causes that originate the twist of β-sheets. It
has been proposed that the twist is either intrinsic to isolated
strands or induced by interchain interactions. The emergence of
the twist as an intrinsic feature of isolate β-strands has been
suggested to be connected to entropic factors that lower the free
energy of left-hand twisted chains with respect to straight or
right-handed ones,18 to the tendency of the backbone C�C
single bond to eclipse the lone pair of the backbone N atom,12 to
the electrostatic attraction between the carbonyl carbon of one
peptide unit and the carbonyl oxygen of an adjacent peptide unit,7

and to intrastrand steric hindrances between the oxygen of the
carbonyl group and the side chain.20,8 The emergence of the twist
as a consequence of interstrand interactions has been attributed to
constraints imposed by hydrogen-bond (hb) formation,9 to intra-
and interstrands interactions involving side groups10 and to
interstrand electrostatic interactions.11 Recently it was found that
segments from proteins forming amyloid-like fibrils crystallize as
flat sheets.2,3 Studies using molecular dynamics simulations and

empirical force fields, however, reported that these systems tend
to twist in solution,21,22 suggesting thatβ-sheets twist as a response
to external conditions and thatβ-sheets adopt bothflat and twisted
conformations. Theoretical studies considering the full role of
the self-consistent electronic structure and a full optimization of
the geometry have found that both twisted and flat conforma-
tions are stable structures and that the energy related to twisting
is negligible.13 Other study based on electronic structure calcula-
tions found that breaking side chain�backbone hbs promotes
the formation of a twisted β-sheet.23 In this work the origin
of twisting is investigated by constructing atomistic models for
flat and twisted two-strand parallel and antiparallel polyalanine
β-sheets. Their geometries were fully optimized using density
functional theory (DFT). The influence of hydration on twisting
is investigated microsolvating the models with explicit water
molecules and fully optimizing their geometries. Moreover,
hydration effect on twisting is also investigated analyzing pre-
ferred conformations of residues in contact with water molecules
in β-sheet motifs in protein crystal structures.

As detailed below, it was found that both twisted and flat
structures are intrinsic conformations of two-strand antiparallel
and parallel polyalanine β-sheets in vacuum. It is shown that
strands in all the structures are under compressive strain, owing
primarily to interstrand hydrogen bonding. The backbone re-
sponse to strain provokes local intrastrand twisting along the
strands. Nevertheless flat β-sheets in vacuum did not develop
noticeable interstrand twisting because residues locally twist in
both senses. It was also found that flat β-sheets transform to
twisted ones upon hydration. The latter behavior is connected to
further compressive strain resulting from microsolvation. Resi-
dues in flat β-sheets adjust the sense of its local intrastrand twist,
which leads to the appearance of interstrand twist, to release
strain and to favor water�water hydrogen bonding. Furthermore
comparing average geometries of residues (except glycine and
proline) forming β-sheet motifs in protein crystals, it is corro-
borated the predicted effect of hydration on the twist of β-sheets.
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The latter result also suggests that the peptide aminoacid
composition (excluding glycine and proline) does not determine
if a β-sheet adopts a flat or a twisted conformation.

2. METHOD

Full geometry optimizations were carried out using DFT
together with the generalized gradient approximation of Perdew,
Burke, and Ernzerhof (PBE) for the exchange�correlation
functional.24 Conformations of the structures here investigated
are primarily dictated by the formation of hbs, and such hbs are
described by DFT using PBE (thereafter called DFT-PBE)
within an error of 1 kcal/mol with respect to Møller�Plesset
second-order perturbation theory (MP2) results.25 It has been
shown that geometric parameters obtained with DFT-PBE for an
extensive set of hydrogen-bonded dimers, including dimers
formed with peptide-like molecules, are in good agreement with
those obtained with MP2, except for cases in which hbs in
the dimer are highly bent.25 In the full optimized β-sheet models
intrastrand hbs are close to linearity, the largest deviation found
for the N�H 3 3 3O angle is of 25� with respect to linearity
(i.e., respect to 180�). This gives us confidence on the DFT-PBE
geometries obtained here. DFT-PBE does not describe van
der Waals interactions properly. However it is expected minimal
alteration of the energy trends obtained here as the spatial
distribution of atoms around a given one in flat and twisted
conformations is very similar. Troullier�Martins pseudo-
potentials,26,27 plane-wave basis sets, and periodic boundary
conditions are used for solving the DFT Kohn�Sham equations
as it is incorporated in the abinit code.28,29 Here it is worth noting
that the use of plane waves does not introduce a basis set
superposition error.25 Eight structural models consisting of
two strands were constructed for investigating favorable
β-sheet conformations. Four models were constructed in a
parallel β-sheet conformation and four in an antiparallel β-sheet
conformation. These models differ in their number of residues
per strand. The thereafter called short models (Figure 1a) were
built with three residues per strand, and those built with five
residues per strand are called large models (Figure 1b). Struc-
tures called flat were built as flat β-sheets, and structures called
twisted were built as twisted β-sheets. Antiparallel short β-sheets

are labeled as structures I (flat) and II (twisted). Parallel short
β-sheets are labeled as structures III (flat) and IV (twisted).
Antiparallel large β-sheets are labeled as structures V (flat) and
VI (twisted). Finally parallel large β-sheets are labeled as
structures VII (flat) and VIII (twisted). Strands were capped
with the CH3CH2CO� group in the N terminus and with the
CH3CH2NH� group in the C terminus. As periodic boundary
conditions were used for solving the DFT Kohn�Sham equa-
tions, the calculations were carried out using a supercell suffi-
ciently large enough to ensure that interactions with the periodic
images were negligible. Here an orthorhombic supercell was used
to fully optimize the geometry. For all the calculations the energy
cutoff of the plane wave basis set was 70 Ry, and the sampling of
the Brillouin zone was replaced by the Γ-point.

Conformations of residues are given here in terms of local
cylindrical coordinates instead of the standard ϕ and ψ coordi-
nates. The latter is found convenient because cylindrical coordi-
nates give a directmeasurement of intrastrand twisting, while using
dihedral angles only an approximate estimation can be done for
twisting. However, the procedure to determine cylindrical co-
ordinates is rather involved, and it is explained next. The relative
position of the i-th residue respect to its neighbors along the
polypeptide chain is given in terms of a certain rotation θi (the
twist) and a certain translation Li (the rise) along a local chain
axis zi. These parameters define a screw symmetry operation that
superimposes the coordinates of the peptide bonds flanking the
R-carbon of the i-th residue. For left-handed rotations θ is
defined to be θ > 180�. Here is more convenient to report the
degree of local intrastrand twist as τi = θi � 180�, thus τ > 0 for
left-handed intrastrand twist. The local interstrand twist, Tij, is
calculated as the smallest angle formed between the local chain
axis vectors zi and zj. These vectors are connected to the i- and
j-th interstrand hydrogen-bonded residues in the β-sheet. For
right-handed interstrand twist Tij is defined to be Tij > 0. The
quaternion-based superposition fit method30�33 is used to deter-
mine the cylindrical coordinates θi, Li, and zi for each residue. In
this method θ and L are such that minimize the root-mean-square
deviation of distances between the set of superimposed coordi-
nates (for further details see, e.g., ref 33). It has been shown that
the use of cylindrical coordinates is advantageous for mapping
the conformational space of residues in finite and infinite
polypeptides as well as in protein structures.33�36

For building the initial structure of the strands forming the
β-sheet models, the equilibrium geometry of a residue in an
infinitely long polyalanine chain is used. For flat sheets, the
corresponding geometry of a residue in a fully extended structure
(FES, with ϕ =�159.7� andψ = 164.4�), in which L = 3.57 Å and
θ = 180� (τ = 0�) is used.35 As compressed polyalanine FES
develop a left-handed twist (see Figure 3b in ref 33), for twisted
sheets the geometry used for each residue corresponds to that in
a compressed FES (with ϕ =�120.4� andψ = 150.4�), in which
L = 3.39 Å and θ = 196.4� (τ = 16.4�). This local left-handed
intrastrand twist forces to build the β-sheet with an interstrand
right-handed twist to keep reasonable interstrand hb distances.
To estimate the influence of hydration on the relative stability
and the structure of twisted and flat conformations, the short-
antiparallel β-sheet models are microsolvated with explicit water
molecules. Hydrated β-sheet models were built using 8, 16, and
20 water molecules, half of them for microsolvating one strand
and the rest for microsolvating the other one. Certainly there are
many ways water molecules self-arrange around peptide strands,
for example, forming water clusters at certain positions along the

Figure 1. (a) Short polyalanine β-sheet models constructed with three
residues per strand: upper structure, antiparallel β-sheet model and
lower structure, parallel β-sheet model. Residue labels go from 1 to 6. (b)
Large polyalanine β-sheet models constructed with five residues per
strand: upper structure, antiparallel β-sheet model and lower structure,
parallel β-sheet model. Residue labels go from 1 to 10. Nitrogen atoms
are in blue, carbon atoms in green, oxygen atoms in red, and hydrogen
atoms in light gray. For clarity methyl groups are represented as pale
magenta balls. Dotted lines indicate hbs.
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strands, and some of them may be lower in energy than the
arrangements investigated here. A full exploration of the con-
formational space of suchmicrosolvated systems is out of the scope
of this work. Here, water molecules were adsorbed such that they
formed hbs with the �N�H amide groups and the �CdO
carbonyl groups that were not interstrand hydrogen bonded. The
rest of water molecules, if any, were absorbed such that an
uninterrupted network of hbs was formed along the water
molecules. The purpose of the latter is to investigate the effect
of water�water hb cooperativity on the twist of the β-sheets. It is
expected that hydrated models constructed in such way resemble
better a fully solvated peptide. Full geometry optimizations of
each of the microsolvated models were carried out using DFT-
PBE.

Preferred conformations that residues adopt in β-sheet motifs
in proteins are investigated by analyzing an extended set of
protein structures resolved by X-ray crystallography and obtained
from the protein data bank (PDB).37 The set of 1591 structures
was formed with protein structures determined at 1.5 Å resolution
or better and a sequence identity of less than 50%. It was
corroborated that the result of the analysis is independent from
the X-ray resolution and the percentage of sequence identity.
The set of analyzed residues does not contain glycines and
prolines, as the conformational space of these two residues is
known to be markedly different from others, owing to the lack of
a side group in glycine and the constraints imposed by the ring
formation in the proline backbone. Residues flanking glycines
and prolines were also excluded from the analyzed set. A residue
was considered to be part of a β-sheet motif if it was in an
extended conformation, i.e., if L > 2.8 Å33 and if peptide bonds
flanking its R-carbon were hydrogen bonded to peptide bonds
flanking the R-carbon of a residue also in an extended conforma-
tion and separated at least three positions along the chain. Two
peptide bonds were considered to be hydrogen bonded if the
distance between the O atom (hb acceptor atom) and the N
atom (hb donor atom) was smaller than 3.3 Å and the angle
CdO 3 3 3N bigger than 120�. It was corroborated that the main
characteristics of the distributions for L, τ, and T thus obtained
were not dependent on the latter two parameters. A residue was
taken into account for the analysis only if it belonged to a part of the
structure where at least three consecutive residues were found in a
β-sheet conformation. In this way ending effects and β-bridges
were avoided.

3. RESULTS

Let me first discuss the fully optimized geometries for the bare
flat and twisted short β-sheet models. The values for the local

geometric parameters (Li, τi) are given in Table 1. First, it is
noticeable that allL values are smaller than LFES = 3.57 Å (the rise
of a residue in FES), indicating that all residues in structures
I�IV are under compressive strain. Recalling that the geometry
of an optimized isolated strand is the FES, a residue under
compressive strain is then characterized by L < LFES, i.e., its
length is shorter than the corresponding one in the FES. Likely,
such compressive strain is originated by interstrand hydrogen
bonding, i.e., longer hbs than the observed ones are expected if
strand compression is not allowed. All residues present some
degree of intrastrand twist, i.e., τ significantly deviates from zero.
Residues at the end of each strand (those labeled with numbers 1,
3, 4, and 6 in Figure 1a) tend to be more twisted and more
compressed than the central residue. To avoid ending effects on
the structural trends, only central residues are considered for
analysis. The average values of τ for the central residue in structures
I and III, the flat antiparallel and parallel short β-sheet models,
are 2.9� and 0.9�, respectively. However the corresponding
average values of τ for the central residue in structures II and
IV, the twisted antiparallel and parallel short β-sheet models, are
8.5� and 9.3� respectively, i.e., intrastrand left-handed twist is at
least three times larger in the fully relaxed twisted models than in
the fully relaxed flat models. Local interstrand twist values,Tij, are
listed in Table 2. According to these values all residues present
some degree of interstrand twist, however, focusing only on
central residues T values indicates that structures I and III are
flat, i.e., T < 1�, but structures II and IV are significantly twisted,
T > 11�. Side views of the fully relaxed structures I to IV are
shown in Figure 2a. There is evidence that fully relaxed structures
II and IV present interstrand twist, however, fully relaxed
structures I and III are flat, as indicated by the T values corre-
sponding to their central residues.

Table 1. Local Geometry Parameters (Li, τi) for Residues in
Short β-Sheet Structures I�IV

I II III IV

residue label L τ L τ L τ L τ

1 3.53 8.9 3.47 24.3 3.47 2.4 3.47 1.1

2 3.52 2.2 3.49 8.3 3.45 0.2 3.42 19.1

3 3.52 �7.9 3.43 �7.2 3.41 4.9 3.42 9.6

4 3.51 11.2 3.46 23.9 3.46 9.5 3.37 36.4

5 3.51 3.6 3.50 8.7 3.44 1.6 3.43 �0.4

6 3.50 �8.1 3.45 �5.6 3.43 �3.6 3.35 5.0

Table 2. Ti,j Values for Residues in Short β-Sheet Structures
I�IV

residue labels I II residue labels III IV

1, 6 �6.5 13.8 1, 4 �5.7 21.3

2, 5 0.9 11.1 2, 5 �0.2 15.9

3, 4 6.0 14.8 3, 6 4.9 13.9

Figure 2. Side view of the fully relaxed geometries for the (a) short
and (b) large polyalanine β-sheet models. For the color code see cap-
tion of Figure 1. For clarity methyl groups are represented as pale
magenta balls.
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To verify independence of intra- and interstrand twist with
respect to strand length, four polyalanine β-sheet models built
using five residues per strand (the large models) were also fully
optimized using DFT-PBE. The corresponding values for the
local geometric parameters (Li, τi) are listed in Table 3. As for the
short models, L values indicate that all residues are under
compressive strain. Also all residues present some degree of
intrastrand twist, and those at strand endings (residues labeled
with the numbers 1, 5, 6, and 10) are more compressed andmore
twisted than those in the middle of the strands. Focusing on
central residues, labeled with the numbers 2�4 and 7�9 in
Figure 1b, it is found that intrastrand twist is significantly smaller
for structures V and VII than for structures VI and VIII. Average
values for τ in structures V and VII, the flat large models, are 0.7�
and 1.5�, respectively. However, average values for τ in structures
VI and VIII, the twisted large models, are 9.2� and 9.8�, respec-
tively, i.e., the fully relaxed twisted large models present an
intrastrand twist at least six times larger than the fully relaxed
flat large models. Local interstrand twist values, Tij, for the large
models are listed in Table 4. Average values (considering only
central residues) for T are 0.1� and 8.1� for structures V and VII,
respectively. The average T value for structure VII is significantly
larger than the average T value for structure V, owing to a large
local interstrand twist in residues close to the right end of the
sheet. Such distortion is due to the formation of an intrastrand hb
between residues 9 and 10 in structureVII. Still interstrand twisting
is not noticeable in such structures (Figure 2b). In the short flat
parallel β-sheet, model III, an intrastrand hb similar to that in
model VII is not formed. Likely the potential energy surface
associate to strand endings is quite flat, small fluctuations in the
forces may thus drive strand endings to conformations noticeably
different among the models. This may be also the reason for the

discrepancy between residue conformations at the endings and at
themiddle of theβ-sheetmodels. Average values forT in structures
VI and VIII, the twisted large models, are 13.9� and 16.8�,
respectively. These values are still two times larger, at least, than
interstrand twist in the corresponding flat models. Interstrand
twisting in the fully relaxed twisted large models is evident in
Figure 2b. According to these results, strand lengthening does
not change our observations regarding the development of intra-
and interstrand twisting in the flat and twisted models.

The relative stability of twisted β-sheets with respect to the flat
ones, calculated as ΔE = Etwist � Eflat, where Etwist is the total
energy of twisted sheets and Eflat the total energy of the
corresponding flat ones, is listed in Table 5. These ΔE values
are small in all the cases, indicating that both flat and twisted
conformations can be adopted by parallel and antiparallel poly-
alanine β-sheets, though flat conformations may be preferred
over twisted ones in vacuum. The stability trend may change if
van der Waals interactions are taken into account. However it is
expected a minimal alteration of such a trend as the spatial
distribution of atoms in the flat and in the corresponding twisted
conformation is very similar, hence similar van der Waals
contributions to the stability of both flat and twisted structures.

Next the effect of hydration on the structure and the relative
stability of β-sheets is investigated fully optimizing the geometry
of flat and twisted β-sheets in which 8, 16, and 20 water molecules
were adsorbed along the backbone. Only the small antiparallel
β-sheet models, structures I and II, were microsolvated. Water

Table 3. Local Geometry Parameters (Li, τi) for Residues in
Large β-Sheet Structures V�VIII

V VI VII VIII

residue label L τ L τ L τ L τ

1 3.51 11.4 3.4 30.1 3.48 3.35 3.48 3.0

2 3.53 1.1 3.5 9.6 3.42 0.1 3.46 15.6

3 3.55 �1.0 3.54 7.6 3.45 8.1 3.45 7.9

4 3.52 0.6 3.46 12.4 3.5 12.3 3.44 18.2

5 3.49 �8.4 3.36 �6.6 3.49 7.68 3.45 10.5

6 3.51 12.7 3.43 31.3 3.39 20.61 3.35 39.5

7 3.53 2.8 3.5 10.2 3.47 3.3 3.48 3.0

8 3.54 �1.4 3.55 6.3 3.48 �5.0 3.5 9.8

9 3.52 2.1 3.49 9.3 3.29 �9.7 3.43 4.2

10 3.48 �10.8 3.39 �4.3 2.88 1.75 3.27 7.7

Table 5. Energetic Stability (ΔE in kcal/mol) of Twisted
β-Sheets with Respect to the Corresponding Flat Ones

antiparallel parallel

small large small large

ΔE 0.3 0.7 0.1 2.1

Figure 3. Small antiparallel flat β-sheet model microsolvated with
(a) 8 , (b) 16, and (c) 20 water molecules. In the small antiparallel twisted
β-sheet model the relative orientation of water molecules respect to the
backbone is the same as depicted here. For the color code see caption of
Figure 1. For clarity methyl groups are represented as pale magenta balls.
Dotted lines indicate hbs.

Table 4. Ti,j Values for Residues in Large β-Sheet Structures
V�VIII

residue labels V VI residue labels VII VIII

1, 10 �8.6 18.4 1, 6 10.1 21.3

2, 9 �1.0 14.4 2, 7 3.5 14.3

3, 8 �0.4 12.7 3, 8 3.6 16.0

4, 7 1.6 14.7 4, 9 17.2 20.0

5, 6 7.6 19.0 5, 10 6.1 14.1
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molecules were absorbed such that an uninterrupted network of
hbs, if possible, was formed along water molecules. The purpose
of the latter is to investigate the effect of water�water hb
cooperativity on the twist of β-sheets. It is expected that hydrated
models constructed in such way resemble better a fully solvated
peptide. A full scan of all possible water molecule orientations is
beyond scope of the present work.

Among the several water molecule orientations examined,
those shown in Figure 3 are the most stabilizing ones, and their
orientations are equivalent in both flat and twisted β-sheets.
Focusing on the geometric parameters for the central residues to
avoid ending effects (see discussion above), it is found that L is
systematically smaller than the corresponding values for vacuum
structures (Figure 4a). The rise is reduced, on average, 2% and
3% due to hydration, i.e., hydration applies further compressive
strain along the strands. Intrastrand twist increases as a response
to hydration (Figure 4b). In particular average values for τ in the
microsolvated structures with 20 water molecules are significantly
larger (around three to four times larger) than the corresponding

τ values for the structures in vacuum. The average τ value for
structure I (the flat model) hydrated with 20 water molecules is
even larger than the average τ value for the nonhydrated structure
II (the twisted model), suggesting that the former structure is not
longer flat. Interstrand twist also increases in hydrated structures
(Figure 4c). The T value in the flat model (structure I) micro-
solvated with 20 water molecules is significantly larger, around 9
times larger, than the corresponding T value for the flat model
(structure I) in vacuum, thus illustrating that the flat β-sheet
transformed into a twisted one upon hydration. The latter is
corroborated by the side view of the fully relaxed hydrated
structures corresponding to the flat model (Figure 5). It is
evident that the structure microsolvated with 20 water molecules
is not longer flat.

Regarding the relative stability of twisted structures with
respect to the flat ones upon hydration, it is shown in Figure 6a
that ΔE becomes negative for hydrated structures. This trend
indicates that twisted conformations are slightly favored over flat
ones upon hydration. For the β-sheets hydrated with 20 water
molecules, the stability of twisted respect to flat is reduced owing
to the fact that the latter is not longer flat but twisted, i.e., the
structure of the reference state changes and gets similar to that of
the twisted state. Obviously the discussion presented above with
respect to the influence of van der Waals interactions on the
energy trend also applies here.

To get insight into why the β-sheet models microsolvated with
20 water molecules largely change their intra- and interstrand
twist, hydrogen-bonding contributions to the total association
energy have been analyzed. These contributions are the strand�
strand hb contribution calculated as Ehbs�s = [Es�s(bare) �
2EFES]/hbs�s, where Es�s(bare) is the total energy of the bare
β-sheet in the geometry corresponding to the hydrated one, EFES
is the energy of the fully relaxed strand forming the β-sheet, and

Figure 4. Change in the geometric parameters for the central residue
with respect to the number of water molecules, m, in microsolvated
antiparallel β-sheet models: (a) change in the rise, (b) change in the
intrastrand twist, and (c) change in the interstrand twist. Closed circles
stand for flat β-sheets. Open circles stand for twisted β-sheets. Solid lines
are added for guiding the eye.

Figure 5. Flat to twist transition upon microsolvation with 20 water
molecules: (a) flat conformation hydrated with 8/16 water mole-
cules and (b) flat conformation hydrated with 20 water molecules.
For the color code see caption of Figure 1. For clarity methyl groups
are represented as pale magenta balls, and water molecules are not
depicted.

Figure 6. (a) Relative stability of the twisted antiparallel β-sheet respect
to the flat one as the number of water molecules microsolvating the
system, m, is increased. (b) Change in the hb strength in the micro-
solvated antiparallel β-sheets with respect to m. Circles stand for
strand�strand hbs, Ehbs�s. Triangles stand for water�water hbs,
Ehbw�w. Squares stand for strand-water hb, Ehbw�s. (c) Change in
the interstrand twist, T, of microsolvated antiparallel β-sheets with
respect to the strength of Ehbw�w, solid circles stand for the flat β-sheet
and open circles for the twisted one. Solid lines connecting the points are
added solely to guide the eye.
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hbs�s is the number of �N�H 3 3O hbs between strands. The
water�water hb contribution calculated as Ehbw�w = [Ehy �
mEw]/hbw�w, whereEhy is the total energy of the hydrating water
molecules in the geometry corresponding to the hydrated system
but in the absence of the β-sheet, Ew is the total energy of a
fully relaxed water molecule, m is the number of water molecules
hydrating the β-sheet, and hbw�w the number of �OH 3 3OH�
hbs. And the strand�water hb contribution calculated as
Ehbw�s = [Esheet � Es�s(bare) � Ehy]/hbw�s, where Esheet is
the total energy of the hydratedβ-sheet and hbw�s is the number of
�NH 3 3 3OH� and �CO 3 3 3OH� hbs. The strength of these
hbs with respect the number of hydrated water molecules is
depicted in Figure 6b. Only hbs of the bare/hydrated structure
I are considered in plot of Figure 6b because the difference in the
strength with respect to the corresponding hbs in the bare/
hydrated structure II is small, around 0.2 kcal/mol or less. Accord-
ing to Figure 6b, Ehbw�s is significantly stronger than Ehbw�w and
Ehbs�s, being the latter the weakest one. In the bare structure the
strength of these strand�strand hbs is �3.7 kcal/mol, which is in
agreement with values reported in the literature.13,38 This strength
is reduced up to �2.2 kcal/mol upon hydration. For β-sheets
hydrated with 20 water molecules Ehbw�w becomes ∼1.4 kcal/
mol stronger than that of Ehbw�w in structures hydrated with 8
and 16 water molecules. On the contrary Ehbw�s becomes weak
by∼0.6 kcal/mol. Thus the large twist for the β-sheets hydrated
with 20 water molecules seems to be related to noticeable
changes in Ehbw�w and Ehbw�s. Correlating the strength of
the different hbs with the interstrand twist, it is found that T
increases as Ehbw�w become stronger (Figure 6c). Such trend
thus indicates that a flat to a twist transition is primarily driven by
the strengthening of Ehbw�w. Strands adjust its twist to favor
stronger water�water interactions even that it does weaken
Ehbw�s and Ehbs�s.

Real β-sheets are usually twisted in globular proteins. Then it
is desirable to know how the structural parameters predicted by

DFT-PBE compare with that of real β-sheets in protein crystals.
This comparison gives information on the influence of hydration
and strand aminoacid composition on the tendency to twist. An
extensive set of protein structures derived from X-ray crystal-
lography is analyzed to obtain the corresponding distribution of
values for the local geometric parameters (Li, τi, and Ti). The
criteria to determine if a residue belongs to a β-sheet are described
in the Method Section. Only results for residues in antiparallel
β-sheet motifs are presented, however, similar results were found
for residues in parallel β-sheets. It is found that 14% of the
residues in the investigated set are in β-sheet like motifs, 10% in
antiparallel, and 4% in parallel conformation. The corresponding
(Li, τi, Ti) distributions of values for residues in antiparallel
β-sheets are shown in Figure 7. The values for L, τ, and T
corresponding to the peak of the distributions are L ≈ 3.35 Å,
τ ≈ 15�, and T ≈ 22�. These values are in good agreement with
those predicted by DFT-PBE for antiparallel β-sheets, particu-
larly for microsolvated ones. Considering that the set of analyzed
residues in β-sheet conformation contains only 8% of alanine, the
good agreement between predicted and observed values for τ and
T indicates that strand amino acid composition has little influ-
ence on inter- and intrastrand twist in real β-sheets. To investi-
gate the effect of hydration on the twist of β-sheet motifs in
protein crystals, the (Li, τi, Ti) distribution of values has been
obtained considering: (i) only residues in contact with water
molecules (hydrated) in the set of studied proteins and (ii) only
residues with no contact at all with water (nonhydrated). A
residue was considered to be in contact with water if the distance
between the N or O atoms of the peptide unit and the O atoms of
water was less than 3 Å. The number of hydrated residues forming
β-sheets was found to be significantly smaller than nonhydrated
ones forming β-sheets. For comparison purposes the distribution
of values for residues in contact with water is scaled five times.
The (Li, τi,Ti) distribution of values (Figure 7) shows a tendency
that agrees with DFT results. The peak of the L distribution for
hydrated residues is shifted toward smaller values of Lwith respect
to the corresponding peak for nonhydrated ones (Figure 7a). Thus
hydration applies compression along the backbone chain, as
predicted by DFT-PBE. The peak of the τ distribution for the
hydrated residues is shifted to larger values with respect to the
peak for nonhydrated ones (Figure 7b). The latter indicates that
hydration induces larger intrastrand twist as predicted by DFT-
PBE. Also the trend observed for the distribution of T values is
in agreement with the DFT-PBE results. The position of the
peaks of the distribution indicates that hydration favors a larger
interstrand twist (Figure 7c).

4. DISCUSSION

To discuss the sufficiency of the models here studied, average
standard geometrical parameters (ϕ, ψ dihedral angles and inter-
strand hydrogen-bonding distances) for the optimized models are
compared to experimental values from the literature. The reported
(ϕ, ψ) mean values for alanine in antiparallel β-sheet motifs are
ϕexp = �130.2 ( 21.4� and ψexp = 143.8 ( 14.6�.39 Average
(ϕ, ψ) values for our bare antiparallel β-sheet models are
(�144.7�, 151.6�), (�136.9�, 150.4�), (�149.3�, 153.8�), and
(�139.2�, 153.3�) for models I, II, V, and VI, respectively. The
corresponding (ϕ,ψ) average values for the flat models hydrated
with 8, 16, and 20 water molecules are (�132.2�, 137.0�),
(�136.0�, 131.2�), and (�128.2�, 149.0�), respectively. And
for the corresponding twisted hydrated models are (�118.2�,

Figure 7. Distribution of values for the local geometric parameters of
residues in antiparalel β-sheet motifs in protein crystals: (a) rise, L, (b)
intrastrand twist, τ, and (c) interstrand twist, T. Solid line stands for all
residues. Dotted lines stand for residues with no contact with water.
Dashed lines stand for residues in contact with water. Dashed vertical
lines mark the position of the peak for the distribution for all residues.
For comparison purposes the distribution values for residues in contact
with water are scaled five times.
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136.8�), (�120.4�, 132.9�), and (�114.1�, 147.6�). All these
theoretical values fall inside the range of the standard deviation for
(ϕexp, ψexp). The same is found for the parallel β-sheet models.
The reported (ϕ, ψ) mean values for alanine in parallel β-sheet
motifs are ϕexp = �122.0 ( 22.0� and ψexp = 136.6 ( 16.8�.39
The average (ϕ, ψ) values for the parallel β-sheet models
investigated here are (�135.5�, 137.7�), (�127.4�, 140.7�),
(�135.2�, 137.6�), and (�131.4�, 144.3�) for the models III,
IV, VII, and VIII, respectively. Furthermore the average N�
H 3 3 3O hydrogen-bonded distances for the bare (2.0 Å) and the
hydrated (1.9 Å) β-sheet models are in agreement with theore-
tical values reported in the literature.15,17,38,40 Moreover these
values also fall in the range of the standard deviation for
the corresponding values in crystal structures in proteins (1.96
( 0.16 Å for antiparallel and 1.97 ( 0.15 Å in parallel
β-sheets).41 These results give us confidence in the models used
for describing β-sheet conformations.

Despite the compelling evidence indicating that β-sheets
adopt both flat and twisted conformations, there is no consensus
on the reasons underlying such behavior. Several studies have
pointed out that isolated strands have an intrinsic tendency to
twist.7,8,12,18,20 Indeed the structure connected to the minimum
in the DFT-PBE potential energy surface for isolated polyalanine
in extended conformation is left-hand twisted by 3� (see, e.g.,
Figure 2 in ref 33).33,34 However the latter value is around three
times smaller than a typical intrastrand twist in a realβ-sheet (see,
e.g., Figure 7b). Moreover if the observed twist in real β-sheets is
due to the intrinsic intrastrand twist of isolated strands, then one
should explain why some β-sheets adopt flat conformations.
Thus effects not connected to the intrinsic asymmetry of the
minimum of the potential energy surface must be considered to
explain the large intra- and interstrand twist in real β-sheets. In this
work it is shown that strands in β-sheets are under compressive
strain. According to ref 33, polyalanine backbone tends toward
left-hand twist under compressive strain. Here it is found that
β-sheets in which all residues locally twist to the left as response
to compressive strain develop a right-handed interstrand twist. In
flat β-sheets, however, residues are not as compressed as in
twisted β-sheets and develop both left- and right-handed local
intrastrand twist. The latter leads to an average intrastrand twist
that is not large enough to force a noticeable interstrand twist in
vacuum. Likely, local interstrand repulsive contacts prevent that
all residues in flat sheets twist to the left upon interstrand hydrogen
bonding, i.e., the response of the backbone to the compressive
strain applied by hydrogen bonding is frustrated by local inter-
strand contacts. Microsolvation applies further compressive
strain along strands favoring twisting. Residues in hydrated flat
sheets adjust the sense of its intrastrand twist as a response to the
extra compressive strain. Therefore flat sheets transform to twisted
ones upon hydration. Compressive strain arising from micro-
solvation is likely exerted by water�water hydrogen bonding. In
a network of aligned hbs the interaction is strengthened, and the
hydrogen-bonding distance gets shorter due to a cooperative
effect. The water�water hbs formed upon hydration with eight
water molecules promote a reduction between 2% and 3% in the
rise of the residues (see Figure 4a) and increase their interstrand
twist by more than 60% with respect to residues in the bare
β-sheets. Increasing the number of hydrating water molecules up
to 16 does not change the water�water hydrogen-bonding
strength (Figure 6b), therefore the rise and the interstrand twist
do not change significantly (Figure 4). A further increment in the
number of hydrating water molecules up to 20 strengthens the

water�water hydrogen bonding around 30%. Such an increment
in the water�water strength, however, does not longer compress
the residues; probably intra- and/or interstrand contacts prevent
it. Therefore residues release the extra strain with a strong change
in their intrastrand twist followed by a noticeable change in the
interstrand twist. Thus in microsolvated β-sheets, strands tend to
further reduce its rise and/or to change its twist to favor the
development of an optimal network of hbs, i.e., to maximize
Ehbw�w, along the water molecules.

The analysis of the geometry of residues in real β-sheet motifs
from an extended set of protein crystals supports the tendencies
predicted by our calculations. Moreover, predicted conforma-
tions correspond to alanine, and the observed ones to all residues
except glycine and proline, hence twisting is independent of the
amino acid composition of the strands. Furthermore, the agree-
ment between the predicted and observed twist in real β-sheet
motifs gives confidence to the results obtained with DFT-PBE.

5. CONCLUSIONS

In conclusion the results presented in this work indicate that
twisted and flat structures are intrinsic conformations of both
parallel and antiparallelβ-sheets. It is shown that twisting primarily
results as a response of the backbone to compressive strain
applied by interstrand interactions and hydration. Moreover it is
shown that the strengthening of water�water hydrogen bonding
along the solvation shell of β-sheets promotes a flat to twist
transition. The good agreement between predicted and observed
conformations of residues in β-sheet motifs in protein crystals
corroborates the effect of hydration on the twist of β-sheets here
described. Therefore the models here investigated are realistic,
hence useful for elucidating more accurate atomistic models, for
e.g., amyloid-like fibrils.
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ABSTRACT: As shown by previous theoretical and computational work, absolute entropies of small molecules that populate
different conformers can be predicted accurately on the basis of the partitioning of the intramolecular entropy into vibrational and
conformational contributions. Herein, we further elaborate on this idea and propose a protocol for entropy calculations of single
molecules that combines the rigid rotor harmonic oscillator (RRHO) entropies with the direct sampling of the molecular
conformational space by means of classical molecular dynamics simulations. In this approach, the conformational states are
characterized by discretizing the time evolution of internal rotations about single bonds, and subsequently, the mutual information
expansion (MIE) is used to approach the full conformational entropy from the converged probability density functions of the
individual torsion angles, pairs of torsions, triads, and so on. This RRHO&MIE protocol could have broad applicability, as suggested
by our test calculations on systems ranging from hydrocarbon molecules in the gas phase to a polypeptide molecule in aqueous
solution. For the hydrocarbon molecules, the ability of the RRHO&MIE protocol to predict absolute entropies is assessed by
carefully comparing theoretical and experimental values in the gas phase. For the rest of the test systems, we analyze the advantages
and limitations of the RRHO&MIE approach in order to capture high order correlation effects and yield converged conformational
entropies within a reasonable simulation time. Altogether, our results suggest that the RRHO&MIE strategy could be useful for
estimating absolute and/or relative entropies of single molecules either in the gas phase or in solution.

’ INTRODUCTION

A common assumption that lies at the heart of many entropy
calculations is that the absolute entropy of a single molecule can
be separated into several meaningful contributions.1,2 Perhaps
the most straightforward and useful division of entropy is into the
whole-body translational and rotational (Strans + Srot) and the
intramolecular configurational (Sconfig) contributions, the latter
one accounting for the entropy of internal degrees of freedom.
Interestingly, the development of reliable and cost-effective strate-
gies for computing the configurational entropy of complex mo-
lecular systems is a topic that has received much attention during
recent years given that, for instance, the ability to compute ac-
curateΔSconfig values could be very useful in understanding both
the experimental and theoretical data on folding3�8 and/or as-
sociation9�14 of biomolecular systems. Unfortunately, there are
still many open questions about Sconfig, concerning its relation-
ship to molecular structure and the importance of correlation
among internal motions given that, for relatively large molecular
systems, such correlations have been studied only through linear
approximations or low-order truncated mutual information ex-
pansions.15�23

According to Grubm€uller and co-workers,24,25 methods that
can compute entropy values can be classified into three broad cat-
egories: (a) methods based on the computation of free energy
differences using thermodynamic integration,26 (b) the hypothetical
scanning approach developed by Meirovitch and co-workers,27,28

and (c) an array of direct methods that extract the entropy of a
single molecule from configurations generated by carrying out a
conventional molecular dynamics (MD) or Monte Carlo simula-
tion. In this work, we are basically interested in the latter category
since our approach aims to estimate biomolecular entropies directly
from MD simulations.

In what follows, we will briefly review a family of direct meth-
ods for entropy calculations that are more relevant to our approach
taking into account that these methods can be divided into param-
etric (quasi-harmonic) andnonparametricmethodsdependingwhether
or not they assume a functional form for the probability density
function of the internal degrees of freedom. In addition, we also
distinguish a third category of direct methods, the hybrid meth-
ods that combine elements of the two kinds (i.e., parametric and
nonparametric).
Quasi-Harmonic Methods.The original quasiharmonic anal-

ysis was the first example of a direct method applied to biomo-
lecular systems. It was first introduced by Karplus and Kushick,
showing that the difference in configurational (i.e., non kinetic)
entropy between two molecular conformations can be estimated
from their respective covariance matrices.15 The basic idea is to
consider the underlying configurational density function P(q) in
the classical configurational entropy, Sconfig = �kB

R
C P(q) ln
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P(q) dq, as a multivariate normal distribution, leading thus to the
following entropy expression:

Sconf ig ¼ 1
2
kB½n þ lnðð2πÞn detðσÞÞ� ð1Þ

where det(σ) is the determinant of the covariance matrix of the n
internal coordinates. This equation can be applied to estimate
only relative entropy values. However, the implementation of the
quasi harmonic (QH) method suffers from some practical draw-
backs due to the required transformation to internal coordinates
and the consequent approximations made in the Jacobian. The
need for this transformation comes from the fact that removal of
the center of mass translation (unavoidable for convergence rea-
sons) makes σ singular if Cartesian coordinates are used.17

To overcome the limitations of the original QH method,
Schlitter has proposed an ad hoc approximation to the entropy in
which the Cartesian covariance matrix is modified by adding a
diagonalmatrix so that the resultingσmatrix is nonsingular. Starting
with the formula for the entropy of a one-dimensional quantum-
mechanical harmonic oscillator (HO), Schlitter proposed the
following heuristic entropy expression for a system of multiple
particles:

S
0
HO ¼ 1

2
kB∑

i
ln 1 þ kBTe2

p2
Æq2i æc

 !

¼ 1
2
kB ln

Y
i

1 þ kBTe2

p2
Æq2i æc

 !" #
ð2Þ

where Æqi2æc is the classical variance of the eigenvectors of the
mass-weighted covariance matrix σ0 = Mσ. Of particular im-
portance is the fact that by adding both translational and rotational
entropy contributions to the Schlitter’s expression for the con-
figurational entropy, it is possible to estimate absolute rather than
relative entropies that are directly comparable to the rigid�rotor
harmonic-oscillator (RRHO) entropies obtained from normal-
mode analysis and standard statistical thermodynamic formulas.
Following the introduction of Schlitter’smethod, theQH anal-

ysis has been upgraded in order to compute absolute entropies.18

To this end, the reformulated quasiharmonic approximation (QHA)
constructs a pseudoHessian matrix (H) of the molecular system
directly from the Cartesian covariance matrix (H)ij = kBT(σ

�1)ij.
The corresponding eigenvectors of H can be seen to represent
motional modes around the average system configuration. By as-
sociating each of the quasi-harmonic modes with a one-dimen-
sional harmonic oscillator, the total configurational entropy can
be approximated as a sum of harmonic contributions.
Despite the improvements introduced since the original for-

mulation of the QH method, either Schlitter’s approach or the
renovated QHA method suffer from three potential flaws: (a) only
linear correlations are taken into account, and therefore, supralinear
correlations among the system variables are ignored; (b) for-
mally, the multiminima potential energy surface is exceedingly
smoothed by defining only one minimum and ignoring any an-
harmonicity (including multimodality) of the essentially multi-
modal probability density function; (c) there is no clear and
unambiguous way to separate the overall rotation from the in-
ternal motions (e.g., there are uncertainties up to 80 J/mol K due
to the arbitrariness in the choice of reference atoms for the
preliminary structure superposition).29 Accordingly, these meth-
ods provide an upper limit to the true absolute entropy Stot.

30

Furthermore, given a covariance matrix, the function that max-
imizes entropy is precisely a Gaussian distribution function.31

To mitigate their well-known limitations, other authors have
proposed several refinements of the QH methods that estimate
the importance of the anharmonicity and/or supralinear correla-
tion effects.16,19,32�34 For example, three years after Karplus
introduced the QH analysis, Berendsen et al. proposed a simple
strategy to account for the anharmonicity in the configurational
probability density function.16,32 In this approach, the configura-
tional part of the classical entropy Sconfig(q), where q= (q1, q2, ..., qn)
is an array of internal coordinates, is computed by combining
the sum of marginal configurational entropies of the individual qi
variables with the correlation contributions captured by the
Karplus model:

Sconf igðqÞ ¼ �kB∑
i

Z
PðqiÞ ln PðqiÞdqi þ ½SQH

conf ig � SQH
conf ig, diag�

ð3Þ
where Sconfig

QH is the configurational entropy computed by eq 1 and
Sconfig,diag
QH is the uncorrelated or diagonal Gaussian contribution,
calculated by zeroing the nondiagonal elements of the covariance
matrix.
Very recently, Baron et al. have proposed a more refined

method that estimates both the effects of anharmonicity and
supralinear correlations on the classical entropy (i.e., not only
configurational entropy).19,33 The starting point is provided by
the renovated QHA approach that uses only Cartesian
coordinates.18 Subsequently, the entropy corrections are esti-
mated from the quasiharmonic coordinates or modes and their
corresponding probability densities obtained from the simula-
tions. The classical entropy correction for the nonharmonic
behavior,ΔScl

ah = Scl
ah� Scl

ho, is estimated as the difference between
the sum of the marginal entropies obtained directly for the
individual modes, Scl

ah, and the entropic term obtained consider-
ing the quasiharmonic coordinates as harmonic oscillators, Scl

ho.
On the other hand, the pairwise supralinear correction proposed
by Baron et al., ΔScl

pc = ∑n>m (Scl,mn
ah � Scl,m

ah � Scl,n
ah ), is obtained

from the classical entropies Scl,mn
ah computed using the joint

probability distribution of the modes m and n, and the corre-
sponding marginal entropies Scl,m

ah and Scl,n
ah .19 The estimated

entropy finally reads

S≈ SQHA þ ΔSahcl þ ΔSpccl ð4Þ
In principle, as remarked upon by the authors, this method can

be generalized for the inclusion of higher order correlations.33

Computational results following this approach have been re-
ported for a microsecond MD trajectory of a peptide model,33

showing the importance of sufficient phase-space sampling to
estimate entropic contributions. It has also been shown that, in
accordance with previous studies,13,19 the pairwise supralinear
correlation is normally large while the effect of the anharmonicity
on the entropy calculations is relatively small.
Nonparametric Methods. On the basis of the mathematical

tools of information theory and advanced statistics, it is possible
to estimate the full-dimensional configurational probability den-
sity function P(q) without resorting to any analytical approxima-
tion, unlike the QHA and Schlitter methods. This is the case of
themethod of Hnizdo et al.20 that is based on the use of a series of
kth nearest-neighbor (NN) entropy estimators,35 Ŝk, with k being
large enough to make a smooth estimation but small enough to
make the estimation as local as possible (e.g., k ∈ {1, 2, ..., 5}). In
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this approach, each molecular configuration is represented as a
vector with d components (e.g., the number of internal degrees of
freedom). The NN estimation rests on the simple assumption
that the configurational probability density function can be ap-
proximated locally in a nonparametric manner around each sample
point qi using the volume of a d-dimensional sphere centered at qi
and with a radius chosen such that it contains k neighbor data
points. Given that the NN Ŝk estimators yield asymptotically un-
biased and consistent entropies as the number of data points N
increases, they can provide accurate results for any probability dis-
tribution provided that sufficiently large samples of molecular
simulation data are available. In practice, however, this method
has been applied to small molecules due to the large computa-
tional cost of the NN searching algorithms when the dimension-
ality of the problem, d, is larger than 10�15.
Another nonparametric approach has been proposed by Gilson

and co-workers based on the mutual information expansion
(MIE),14,21 which is a systematic expansion of the entropy of a
multidimensional system inmutual-information terms of increas-
ing order n that capture the n-body correlations among the mo-
lecular internal coordinates. The size of the problem can be
reduced up to manageable limits by neglecting all fourth- and
higher-order MIE terms, thus allowing the calculation of Sconfig
values for several small molecules as well as the change in Sconfig
upon binding for protein�ligand systems,14,21 but at the cost of
sampling millions of molecular configurations for reaching con-
verged results. A combination of the NN and MIE techniques36

has also been proposed.
Hybrid Approaches. Very recently, Hensen et al. have devel-

oped a new direct method that combines and improves different
techniques with the specific aim of making entropy calculations
for relatively large biomolecules feasible.24,25 These authors dis-
tinguish three parts or blocks in their method. First, they replace
the kthNN entropy estimators by adaptive anisotropic ellipsoidal
kernels that capture the configurational density in sufficient detail
for up to 45-dimensional spaces. Second, they generate minimally
coupled subspaces of internal degrees of freedom by applying a
linear orthogonal transformation to Cartesian coordinates in such a
way that the mutual information among the resulting coordinates
is minimized. The new coordinates are subsequently clustered
according to their degree of correlation (correlation among dif-
ferent clusters is neglected). Each oversized cluster (d > 15) is
subdivided into smaller groups with maximum dimensionality
d = 15, and its configurational entropy is computed as a sum of
the estimated entropy of its components (subclusters) and then
corrected by means of mutual information functions. For the
stiffest degrees of freedom resulting from the orthogonal trans-
formation, Hensen et al. also propose to employ a generalized
quasiharmonic Schlitter formula that accounts for their quantum
mechanical nature. Thus, the basic idea behind the method of
Hensen et al. is that the combination of parametric and sophis-
ticated nonparametric approaches could help overcome many
limitations of the QH methods, but without seriously compro-
mising its applicability to relatively large systems.
Clearly, a key element in the adaptive strategy pursued by

Hensen et al. is their statistically based clustering of internal
degrees of freedom into subsets that are weakly correlated and
the separation into softer and stiffer degrees of freedom. In this
respect, other authors have also designed direct methods that
assume (a priori) a separation between internal degrees of freedom.
For example, themethod of Thorpe andOhkuboa37 takes advantage
of the fact that typical molecular mechanics (MM) Hamiltonians in

implicit solvent are easily separable into vibrational (identified as
stretching, bending, and improper torsional motions) and non-
vibrational (identified as torsions) degrees of freedom. These
authors show that entropic contributionswith respect to an arbitrary
temperature for medium-sized systems can be obtained from
standard thermodynamical statistical formulas and molecular
partition functions which, in turn, can be derived from the density
of state functions computed with the weighted histogram analysis
method and replica-exchange MD simulations. In this way, it
turns out that entropy differences for small- and medium-sized
systems can be obtained from conformational and vibrational
energy terms. More recently, Br€uschweiler and Li23 have claimed
that the configurational entropy is separable into contributions
from hard and soft degrees of freedom (the latter ones identified
again with torsion angles) and that correlation effects among the
soft variables cancel in good approximation on the basis of the
results of test calculations on some dipeptide systems. These
authors propose then to assess entropy changes between two
states of a system at the same temperature, assuming that the
entropic contributions of the hard variables do not change. As a
first order approximation for conformational entropies is used,
this approach is computationally very efficient and can be applicable
to protein systems.
Combining the Rigid�Rotor and Harmonic-Oscillator

Approximations with Conformational Entropy Estimations.
In previous works, we have investigated the role of conforma-
tional entropy in the absolute and relative stability of collagen
model peptides22 as well as in the binding of small peptides to the
active site of matrix metalloproteases.38 However, the methodo-
logical scope of these previous articles was very narrow, as they
are focused on the properties of the biomolecular systems being
considered. Hence, in this work, we deal with the methodological
details of our protocol for entropy calculations of single mol-
ecules whose molecular conformational space is sampled by means
of classical MD simulations. Following the original proposal by
Karplus and co-workers,12,39,40 we assume that the total entropy
(Stot) of a single molecule (excluding translation and rotation)
can be partitioned into a vibrational (Svib) and a pure conforma-
tional contribution (Sconform):

Stot ¼ S̅vib þ Sconform ð5Þ
This simple partitioning scheme can be shown to be formally

exact as long as one neglects the entropic contributions from the
high energy regions between any pair of wells on the potential
energy surface of the molecular system.12 In addition to the
entropy partitioning, our approach is further characterized by the
two following features:
• First, we employ the harmonic approximation to compute
the mean value of Svib over a time series of representative
MD snapshots. The required energyminimization and normal-
mode calculations can be done even for relatively large mo-
lecular systems provided that molecular mechanics or low
level quantum mechanical methods are used. Of course,
these normal mode and entropy calculations can be carried
out within the framework defined by the conventional RRHO
approximations and the standard statistical thermodynamic
formulas,41 thus allowing one to estimate absolute entropies.

• Second, the conformational states along the MD trajectory
are determined by means of the discretization of the time
evolution of internal rotations about single bonds. This
transformation, which does not require any a priori separa-
tion between softer or stiffer degrees of freedom, implies
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that the conformational entropy of the whole MD trajectory
(Sconform) should be naturally computed using the Shannon
informational entropy:36,42,43

Sconform ¼ kB ∑
Nconf

j
ð�pj ln pjÞ ð6Þ

where pj is interpreted as the statistical weight of the jth
conformer. However, at this point, we resort to the above-
mentioned MIE method in order to approach the full con-
formational entropy from the converged probability density
functions of the individual torsion angles, pairs of torsions,
triads, and so on.

The assumption of the entropy partitioning expressed in eq 5
discriminating between vibrational and conformational entro-
pies; the computation of the mean values of the RRHO entropy
contributions accounting for the translational, rotational, and
vibrational contributions to the absolute entropy; the discretiza-
tion of the torsional angles; and the concomitant use of MIE for
estimating the conformational entropy from data provided by
classical MD simulations constitute, altogether, the basic features
of the RRHO&MIE entropy method examined in this work.
Nevertheless, it must be noticed that some of these methodolo-
gical ingredients have been employed in previous calculations of
the gas-phase entropy of flexible molecules.44�49 Thus, it has
been shown that the absolute entropy of a mixture of conformers
can be computed with reasonable accuracy by averaging the
RRHO entropy of all of the conformers present at a given
temperature and then adding an entropy of mixing (ΔSmix) that
accounts for the entropic gain in the mixture of conformers:

S ¼ S̅ þ ΔSmix ¼ ∑
R
pRSR þ R∑

R
ð�pR ln pRÞ ð7Þ

where pR, the molar fraction of the R conformer, is typically
estimated with the Maxwell�Boltzmann distribution formula in
terms of quantum chemical enthalpies or approximate free energies.
All of the distinctive conformers including enantiomeric con-
formers of the same energy are identified using either a direct
counting method or automatic conformational search algorithms.
Obviously, pR andΔSmix in the “mixture of conformers”method
are equivalent, respectively, to the statistical weight of the R
conformer and the conformational entropy Sconform in the frame-
work defined by the RRHO&MIE protocol, and consequently,
the two approaches would be essentially identical. However, we
will see that conceptual and practical differences subsist in the
way that the Sconform and ΔSmix terms are handled and that the
RRHO&MIE approach is more suitable for dealing with rela-
tively large systems.
To introduce further details of the RRHO&MIE method and

illustrate its potential benefits and limitations, the rest of this
paper is organized as follows. First, we will comment on the
partitioning of the total entropy (excluding translation and rotation)
into the vibrational and conformational components that forms
the basis of the RRHO&MIE approach. The separation between
vibrational and conformational effects relies heavily on the dis-
cretization of the torsional degrees of freedom, and therefore, we
will describe this transformation in a detailedmanner. Then, after
having restated a few definitions about mutual information func-
tions, we will point out that the original MIE expression can be
reformulated in such a way that all redundancy in the calculation
of the n-order terms is removed. The discretization process com-
bined with the reformulated MIE equation allow us to compute

Sconform values including higher order terms beyond the second-
or third-order terms that have been considered in most of the
previous works. The performance of the RRHO&MIE protocol
will be critically discussed on the basis of a series of test
calculations on different systems ranging from hydrocarbon
molecules in the gas phase to a polypeptide molecule in aqueous
solution. For the hydrocarbon molecules (three C6H14 and five
C7H16 isomers), their conformational entropies derived from
classical MD simulations are combined with their RRHO en-
tropies obtained by carrying out quantum chemical frequency
calculations, and the resulting absolute entropies are then com-
pared with experimental data. In this way, we will examine to
what extent the assumptions made in the formulation of the
RRHO&MIE protocol and the use of classical MD simulations
affect the quality of the computed absolute entropies. Second, we
will focus on more complex test systems: a series of dipeptide
molecules in the gas phase. Although experimental absolute
entropies for these test systems are not available, they constitute
important cases of study in our validation calculations because
they present larger correlation effects among internal degrees of
freedom due to the presence of intramolecular H-bond and polar
interactions. On the basis of the results obtained for the dipeptide
molecules in the gas phase, we will see that the combined dis-
cretization process and the MIE approximations are able to
capture high order correlation effects and simultaneously yield
converged conformational entropies within a reasonable simula-
tion time. Finally, we will analyze the results obtained for a poly-
peptide molecule in aqueous solution, which can be a represen-
tative of the kind of molecular systems for which the RRHO&MIE
entropy calculations could be particularly interesting. Besides
analyzing the source of conformational correlations, we will also
compare the convergence properties and absolute values of Sconfig as
provided by the RRHO&MIE (using an implicit solvent model
and MM normal mode calculations) and the QHA methods.
Overall, we hope that the methodological proposals and the
results of our test calculations could be useful to extend the range
of applicability of approximate entropy methods for studying
more challenging systems involving polypeptide-folding or mo-
lecular association processes.

’THEORY AND COMPUTATIONAL METHODS

a. Decomposition of the Intramolecular Entropy.As shown
in previous works by Gilson and Zhou,40 the entropy of a system
with multiple potential energy wells can be formally decomposed
into two parts: the entropy that arises from vibrational motions
within a single well and the entropy due to conformational tran-
sitions between different energy wells. In the case of a single mo-
lecule either in the gas phase or in the condensed phase, this
entropy decomposition is clearly an approximation whose good-
ness would depend on the actual molecular structure being studied,
temperature, environmental effects, etc. It is true that other
entropy methods have been formulated that can derive the total
configurational entropy directly fromCartesian coordinates, thus
avoiding any assumption about the additivity or lack thereof of
the Sconform and Svib contributions

19 (although there may remain
the problem of separating the overall rotation from the internal
motions29). However, although we recognize that the total entropy
is strictly a global property, its formal decomposition into the
conformational and vibrational terms constitutes the basis for the
present work. As amatter of fact, many experimental and theoretical
methods have provided meaningful results by accepting that free
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energies or entropy contributions can be attributed to particular
degrees of freedom and/or physical interactions.1,2

In the Supporting Information, we provide an alternative deriva-
tion of the formal decomposition of the single molecule entropy
assuming that the translational and rotational degrees of freedom
have been removed and that the resulting potential energy
surface in terms of the remaining internal degrees of freedom
can be approximated by a set of distinguishable energy basins, as
shown in Scheme 1. The final entropy decomposition formula is

Stot ¼ ∑
j
pjS

j
vib þ Sconform ð8Þ

where pj and Svib
j stand for the probability and vibrational entropy

associated with the jth energy basin, respectively, while Sconform is
the conformational entropy that arises from the populations of
the different energy basins.
The practical implementation of the entropy decomposition

(eq 8) implies that each molecular configuration of a single mol-
ecule (e.g., one MD snapshot) employed in the entropy calcula-
tions should be associated with one molecular j conformer (or j
energy basin) representing its conformational state. In our protocol,
this assignation is only relevant for the evaluation of the confor-
mational entropy Sconform and can be achieved by discretizing the time
evolution of the torsion angles (see below). The average value of Svib
is obtained separately by means of energy minimization calculations
followedbynormal-mode analyseswithin the context of the harmonic
oscillator model. In terms of accuracy, the formal entropy decom-
position should provide nearly exact results for small molecules in the
gas phase (ideal conditions) at room temperature given that, in this
case, only the lowest vibrational levels would be populated and
they could be tagged univocally to a single conformer.
Could the entropy decomposition provide meaningful results

in other more complicated situations such as that depicted in
Scheme 2? As temperature increases, high energy vibrational
levels that can be simultaneously assigned to different confor-
mers would become populated, partially blurring the distinction
between vibrational and conformational motions. Although the
practical implementation of eq 8 would not be impeded in this
case, the entropy given by eq 8would be overestimated due to the
double-counting of the contributions of those high energy vibra-
tional levels accessible from the two energy basins. Therefore, we
propose that, in general, the decomposition of the single molecule
entropy could be useful, as it would provide an upper bound to
the actual value. Nonetheless, its performance needs to be as-
sessed by carrying out test calculations.
b. On the Use of the Harmonic Oscillator Model for

Vibrational Entropies.We think that one remarkable advantage
of discriminating between vibrational and conformational entropies
is the utilization of the HO model for computing the average

vibrational contribution over a series of representative structures.
Clearly, a straightforward computational protocol can be applied
for obtaining the mean values of Svib. Starting with a set of
representative MD snapshots, optimization calculations relax the
internal geometry of eachmolecular structure to that corresponding
to a particular j energy basin, whose vibrational entropy, Svib

j , is
subsequently estimated by means of conventional normal mode
calculations. In fact, the combination of the HO approximation,
the rigid rotor model, and the standard formulas of statistical
thermodynamics based upon canonical partition functions can be
used to estimate absolute entropies that in some cases admit a
direct comparison with experimental data (e.g., in the gas phase).50

We can also benefit from many efficient implementations for
performing either geometry optimizations and second derivative
calculations using molecular mechanics51 and/or quantum me-
chanical methods depending on the size of the molecular system.
Part of the limitations of theHOmodel (e.g., the lack of anharmonic
effects, errors arising from the level of theory, etc.) could be mit-
igated by using empirical corrections in the form of scaling fac-
tors.52,53 We also note that the RRHO entropies (complemented
with the conformational contributions) could be useful within
the context of approximate free energy methods like the so-called
molecular mechanics Poisson�Boltzmann method.54 Moreover,
previous computational experience with these approaches has
shown that the average normal mode entropy converges quite
well in terms of the length of simulations and the number of mo-
lecular configurations required.54,55

c. Discretization of the Torsional Degrees of Freedom. To
take into account the Sconform contribution, which arises from the
population distribution of the molecular conformers, we propose
to discretize the probability density functions of those torsion
angles that are commonly used to define the molecular confor-
mational state. To this end, we apply the following protocol.
First, we collect the time series with the values of the torsion

angles along the MD simulation. For each torsion angle θ, we
have a sample of sizeN, {θ1, ..., θN | θi ∈ [0, 2π)}, whereN is the
number of MD snapshots (∼105�106). To obtain an analytic
representation of the underlying probability density function for
the torsion θ, we employ the vonMises kernel estimator (the von
Mises density is the circular analogue of the Gaussian distribution).
Specifically, the probability density function of a given torsion,
F(θ), is then approximated by the arithmetic mean of N von
Mises distributions centered on the θi values:

F̂ðθ; υÞ ¼ 1
2πNI0ðυÞ ∑

N

i¼ 1
expfυ cosðθ� θiÞg

where Ir(υ) is the modified Bessel function of order r, and υ,
which is the so-called concentration parameter, is the inverse of
the smoothing parameter of the kernel estimator. The value of υ

Scheme 1. Schematic Example of a Multiminima Potential
Energy Surface

Scheme 2. High Energy Vibrational Levels Can Be Assigned
to Different Energy Basins
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is obtained by applying the recently derived “von Mises-scale
plug-in rule”56 for the smoothing parameter, which results in the
following expression that depends on the numberN of data points:

υ ¼ ½3Nk̂2I2ð2k̂Þf4π1=2I0ðk̂Þ2g�1�2=5

with k̂ being an estimate of the concentration parameter of the
global data, for which we take k̂ = 1, as this value leads to a slightly
oversmooth distribution that is more convenient for our purposes.
By setting an empirical value for k̂ rather than for υ, we keep the
dependence on N.
The advantage of using the vonMises kernel estimator instead

of a normalized histogrammethod is that we can characterize the
analytical properties of F(θ)≈ F̂(θ;υ) in order to automatically
optimize the location of the maximum and minimum values of
F(θ), which is a prerequisite for discretizing the time evolution of
the torsion angle θ. This task is performed by the analytical
evaluation of the first and second derivatives of F̂(θ;υ) over a grid
of ϕk = k(π/(180)) points with k = 0, 1, ..., 359. On one hand, the
approximate positions of the F̂(θ;υ) critical points are first
determined by averaging two consecutive grid points k and k + 1
for which F̂0(ϕk;υ) F̂0(ϕk+1;υ) e 0. For the torsional distribu-
tions, the maximum critical points are easily identified thanks to
their largely negative second derivate, and therefore, we first locate
the maxima of F̂(θ;υ) and use the intermediate position between
two consecutivemaxima as the initial guess for searching theminima.
The minima of F̂(θ;υ) are found by means of a steepest descent
search that adopts a convergence threshold for the residual gradient
of 10�4 and employs a linear interpolation approximation for
evaluating the gradient on the basis of the F̂0(ϕk;υ) values.
Once the θmin,i values corresponding to the F̂(θ;υ) minima

are found (let us suppose that there are m minima and θmin,i
< ... <θmin,m), the configurational space of θ defined by the
[0,2π) interval is divided into m nonoverlapping intervals
([θmin,1,θmin,2), ..., [θmin,m�1,θmin,m), [θmin,m,2π) ∪ [0,θmin,1))
that, in turn, define the different conformational states accessible
to θ. In this way, the initial time series containing N data points,
{θ1, ...,θN}, is easily transformed into a set of N integer numbers
{a1, ..., aN} labeling the conformational states populated by the
torsion angle. For example, if θ corresponds to an internal
rotation about a C(sp3)�C(sp3) bond, its associated ai variable
could have values of 1, 2, and 3 representing the g+, g�, and anti
conformations, respectively. Therefore, the continuous variable
θ characteristic of the torsion angle becomes a discrete random
variable A, whose probability mass function, P(A), can be
estimated by the maximum likelihood method fed with its
corresponding outcomes {a1, ..., an}. Finally, we note that the
loss of entropy during the θfA transformation can be expected
to be vibrational, and that we assume that such a contribution can
be reasonably accounted for by normal mode calculations. In
other words, the entropy due to the fluctuations of the torsion
angles around a local minimum should be recovered by the Svib
calculations. This means that, in our approach, it is not necessary
to distinguish between soft or hard degrees of freedom (or
between vibrational or nonvibrational ones) because the confor-
mational entropy turns out to be purely informational as a
consequence of the discretization process. The probability
density function for the torsion angle θ about the C2�C3 bond
of 2-methyl-hexane is shown in Figure 1.
d. Mutual Information Expansion: Application to Confor-

mational Entropy Calculations and Reformulation into a
Computationally Efficient Scheme More Suitable for Very
Large Systems. As shown in the previous section, the conforma-

tional state of a torsion angle can be associated with a one-
dimensional random variableA. Analogously, the conformational
state of a set of M torsion angles can be described by an
M-dimensional random vector (A1, ..., AM), or alternatively, the
conformational state can also be associated with an ordered set
{A1, ..., AM}, where Ai specifies the conformational state of the i
torsion andM is the size in terms of the number of torsion angles
of our systemA = {A1, ..., AM}. Of course, for medium-sized and
large molecules, the number of potentially accessible conformers
is huge (∼3M), and in this case, obtaining the underlying probability
mass function P(A) is practically impossible due to sampling
limitations. As other authors have done previously,21,36 we will
use the mutual information expansion as a workaround to this
problem. The basic idea here is that if we are able to obtain con-
verged values of the probability mass functions of the individual
torsion angles p(Ai), pairs of torsions p(Ai, Aj), triads p(Ai, Aj,
Ak), and so on, then we can approach the full-dimensional infor-
mational entropy of the (A1, A2, ..., AM) variables (i.e., the con-
formational entropy) by including systematically n-order correla-
tions among the Ai variables as measured by mutual information
functions.42 More specifically, the mutual information expansion
leading to the total entropy can be written as

SðA1, :::,AMÞ ¼ ∑
M

i¼ 1
SðAiÞ � ∑

i < j
I2ðAi,AjÞ

þ ∑
i < j < k

I3ðAi,Aj,AkÞ
� ∑

i < j < k < l
I4ðAi,Aj,Ak,AlÞ þ :::

where S(Ai) is the informational entropy of the ith torsion angle
along the MD simulation while I2(Ai, Aj), I3(Ai, Aj, Ak), and
so forth are the corresponding mutual information functions
that capture the general dependence among the (A1, A2, ..., AM)
variables (unlike the covariance function used in the QH
methods that only measures linear correlations). More specifically,
the mutual information shared by two variables, Ai and Aj, is
computed by combining the informational entropies of the
single- and two-variable probability mass functions of the torsion
angles:

I2ðAi,AjÞ ¼ SðAiÞ þ SðAjÞ � SðAi,AjÞ
where S(Ai, Aj) is the joint entropy of Ai and Aj. Both S(Ai) and
S(Ai, Aj) can be computed using a Shannon-type expression,
�kB ∑pR ln pR, where pR is the corresponding probability mass
function and the sum runs over the possible states accessible to
the individual torsion angles Ai or to the pair of torsions (Ai, Aj).
Similarly, the third-order function I3(A1, A2, A3) includes corre-
lation effects among three torsion angles:

I3ðAi,Aj,AkÞ ¼ SðAiÞ þ SðAjÞ
þ SðAkÞ � SðAi,AjÞ � SðAi,AkÞ � SðAj,AkÞ
þ SðAi,Aj,AkÞ

In general, the mutual information shared among k variables
J = {A1, A2, ..., Ak} can be generalized by

IkðJ Þ ¼ ∑
k

l¼ 1
ð� 1Þl þ 1 ∑

I ⊂ J

jI j¼ l

SðI Þ

where for every value of l, the inner sum runs over all possible
(l
k) subsets of J with l elements, |I | being the cardinality of I
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(i.e., the number of elements). A special case arises when k = 1,
that is, I1 (J1) = S(J1). The total entropy of theM variablesA =
{A1, ..., AM} is usually approximated by a truncated mutual
information expansion up to order n,21,42 which becomes an
exact expression when n = M:

SðnÞðA Þ ¼ ∑
n

k¼ 1
ð� 1Þk � 1 ∑

J ⊂A

jJ j¼ k

IkðJ Þ ð9Þ

However, we note again that in previous calculations of config-
urational entropies based on the MIE approach, only low order
(i.e., n e 3) approximations have been used.
A computational shortcoming of the usual form of the MIE is

that, for any subset I of A with cardinality lower than n, its
entropy must be evaluated more than once. If the order of the
expansion is not too high and a reasonable amount of rapid access
memory is available, all of the required S(I ) terms can be stored
and used repeatedly in the calculation of the high order terms.
For large and strongly correlated systems (e.g., M > 100, n =
3�5), however, this simple approach could become unfeasible
due to memory depletion, while a direct implementation in
which the S(I ) terms would be recomputed on-the-fly as
needed would be prohibitively expensive. In order to remove
all redundancy in the calculation of the MIE terms, the original
expression can be reformulated in the following manner:

SðnÞðA Þ ¼ ∑
n

k¼ 1
∑
n � k

i¼ 0
ð�1Þi M � k

i

 !" #
∑
M

I ⊂ fA1, :::,AMg
jI j ¼ k

SðI Þ

ð10Þ

where the entropy of each subset I is computed and used only
once. The formal proof of the equivalence between eqs 10 and 9
is given in the Supporting Information. To the best of our knowl-
edge, the above expression has not been reported so far, although
its implementation could greatly simplify theMIE computational
problem for very large systems with hundreds or even more
torsion angles. Finally, we note that all of the MIE calculations
reported in this work were carried out using a FORTRAN90
code that has been developed in our laboratory and that will be
reported elsewhere.57

e. Molecular Dynamics Simulation Settings. Small Sys-
tems: Gas-Phase MD Simulations. MD calculations for each in-
dividual molecule were carried out by means of the Amber10
package.58 The generalized AMBER force field59 was used for the
alkane molecules, while the dipeptides (Ace�X�X�Nme, with
X =Ala, Ser, Asn, Leu, and Lys) were represented by the AMBER03
force field.60 To derive the atomic charges of the alkane molec-
ules, we performed HF/6-31G(d) geometry optimizations of the
fully extended conformers followed by single-point B3LYP/cc-
pVTZ calculations using the Gaussian 03 program.61 Other
parameters were generated automatically using the antechamber
module included in the Amber10 package. Subsequently, 2.0 μs
MD trajectories for all of the alkane and dipeptide compounds
were run in the gas phase at 298 K and 1.0 atm using a 1.0 fs time
step. Coordinates were saved every picosecond of simulation
time (2 � 106 structures).
Polypeptide System: MD Simulation in Solution. We simu-

lated the following hexapeptide sequence, Ace�Pro�Phe�
Glu∼Leu�Arg�Ala�NH2 (termed the PFG peptide), which
corresponds to one of the peptide sequences that has been
selected from a peptide library mixture for probing the cleavage

Figure 1. (A) Probability density function for the torsion angle θ about the C2�C3 bond of 2-methyl-hexane as obtained from a histogram
representation and a Von Mises kernel estimator. The probability mass function of the three conformational states is also indicated by the vertical bars.
(B and C) Superposition of the probability density function and its first and second derivatives as estimated by the VonMises kernel. (D) Time evolution
of the torsion angle θ and its associated discrete variable A (see text for details).
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site motifs of matrix metalloproteinases (MMPs).62 Starting co-
ordinates were obtained from conformational search calculations
using the LMOD program63 linked to the Amber package. In the
LMOD calculations, we employed the AMBER03 force field
coupled with the Hawkins�Cramer�Truhlar pairwise general-
ized-Born (HCT-GB)model.64 The lowest energy LMOD struc-
ture of PFGwas then surrounded by a periodic truncated octahedral
box of TIP3P water molecules that extended ∼12 Å from the
protein atoms (∼1400 water molecules). The solvent molecules
were initially relaxed bymeans of energyminimizations and 50 ps
of MD. Subsequently, the full system was minimized and heated
gradually to 300 K during 50 ps of MD. During the MD
simulation, the system remains coupled to a thermal and a hydro-
static bath at T = 300 K and P = 1.0 atm, the time step of in-
tegration was 2.0, the SHAKE procedure on the X�H bonds was
applied, and the particle-mesh-Ewald approach was used for
nonbonded interactions. A 2.0 μs trajectory was computed, and
coordinates were saved for analysis every picosecond.
f. Normal Mode Calculations. Alkane Molecules: Quantum

Mechanical Calculations. For the alkane molecules, we evaluated
the average value of their rotational and vibrational entropies by
carrying out quantummechanical (QM) calculations on selected
MD snapshots. To this end, 2000 equally spaced snapshots were
extracted from the MD trajectories of each compound. All of the
MD snapshots were minimized and scored in terms of their
relative MM energies. The relative energies of the relaxed struc-
tures were compared in order to filter out all of the energetically
equivalent structures, obtaining thus a relatively small set of
energetically distinguishable molecular conformers (i.e., this means
that only one structure for each pair of enantiomeric conformers
is retained). The statistical weight of each energetically unique
conformer was estimated by its relative abundance in the initial
data set containing the 2000 structures. These conformers were
subsequently minimized at the B3LYP/cc-pVTZ level of theory65,66

and further characterized by analytical frequency calculations. Then,
thermal contributions to the gas-phase entropy of the transla-
tional, rotational, and vibrational degrees of freedom were obtained
within the context of the RRHO approximation and using the
B3LYP/cc-pVTZmoments of inertia and vibrational frequencies.
Entropy contributions of overall rigid-body rotation take into ac-
count the corresponding external symmetry number for each
conformer.
Polypeptide Systems: Normal Mode MM Calculations. Tak-

ing into account the relatively large size of the polypeptide system,
we decided to useMMmethodologies for carrying out the required
normal mode calculations. Moreover, since the solute and sol-
vent fluctuations are coupled to each other during the MD sim-
ulation of the TIP3P water box, we also used the HCT-GB implicit
solvent model for removing the explicit consideration of solvent
degrees of freedom. Thus, we extracted 10 000 equally spaced
snapshots from the 2.0 μs trajectories of PFG. These structures
were postprocessed through the removal of all solvent and counter-
ion molecules. Then, solute entropic contributions were estimated
for each structure using the NAB package.67 Prior to the normal
mode calculations, the geometries of the system described by the
AMBER03 force field were minimized until the root-mean-squared
deviation of the elements in the gradient vector was less than
10�5 kcal/(mol Å). It may be interesting to note that the large
majority of the minimized structures (>98%) corresponded to
different minima on the potential energy surface, as expected
from the relatively large size of this system. These minimizations
and the subsequent normal mode calculations51 were carried out

using the HCT-GB solvent model. Finally, the RRHO entropic
contributions were averaged over the 10 000 snapshots.

’RESULTS AND DISCUSSION

Absolute Entropies of Alkanes. Table 1 and Figures 2 and 3
collect the results of our entropy calculations for the C6H14

(1�3) and C7H16 (4�8) isomers. Of particular interest in these
test calculations is the fact that the experimentally available gas-
phase entropies of the alkanemolecules can be directly compared
with our theoretical estimates, since we employ both the RRHO
approximation and standard statistical formulas for obtaining the
translational�rotational�vibrational entropies of polyatomic mol-
ecules,41 which are subsequently complemented by adding the
conformational entropy contributions arising from the discreti-
zation of the time evolution of the torsion angles during the
classical MD simulations. Furthermore, consideration of these
molecules, which are still small enough for exhaustively exploring
their conformational space, allows us to show more clearly the
relationship of our method with the closely related protocol of
the “mixture of conformers”model, which has provided accurate
entropy values of small molecules.44,45

Automatic checks of the relaxed snapshots show that the number
of energetically distinguishable conformers (NE in Table 1) that
are populated at 298 K in the gas phase vary between 4 and 15 for
the various alkanemolecules, except for 2,2-dimethyl-butane (2),
which shows a single energy level because torsional motions of
the methyl groups and about the C2�C3 bond interconnect
structures that are degenerate in terms of their potential energy.
Precisely, the RRHO entropy value of 2,2-dimethyl-butane at
the B3LYP/cc-pVTZ level, 357.77 J/(K mol), is only less than
1 J/(K mol) below the experimental value (378.65), thus showing
that the B3LYP/cc-pVTZ level of theory accounts well for the
majority of the gas-phase entropy of alkane molecules having a
single conformer. This also suggests that frequency scaling, which
has been commonly used to correct for systematic errors in the
ab initio computation of vibrational frequencies52 is probably not
required at the B3LYP/cc-pVTZ level. For the rest of the test com-
pounds, however, several energy-distinguishable conformers are
significantly populated at 298 K. Their individual RRHO entropy
values are similar, but they exhibit non-negligible differences as
large as 5 J/(K mol).
The mean values of the RRHO absolute entropies (S in

Table 1) underestimate the experimental data up to tenths of a
J/(K mol) for the flexible hydrocarbon molecules. The correla-
tion plot shown in Figure 2A shows more clearly the differences
between the experimental and the average theoretical entropies:
the resulting squared correlation coefficient is quite low, R2 =
0.70 (a unit slope is imposed), and a large offset at the intercept
arises (�14 J/(K mol)). Moreover, the relative entropy values
among the C6H14 or C7H16 isomers are poorly described by the
average RRHO values: for example, the ΔSexp value between 1
and 2 is �30.17 J/(K mol), whereas the computed ΔS value is
only�7.89 J/(K mol). Therefore, it is clear that neglecting con-
formational entropy contributions significantly affects the quality
of the entropy calculations even for simple hydrocarbon molecules.
Concerning the conformational entropies of the alkane mol-

ecules estimated from the classical MD simulations, we first assess
their statistical convergence by plotting the Sconform values vs
simulation time at various expansion orders for 2-methyl-hexane
(7) and 3,3-dimethyl-pentane (8; see Figure 3). Thus, all of the
Sconform profiles in Figure 3 converge to nearly zero-slope curves
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with respect to simulation time after ∼1.5 and ∼1.0 μs for 7
and 8, respectively, regardless of the expansion order. An even

faster convergence was observed for the rest of the alkane mol-
ecules (see Figure S1 in the Supporting Information), and therefore,
we conclude that the reported Sconform values for these small alkane
molecules essentially lack any statistical uncertainty. Although the

Table 1. Average Value of the Translation-Rotational-Vibrational Entropy (S) and Converged Values of the Conformational
Entropy at 298 K (values in J/mol K) for the Alkane Compounds Studied in This Worka

aThe number of energetically indistinguishable conformers at T = 0 (Ωterm) and the number of energetically distinguishable conformers (NE) at 298 K
are also indicated. b From references: hexane,68 2,2-dimethyl-butane,69 3-methyl-pentane,70 3-ethyl-pentane,71 2,2-dimethyl-pentane,71 2-4-dimethyl-
heptane,71 2-methyl-hexane,71 and 3,3-dimethyl-pentane.70 c S = Strans + Srot

RR + Svib
HO and using the B3LYP/cc-pVTZ geometries and frequencies. The Srot

and Svib contributions are averaged according to the relative frequency of the energetically distinguishable conformers during the classical AMBERMD
simulations. d Including the fifth-orderMIE conformational entropy derived from the classical MD trajectories. eΔSconform = Sconform� Sconform

term (see text
for details).

Figure 2. Correlation plots between theoretical absolute entropies (in
J/(K mol)) for the eight alkane molecules considered in this work before
(A) and after (B) adding the conformational entropy contribution to the
mean RRHO entropies.

Figure 3. Convergence plots of the gas-phase conformational entropy
(J/mol K) for 2-methyl-hexane and 3,3-dimethyl-pentane.
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RRHO entropy is clearly the largest part, the Sconform values,
which range between ∼30 and ∼50 J/(K mol), represent a
significant contribution. Analyzing now the relative importance
of correlation effects in Sconform, we find that the first-order MIE,
which assumes that all torsion angles are independent variables,
overestimates the conformational entropy. This behavior is not
entirely unexpected because, for these small systems, the con-
vergence plots in Figure 3 and Figure S1 (Supporting Infor-
mation) strongly suggest that all correlation effects are effectively
taken into account by our calculations, and as a consequence, the
total entropy diminishes with respect to the first order value. How-
ever, we see in Figure 3 and Figure S1 that the entropy curves at
first order recover most of the total conformational entropy; that
is, entropy reduction due to correlation effects is rather small,
only 1�5 J/(K mol). Moreover, it turns out that this reduction is
basically due to pair correlation, as the converged second order
values are practically indistinguishable from the rest of the higher
order Sconform entropies in all cases. Therefore, from these test
calculations on the selected alkane molecules, we conclude that
(a) Sconform is a significant entropic contribution and (b) the
degree of correlation among the torsional degrees of freedom is
rather low so that the second order MIE approximation gives
sufficiently accurate values for the examined alkane molecules.
Before comparing our theoretical absolute entropies for the

various C6H14 and C7H16 isomers with experimental data, it is
necessary to realize that our Sconform calculations, which are based
on classical MD simulations, imply that individual atoms in a
covalently bound molecule are distinguishable particles. There-
fore, in order to compare our data with experimental third-law
entropies, we have to remove from the Sconform values the confor-
mational entropy that arises from the number of possible rearrange-
ments (Ωterm) that a single molecule can formally undergo through
internal rotations about bonds to terminal symmetrical groups
(e.g., �CH3) without altering any molecular property. For
instance, in the case of 2,2-dimethyl-butane, internal rotation
of each of the four terminal methyl groups as well as around the
C2�C3 bond generates three conformers per rotatable bond of
identical energy and molecular properties, so that 2,2-dimethyl-
butane has a total ofΩterm = 35 possible intramolecular arrange-
ments that would result in an entropy contribution Sconform

term =R ln
Ωterm = 45.67 J/(K mol) (the Sconform

term values for the rest of the
alkane molecules can be likewise computed). The addition of the
entropy differences, ΔSconform = Sconform � Sconform

term , to the RRHO
mean values S allow us to properly compare between theoretical and
experimental data. Note also that entropic effects due to the pres-
ence of enantiomeric conformers are taken into account automati-
cally by the Sconform calculations.We see in Figure 2 that the linearity
of the correlation plot between the experimental and RRHO-based
entropies is quite improved after having added the ΔSconform term
to S. Thus, the squared correlation coefficient is now 0.96, and the
intercept is around �2.6 J/(K mol).
The acceptable goodness of the linear fit between experimen-

tal and theoretical data in Figure 2 confirms the importance of
Sconform and supports the usefulness of decomposing the entropy
into its vibrational and conformational parts. In the Supporting
Information, we present more calculations of the absolute entropies
of the eight alkane molecules by using the above-mentioned
“mixture of conformers” model.44,45 These calculations, which
are based entirely on QM data, suggest that a significant fraction
of the observed error in the RRHO&MIE conformational entropy
calculations can emerge from small unbalances in the probability
density functions of torsion angles. On the other hand, further

support for applying the entropy decomposition can be found in
previous works,44�49 following the “mixture of conformers” strat-
egy. Therefore, it may also be relevant to comment here about
the quality of the results of the “mixture of conformers” model.
For example, the mean unsigned difference (MUD) between ex-
perimental and theoretical gas-phase entropies reported byGuthrie47

for 128 organic compounds with up to 10 carbon atoms is
3.7 J/(K mol) (data derived from unscaled B3LYP/6-31G**
frequencies and a semiempirical estimation of theΔSmix term). A
similar MUD (4.4 J/(K mol)) was observed in our calculations
on the eight alkane compounds.
Conformational Entropy of Dipeptides. The purpose of

introducing the MIE approach within the context of the con-
formational entropy calculations is to capture correlation among
torsional motions. For the alkane molecules studied in this work,
it turns out that such correlation effects are almost negligible, and
in any case, they are entirely accounted for by the pairwise approx-
imation (i.e., second order correlation). Therefore, it is necessary
to analyze more complex molecules in order to assess the ability
of our approach for estimating higher order entropic contribu-
tions and its dependence on the dimensionality of the problem as
defined by the number M of rotatable bonds. To this end, we
examined five dipeptide molecules (Ace�X�X�Nme) of increas-
ing size with X = Ala, Ser, Asn, Leu, and Lys (i.e., the peptides are
capped by acetyl (Ace) and N-methyl (Nme) groups). The
potential ability of these molecules to dynamically form and break
intramolecular interactions through direct H-bond contacts or
through-space electrostatic forces can introduce a significant cor-
relation in their torsional motions and simultaneously maintain
an important flexibility.
Figure 4 shows the superposition of the most populated con-

formers of the Ace�X�X�Nme systems that were obtained
from minimizing 2000 equally spaced MD snapshots in each
system and selecting the energetically distinguishable structures.
As expected, all of the dipeptides are flexible molecules in the gas
phase that experience frequent conformational transitions along
the MD simulations. For the X = Ala system withM = 8 rotatable
bonds, 99% of conformational variability is represented by only
four structures, but the number of populated conformers grows
up rapidly with M: the X = Lys system with M = 16 rotatable
bonds populates more than 1200 different structures. Of course,

Figure 4. Superposition of the energetically distinguishable conformers
of the Ace�X�X�Nme systems. The percentage of the MD snapshots
represented by the conformers is given in parentheses.
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the structure and relative abundance of the conformers are
influenced by H-bond interactions that interconnect main chain
groups (e.g., between the Ace—CdO carbonyl and the H�N�X
amide at the second residue position) and/or side chain groups.
Thus, we found that, in general, at least two or three H-bond
contacts have abundances of about 55�65% so that they are
quite stable interactions.
The conformational entropies at various orders of the

Ace�X�X�Nme molecules are plotted along the simulation time
in Figure 5. For the majority of the systems, it turns out that their
Sconform profiles converge to nearly zero-slope curves after∼0.5 μs,
thus suggesting that the MD simulations have exhaustively ex-
plored their phase space. However, the limiting Sconform values
show a clear dependence on the expansion order n of the MIE
method (see also Table 2). In consonance with expectations, the
magnitude and relative weight of the n-order corrections increase
withM on going fromX=Ala (M= 8) to X =Lys (M= 16). Thus,
with respect to the unimportance of high order correlation effects
in Figure 3, we see now that both the intramolecular interactions
and the partial rigidity introduced by the amidic bonds in the
dipeptide molecules can have an impact on the conformational
entropy thanks to the appearance of correlation among torsional
motions. For the Ace�Ala�Ala�Nme system, which has only
one more rotatable bond than the C7H16 isomers and populates
just a few conformers (see Figure 4), the second and third order
corrections to Sconform are noticeable: �9.4 and 3.0 J(K mol).
These correlation effects are more clearly seen in the rest of the
Ace�X�X�Nme systems as their Sconform curves span a range of
tenths of a J/(K mol). In order to achieve convergence in the
Sconform values with respect to the expansion order n, MIE cal-
culations up to sixth to eighth order were required for several
systems (see Table 2). Moreover, we see in Figure 5 that n-order
corrections to the conformational entropy fluctuate in both sign
and magnitude depending on the molecular system, revealing thus
the true complexity of the mutual information expansion. Never-
theless, the extended sampling (2� 106 configurations) and the
ability of the MIE calculations to estimate high order correlation
effects allow us to obtain reasonably well-converged Sconform
values for all of the Ace�X�X�Nme systems. In the case of the
X = Asn and X = Lys systems, the difference between the Sconform
estimations up to seventh and eighth order amounts to only
∼0.2 kJ/mol in terms of free energies at 300 K. Similarly, the
corresponding free energy differences for the Sconform values of
the rest of the Ace�X�X�Nme dipeptides at the fifth and sixth
orders are also negligible.
An interesting comparison can be made between the X = Leu

(M = 14) and Asn (M = 13) systems. On one hand, the hy-
drophobic system has a considerable conformational entropy
(∼ 90 J/(Kmol)), which is in consonance with its relatively large
number of accessible conformers. Curiously, high order (n > 3)
corrections to Sconform are very small, which is very probably
related to the fact that the Ace�Leu�Leu�Nmemolecule forms
only two intramolecular H-bond interactions with moderate
abundances (<35%). On the other hand, much fewer conformers
are populated during the MD trajectory of the X = Asn system,
but correlation effects are now rather important, most likely
because three to fourH-bond interactionswith abundances between
30% and 65% involving either side chain or backbone groups are
constantly being formed and broken during the simulation, thus
coupling the conformational changes of torsions separated by
several covalent bonds. For the X = Lys system with M = 16
rotatable bonds, in addition to the relevance of correlation effects,

Figure 5. Convergence plots of the gas-phase conformational entropy
(J/(K mol)) for the Ace�X�X�Nmemolecules with X = Ala, Ser, Asn,
Leu, and Lys.
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its Sconform curves at high orders exhibit a slower convergence
with respect to the simulation time (see Figure 5) as a con-
sequence of the larger dimensionality of the problem, which
demands a greater sampling effort to obtain reliable probability
mass functions for all of the torsion angles and their combina-
tions. Nevertheless, as mentioned above, the Sconform values for
X = Lys were converged to∼96 J/(K mol) at orders n = 7 and 8,
a value which happens accidentally to be quite close to the second
order one (∼93; see Table 2).
Absolute Entropy of the PFG Peptide. On the basis of the

test calculations on the alkane molecules, it seems that there is no
clear preference between the “mixture of conformers” and the
conformational entropy frameworks for estimating the total entropy
of small molecules. However, a sharp difference between the two
formally equivalent approaches appears in larger biomolecules
for which it is almost impossible to explore all their conforma-
tional space as required by the “mixture of conformers” approach.
But as mentioned in the Introduction, the partitioning of the
single molecule entropy, the discretization of the torsional degrees
of freedom, and the adoption of the MIE technique can provide
altogether a workaround to the sampling limitation for estimat-
ing the total entropy of complex molecular systems from the
output provided by extensive MD simulations. To better illus-
trate the potential applicability of such an approach, we present
here the results obtained for the PFG hexapeptide molecule,
which is known to be a ligand of the MMP enzymes.
The 2.0 μs MD trajectory of the PFG peptide in explicit sol-

vent, which was started from the initial structure favored by the
LMOD algorithm, populates two different conformational re-
gions of the solute molecule characterized by radii of gyration of
∼5.0 and ∼6.0 Å, respectively (Figure S3 in the Supporting
Information). Secondary structure analyses assign a helical confor-
mation to the central (i.e., 2�6) residues in∼55% of the analyzed
snapshots (we note in passing that the fact that PFG tends to
adopt a helical structure seems in consonance with the ability of
the MMPs to bind and hydrolyze collagen peptide chains that
have also a helical structure). However, although PFG possesses
some secondary structure, it still exhibits a relatively large dynamical
flexibility through either its backbone or side chain motions, and
therefore, it is conceivable that conformational entropy could be
large enough to play a significant role in the free energy change
upon binding of PFG to MMPs.38

Most likely, the full theoretical understanding of the role played
by entropy in the activity of PFG would require the computation
of its absolute entropy in aqueous solution, as suggested by our
previous calculations on the complexes formed between the
MMP-2 enzyme and small peptide substrates.38 In our approach,

such calculations could be achieved by combining the RRHO
entropy of PFG using an implicit solvent model with the solute
conformational entropy derived from theMD simulation so that the
resulting entropywould be combinedwith other free energy terms as
defined by approximate methodologies like the MM-PBSA
protocol.54 As the PFGhexapeptide contains 111 atoms and virtually
all of the MD snapshots correspond to energetically distinguishable
conformers, we decided to perform energyminimization and normal
mode calculations on a subset of 10 000 MD snapshots using the
NAB package and the AMBER03 force field (note that DFT
calculations would be computationally too expensive). As shown
in Figure 6A, although the RRHO entropies significantly fluctuate,
the resulting time series over 2.0 μs is rather stable and the
corresponding mean value of S (1415 J/(K mol)) was estimated
to within a standard error of only 0.3 J/(K mol). This small
uncertainty suggests that the average RRHO entropy of PFG can
be considered sufficiently converged for most purposes.
Turning our attention to the convergence plots of conforma-

tional entropy in Figure 6B derived from 106 MD snapshots, we
note first that the Sconform values show a large dependence on
the MIE order. In fact, the sum of marginal entropies leads to a
limiting value of 137 J/(K mol) that is∼60% above the entropy
estimations made from second to fifth order approximations.
Given that PFG is a flexible molecule that contains a significant
number of rotatable bonds (M = 25) and has several polar
groups capable of forming H-bond interactions, the entropy
reduction caused by correlation effects is well understood.
However, for the same reasons, the Sconform calculations at
the fourth and fifth orders now have a poor convergence with
respect to simulation time: there remains an uncertainty of a
few J/(K mol) in their limiting values after 2.0 μs. Besides the
sampling limitations at high order, it is also clear that the
Sconform values of PFG have a non-negligible uncertainty with
regard to the n order employed in the calculations. For example,
the limiting value of Sconform at second order is ∼3 kJ/mol in
terms of free energies below that at third order.
Segregation of the conformational entropy into backbone and

side chain contributions allows us to further analyze the origin of
the large correlation effects in the dynamics of PFG. We see in
Figures 6C,D that the backbone (M = 11) and side chain (M = 14)
Sconform curves show an acceptable convergence at the various
orders. Curiously, the entropy curves reflecting the conformational
changes of the ψ and ϕ torsion angles present marked oscillations
and converge more slowly than those of the amino acid side
chains, indicating thus that the solvent-exposed side chains move
faster than the backbone chain, and therefore, their motions are
more efficiently sampled by the MD simulations. Correlation

Table 2. Limiting Values of the Conformational Entropy at Various Orders (in J/(mol K)) for Dipeptides in the Gas Phase after
2.0 μs of Simulation Timea

Sconform

NE M 1 2 3 4 5 6 7 8

Ace�(Ala)2�Nme 14 8 57.80 48.36 51.40 50.88 50.88 50.93

Ace�(Ser)2�Nme 25 10 60.03 29.02 41.92 35.66 39.90 39.06

Ace�(Asn)2�Nme 69 13 54.76 25.14 54.00 30.86 44.70 38.41 40.66 39.90

Ace�(Leu)2�Nme 232 14 103.96 91.49 91.44 91.64 91.10 90.84

Ace�(Lys)2�Nme 1357 16 109.08 92.70 104.64 71.97 110.18 82.41 95.91 95.74
aThe number of rotatable bonds considered in the conformational entropy calculations (M) and the number of energetically distinguishable conformers
(NE) observed in a sample of 2000 MD snapshots are also indicated. A total of 2 � 106 MD snapshots were used in all of the calculations.
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among theψ and ϕ angles is only moderate (∼6 J/(K mol)) and
is largely captured by the second order approximation. Similarly,
second- or third-order corrections to Sconform are able to include
most of the correlation effects due to the conformational motions
of the side chains, but the magnitude of the concomitant entropy
reduction is larger (∼ 22 J/(K mol)). When comparing the plots
in Figure 6B�D, it is clear that the source of the stronger
correlation effects in the conformational entropy of the PFG
peptide stem from the coupling between the backbone and side
chain motions. We also see that, in terms of their convergence
properties, the separate Sconform values for the backbone and side-
chain torsions are much more reliable than the global data as the
segregated entropy plots reach stable plateaus and the free energy
differences between the third-, fourth-, and fifth-order estima-
tions are very small (∼0.1 kJ/mol in terms of free energies).
Finally, we compare the additive entropy Svib

HO + Sconform
n=3 with

the results provided by the quasi-harmonic approximation QHA,
which constructs a pseudo-Hessian matrix directly from the covar-
iance matrix of the Cartesian coordinates. To remove the overall
translation of the center of mass and the overall rotation of the
protein, the 2 � 106 MD snapshots employed in the QHA
calculations were superposed on top of each other using a least-
squares fit. As mentioned in the Introduction, the QHA method
exhibits several disadvantages (e.g., neglecting supralinear corre-
lations, approximating multimodal distributions to a unimodal
one, etc.) that ultimately result in a large nonsystematic over-
estimation of Sconfig. This effect is clearly observed in Figure 7 as
the QHA calculations lead to a very large entropy value (∼3333
J/(K mol)). Although the entropy decomposition should give an
upper limit to the true entropy, the Svib

HO + Sconfirm
n=3 value (∼1160

J/(K mol)) is much lower than the QHA one even though the
�TSconform contribution has a statistical uncertainty of several kJ/
mol.Moreover, besides the larger overestimation of Sconfig, theQHA
calculations also exhibit worse convergence properties (see the two
insets in Figure 7).
From the results of the test calculations on PFG, it can be

concluded that the total conformational entropy has a consider-
able weight (10%) in its single-molecule entropy and that the
effects of dynamic correlations among torsional angles are far

Figure 7. Convergence plots of the total entropy of PFG (excluding
translation and rotation) estimated by theQHAmethod and the addition of
themean vibrational entropy and the conformational entropy at third order.

Figure 6. (A) RRHO entropy (in J/(K mol)) calculated for 10 000
snapshots extracted at 200 ps intervals from the 2.0 μs MD simulations
of PFG. The average value and its standard error in parentheses are also
indicated. (B�D) Convergence plots of the PFG conformational
entropy (in J/(K mol)). (E) Superposition of the most populated
representative structures derived from clustering analyses both in wire-
frame and ribbon model representation. Thickness of the ribbon models
corresponds to the number of snapshots represented by each model.



2651 dx.doi.org/10.1021/ct200216n |J. Chem. Theory Comput. 2011, 7, 2638–2653

Journal of Chemical Theory and Computation ARTICLE

from being small. These calculations point out that both under-
sampling and poor convergence with respect to the MIE order
are two closely related problems of the Sconform calculations that
need to be assessed in practical applications. However, although
the uncertainty in the total Sconform of PFG can have an impact of
several kJ/mol on free energy, we believe that meaningful results
can be achieved from partially converged entropy curves like those
shown in Figures 6B�D for PFG. For example, computation of
entropy differences (e.g., upon peptide binding to a host molecule)
could benefit from partial cancellation of errors and provide
approximately constant ΔS values at different MIE orders.22,38

Alternatively, consideration of a subset of torsion angles (e.g.,
backbone ψ and ϕ angles) could be enough for capturing the
relative change in entropy occurring in peptide folding or molec-
ular association processes. In any case, an intensive MD sampling
followed by the estimation of conformational entropy differences
including correlation effects would be required to fully under-
stand the thermodynamical forces controlling many biomolecu-
lar processes that alter the conformational dynamics of the involved
molecules. In this respect, the present test calculations support
the ability of our approach for including high order correlation
effects that have been neglected so far in most of the previous
studies using nonparametric methods for estimating the config-
urational entropy.

’SUMMARY AND CONCLUSIONS

In this work, we have pursued the implementation of the
partitioning of the intramolecular entropy into vibrational and
conformational contributions as originally proposed by Karplus
et al., in order to estimate the absolute entropy of single biomole-
cules fromMD simulations. In our approach, a key element consists
of the characterization of the conformational state of a given mol-
ecule by means of the discretization of the time evolution of its
torsional motions about single bonds. This process leads natu-
rally to the computation of the conformational entropy as Shannon
entropy, which is subsequently added to the average translational�
rotational�vibrational entropy computed by means of normal
model calculations on a series of MD snapshots. To help over-
come sampling limitations in the computation of the conforma-
tional probability mass function of large molecules, we use the
mutual information expansion, which has also been employed in
other entropy methods, to systematically include correlation effects
among torsion angles. Although this protocol has been developed
for treatment with relatively large systems, it must be emphasized
that its core assumption, that is, the combination of the RRHO
entropy with the conformational entropy, is formally equivalent
to the “mixture of conformers” strategy that has been routinely
used to predict absolute entropies of small molecules with good
accuracy.

On the basis of the different test calculations that have been
presented in this work, we can draw the following conclusions
regarding the applicability and/or reliability of our approach: (a)
The gross of the absolute entropy is computed with the RRHO
approximation, which constitutes a straightforward computational
protocol that avoids the need of discriminating between stiff or
soft degrees of freedom. (b) From a quantitative point of view,
the combination of the RRHO entropy with the conformational
(or mixing) entropy yields results that are quite close to experi-
mental data, as shown by our calculations on the alkane mol-
ecules or by other results previously reported in the literature. (c)
For computing reliable conformational entropies of small- or

medium-sizedmolecules that exhibit a rich dynamical behavior, it
is essential to capture correlation effects arising from the coupling
of torsional motions through intramolecular interactions, and in
this respect, the use of the MIE method together with the
discretization of the torsional motions constitutes an interesting
alternative capable of computing high order corrections quite ef-
ficiently. (d) Segregation of conformational entropy into differ-
ent components (e.g., backbone and side chain terms) can be
easily implemented, thus revealing the origin and relative impor-
tance of correlation effects.

Finally, it is also important to comment on some limitations of
the RRHO-conformational entropy calculations on the basis of
the results obtained for the PFG polypeptide. Thus, it is clear that
the RRHO&MIE calculations for this kind of systemmay demand a
considerable amount of computer time, particularly if energy
minimizations and normal mode calculations have to be carried
out on systems containing thousands of atoms, even though an
MM method was employed. Similarly, the computation of con-
formational entropy corrections at high orders (n > 5�8) can be
rather expensive too. In addition, application of the present ap-
proach to large molecules can suffer from convergence issues
with respect to the simulation time needed to extract the probable
mass functions of individual torsions and groups of torsions, and
with reference to the MIE order that is required to capture cor-
relation effects. We believe that the calculation of relative con-
formational entropies rather than absolute ones using low order
approximations and/or for a subset of torsions may benefit from
error cancellation. However, the problems of the RRHO&MIE
technique should be mitigated by increasing the MD sampling,
which in turn, is becoming more and more accessible thanks to
the continuous improvement in the efficiency in computer hardware
and simulation algorithms. Moreover, the fact that the current
protocol has been shown to exhibit a much better convergence
behavior than the QHA method in the case of the polypeptide
entropy calculation is a promising result that should stimulate
further methodological and computational experimentation aimed
at overcoming the computational bottlenecks and/or convergence
problems.
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ABSTRACT: The density-functional-based tight-binding method is an efficient scheme for quantum mechanical atomistic
simulations. While the most relevant part of the chemical energies is calculated within a DFT-like scheme, a fitted correction
function—the repulsive energy—is used to achieve results as close to ab initio counterparts as possible. We have developed an
automatic parametrization scheme to ease the process of the repulsive energy fitting, offering a more systematic and much faster
alternative to the traditional fitting process. The quality of the resulting repulsives can be tuned by selecting and weighting the fit
systems and the important physical properties (energy, force, Hessian) of them. Besides driving DFT calculators in the fitting
process automatically, the flexibility of our scheme also allows the usage of external data (e.g., molecular dynamics trajectories or
experimental data) as a reference. Results with several elements show that our procedure is able to produce parameter sets
comparable to handmade ones, yet requiring far less human effort and time.

1. INTRODUCTION

The density-functional-based tight-binding method (DFTB)1

is an efficient quantum mechanical simulation method, which is
an approximation to the density functional theory (DFT). While
being typically orders of magnitude faster than its ab initio
counterpart, it delivers results for many chemical problems with
reasonable accuracy. The rigorously derived original DFTB
method provides an excellent theoretical framework which can
be systematically extended when higher accuracy is needed or
some new chemical features should be described which could not
be covered by previous schemes. The success of the framework
can be judged by the huge amount of different systematic
extensions which had been created over time (e.g., charge self-
consistency for describing charge transfer,2 inclusion of collinear
and noncollinear spin,3 time-dependent4 and GW5 formalism to
calculate excited state properties, Green-function technique to
describe electron transport,6 etc.).

Common in all different DFTB extensions is the fact, that only
the “most important” part of the total energy is calculated within
an approximate quantum mechanical approach, while the rest,
comprising the core�core repulsion and the double-counting
terms, is taken into account as a fitted quasi-classical interaction
energy (the so-called repulsive energy) between participating
atoms, depending on the configuration of the atomic nuclei in the
system. When carefully done, the fitted repulsive interaction can
even compensate for parts of the error introduced with the
approximations in the quantum-mechanically calculated parts of
the DFTB energy. This division and the approximations in the
quantum-mechanically calculated part allows calculations on
chemical systems typically several orders of magnitude faster
and using considerably less memory than ab initio calculations,
while still maintaining a reasonable accuracy.

Due to its presence in all extensions and its effect on the
accuracy of the total energies, the fitting of the repulsive
interactions is a cardinal problem for the original DFTB scheme
and all its extensions. However, the parametrization process for a
broad range of chemical species is a rather tedious work, often
taking months of valuable research time. Additionally, due to its

pairwise nature, the work necessary to extend an existing set with
a new element increases with the set size, as the interaction of all
elements with the new one has to be created.

To lower the barrier of extending DFTB to new chemical
systems, several attempts have been made. First, Knaup et al.
demonstrated their evolutionary algorithmwork at fitting specific
repulsives for the proton transfer in imidazole.7 Quite similar to
our work and in time parallel to our early steps, an automated
parametrization engine had been created by Gaus et al.8 that is
able to fit repulsive energies in molecules. Its applicability has
been demonstrated by fitting repulsives for carbohydrogen
interactions, giving an accuracy comparable to the mio parameter
set.9 Unfortunately, the fitting framework seems to have several
limitations. First, it only considered molecular systems, making
parametrizations for solids and surfaces rather difficult. Further-
more, it does not seem to have included any means of mass fit
data production, i.e., does not seem to be capable of generating
large energetic data sets with reasonably little human interven-
tion. This is not an issue when the fit is done against experimental
data, but it maintains a part of the “parametrization barrier” by
making the usage of DFT calculator references and scanning off-
equilibrium reference data much more difficult than necessary.
Last, it is built around a fixed spline representation of the
repulsives, which gives a limited flexibility.

In this paper, we describe a comprehensive automated fitting
process for creating repulsive pair potentials. It was developed by
trying to simplify the fitting procedure as far as possible while still
keeping its applicability to almost any kind of chemical situation
where one expects reasonable description by DFTB. We de-
signed our algorithm to deal with a large variety of repulsive
function shapes and to fit to energetic properties of not only
molecules but also crystalline systems. Our algorithm contains
interactive parts for not only the core fitting process but also
defining and building fit and test systems and making large series
of batch fits with various changing metaparameters (parameters
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affecting the parametrization, e.g., preliminarily chosen cutoffs or
polynomial degrees). It was designed to model the workflow and
needs of an applied scientist creating new parameters, up to the
point that it can be integrated into graphical chemistry and
materials science program packages as a GUI-driven module.
The applicability of the algorithm has been demonstrated by
creating repulsive interactions for carbohydrogens, titanium-
organic chemistry, and crystalline zinc-oxide compounds.
As it will be shown later, the obtained sets are of comparable
quality to the current best handmade ones for those systems,
while significantly reducing the human effort involved in their
creation.

The paper is structured as follows: first, we give a short
overview of the DFTBmethod and the parametrization problem.
Then, we introduce our parametrizer automaton in detail. This is
followed by a comparison of the automatically created sets
mentioned above against their existing handmade counterparts.

2. METHODOLOGICAL BACKGROUND

2.1. The DFTB Method. The original, noniterative, perturb-
ative DFTB1 is a tight-binding DFT method used to calculate
electronic structures of chemical systems. It solves the Kohn�
Sham equations

ĤKSjμæ ¼ ½T̂ þ V̂KS�jμæ ¼ εμjμi ð1Þ
which in an LCAO basis of Slater-type orbitals lead to

∑
χ
Hϕχcμ, χ ¼ εμ∑

ω
Sϕωcμ,ω ð2Þ

where

jμæ ¼ ∑
ϕ

cμ, ϕjϕæ, Sϕω ¼ Æϕjωæ,

Hϕχ ¼ ÆϕjT̂ þ V̂KSjχæ ð3Þ
with the effective Kohn�Sham potential

VKSðrÞ ¼
Z

Fðr0Þ
jr� r0j dr

0 þ δExc½FðrÞ�
δFðrÞ þ VextðrÞ ð4Þ

and Vext being the potential of the atomic cores. The effective
potential is decomposed into atom-centered contributions, and
the integrals in the Hamiltonian matrix are calculated by taking
only two-center terms into account. Since the two-center con-
tributions can be tabulated in advance, the DFTB algorithm is
extremely fast, but lacking any direct energy contributions
involvingmore than two atoms (e.g., Æϕ|V̂KS|χæ-like terms having
ϕ, VKS, and χ from three different atoms).
Using compressed atomic orbitals, one can already get good

results for many systems with the non-self-consistent application
of the above scheme. In this perturbative approximation, the
Kohn�Sham or electronic energy of the system, up to the
pairwise approximation of the Hamiltonian, is

Eel ¼ ∑
occ

μ
∑
ϕ, χ

c̅μ, ϕH
ð0Þ
ϕχ cμ, χ ¼ T

þ
Z Z

Fð0Þðr0Þ
jr� r0j dr

0 þ δExc
δFðrÞ

�����
Fð0Þ

þ VextðrÞ
1
AFðrÞ dr

0
@

ð5Þ

with the first sum running over all occupied states (T is the total
electronic kinetic energy). The total energy is

E ¼ Eel � 1
2

Z Z
Fð0ÞðrÞFð0Þðr0Þ

jr� r0j dr dr0

�
Z

δExc
δFðrÞ

�����
Fð0Þ

Fð0ÞðrÞ dr þ Eð0Þxc þ Eð0Þcore ð6Þ

Here, Ecore is the interaction energy of the atomic cores and the
superscript (0) denotes quantities calculated from the nonper-
turbed superposition of starting atomic charge densities. The
perturbative nature of the scheme ensures that the parts of the
Hamiltonian and therefore the double-counting terms do not
depend on the perturbatively calculated F charge density, but
only on F(0).
As the F dependence and all sophisticated electronic proper-

ties are included in the Eel electronic part, the rest of the DFTB
total energy can be treated as an effective potential between
atomic nuclei, the so-called repulsive energy. Due to its corrective
nature, we handle it in a simplified approach and break it down to
a sum of pairwise potentials between the atoms:1

Erep ¼ E� Eel ≈
1
2 ∑
nuclei

i, j
UtypeðijÞðrijÞ ð7Þ

where rij = |ri � rj| is the distance between atoms i and j.
A systematic enhancement to the original DFTB scheme is

the self-consistent-charges (SCC) extension,9 which makes the
Hamiltonian depend on electronic density via a construction
representing the charge fluctuations between atoms with point-
like charges. This correction with respect to the total energy of
the non-SCC DFTB is contained in the SCC total energy
expression as

ΔE ¼ 1
2∑i, j

γi, jΔqiΔqj ð8Þ

where the γ’s are the effective interaction profiles of spherically
symmetric diffuse charges, qi is theMulliken charge of atom i, and
Δqi is its change with respect to the neutral atomic population.
These γ’s give back the Coulombic 1/r profile in large distances
as well as the atomic chemical hardness at r f 0. The above
energy correction is realized in the Kohn�ShamHamiltonian by

ΔHϕχ ¼ 1
2
Sϕχ∑

j
ðγ½ϕ�, j þ γ½χ�, jÞΔqj ð9Þ

where [ϕ] and [χ] represent the atomic centers of orbitals ϕ and
χ, respectively.
Having a Hamiltonian depending on molecular charge dis-

tribution makes self-consistent iterative calculations possible.
SCC-DFTB needs a reparametriztaion with respect to the non-
SCC one, however, as Eel and thus the difference between DFT
total energy and Eel changes with the addition of self-consistency.
2.2. Parametrization with Pair Potentials. According to

eq 7, the repulsive energy is broken down to pairwise potentials:

ErepðfratomsgÞ ¼ ∑
i < j

UABðrijÞ ð10Þ

where i and j both run over the atoms in the system and AB
indicates the type of atom pair ij.



2656 dx.doi.org/10.1021/ct200327s |J. Chem. Theory Comput. 2011, 7, 2654–2664

Journal of Chemical Theory and Computation ARTICLE

The parametrization process optimizes these UAB(r) pair
potentials to cover the difference between the reference energies
of certain fit systems and the corresponding electronic DFTB
energy. The reference energies may be taken from experimental
data or ab initio calculations. We prefer the latter, as it allows
versatile reference data generation. The best parametrization can
be viewed as the one where the set of pair potentials minimizes
the error:

R ¼ ∑ðEref � EDFTBÞ2
¼ ∑ð∑

i < j
UABðrijÞ � ðEref � EelÞÞ2 ¼ min ð11Þ

Due to the approximative nature of DFTB, parametrizations
lack universal transferability, but as the cases of successful
parametrizations show, the validity of a good parameter set can
extend to a wide range of problems.
2.3. Hand-Made Repulsive Potentials. In its usual course,

parametrization for a bond type (e.g., the carbon�carbon bond)
begins with stretching one bond of that kind in an appropriate
molecule, as the simplest case, and creating aUCC(r) curve based
on the energy difference between the DFT reference and DFTB:

UCCðrÞ ¼ EDFTðrÞ � EelðrÞ þ const ð12Þ
with r being the length of the stretched bond. The constant term
covers the limit of EDFT(r)� Eel(r) at rf∞ (this limit contains,
e.g., the repulsive contributions from nonvarying bonds, that may
not be known in detail at all) in order to ensure a zero limit for
UCC(r), r f ∞. Of course, one chooses stretched molecules so
that stretching affects only one bond (or maybe several bonds,
but in a totally equivalent way); all of the other pairs of atoms
with changing distances remain outside the ranges of their
respective repulsives.
One can construct a reasonable curve for a given interaction by

merging curve sections created for different molecules which
represent different chemical bonds between the considered
elements. For example, a carbon�carbon pair potential can be
constructed by taking the sections near 1.2 Å, 1.34 Å, and 1.54 Å
from ethyne, ethene, and ethane, respectively, in order to take
single, double, and triple carbon bonds into account. The
resulting compound curves can then be heuristically improved
by comparing DFTB results on some test systems to DFT data
and fine-tuning them by hand. Unfortunately, the fine-tuning
involves a tremendous amount of human work, making the fast
extension of a given set or creating a new set from scratch rather
difficult.

3. AUTOMATIC PARAMETRIZATION SCHEME

In order to reduce the work involved in creating repulsive
potentials, we propose an automatic algorithm based on least-
squares fitting of repulsive potentials to reference energy values.
During our early automatic fitting attempts, we experimented
also with genetic algorithms, but the simpler least-squares fits
turned out to be easier to handle and far less resource-hungry
while delivering results of the same or even better quality. The
process to be described below is not limited to the bare fitting of
the repulsive potentials UAB(r), but it also helps in selecting and
producing fit systems and fit data, tuning the priorities of
different systems or properties, etc., making the whole parame-
trization process largely automatic.
3.1. Least-Squares Fitting of Repulsive Potentials. In

order to make a least-squares fitting for the pairwise repulsive

potentials possible, we express them in terms of some arbitrary
basis functions as

UABðrijÞ ¼ ∑
ν
RAB, νfAB, νðrijÞ ð13Þ

where AB is the type of atomic pair ij. Substituting this into the
pair potential structure of Erep from eq 10, the total repulsive
energy for a given system becomes a linear combination

Erep ¼ ∑
AB, ν

RAB, νXAB, ν ð14Þ

of the structure-dependent quantities

XAB, ν ¼ ∑
typeðijÞ¼AB

i < j

fAB, νðrijÞ ð15Þ

The sum runs over all possible atom pairs where the pair ij
belongs to pair type AB.
Using the above, the best RAB,ν coefficients may be easily

approximated by a least-squares fit to energy values of several
different distortions of a chemical system as a function of the
changing X values. Due to the linearity of the energy as a function
of XAB,ν’s, this fitting is a multidimensional linear regression.
Running over a sequence of distortions denoted by s of the

same system (we will call this sequence a fit path and the
distortions fit steps), the least-squares fit minimizes the overall
error

R ¼ ∑
all steps

s
ðEðsÞrep � ðEðsÞref � EðsÞel ÞÞ2 ð16Þ

With expression 14 of the total repulsive energy, the stationary
condition

∂

∂RAB, ν
RðRAB, νÞ ¼ 0 ð17Þ

of the above error leads to a matrix expression of the coefficients
RAB,ν:

A ¼ ðXXTÞ�1XE ð18Þ
The matrices E, X, and A are constructed from the above
energies, X structural constants, and R’s in the following way:

E ¼
Eð1Þref � Eð1Þel

Eð2Þref � Eð2Þel

l

0
BB@

1
CCA ð19aÞ

X ¼

Xð1Þ
HH, 1 Xð2Þ

HH, 1 3 3 3
Xð1Þ
HH, 2 Xð2Þ

HH, 2 3 3 3
l

Xð1Þ
CH, 1 Xð2Þ

CH, 1 3 3 3
Xð1Þ
CH, 2 3 3 3 3 3 3
l

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð19bÞ
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A ¼

RHH, 1

RHH, 2

l
RCH, 1

RCH, 2

l

0
BBBBBBBBB@

1
CCCCCCCCCA

ð19cÞ

where, as an example, we assumed that the enumeration of the
investigated atomic pairs begins with HH and contains CH.
As an example, a fit path could be built from a propane

molecule with its middle carbon atom being shifted by 40
small random displacements around its equilibrium position.
Each movement as well as the original configuration is a
different fit step. The energy and structure data of these 41
steps would then give enough input to fit UCC(r) and
UCH(r)

10 provided the number of independent fitting parameters
RAB,ν is well below 40, i.e., in this specific case, the number of
basis functions used to describe one pairwise repulsive is well
below 20. This criterion is normally fulfilled, but if not,
increasing the amount of steps is always a straightforward
remedy.
3.2. Fitting to Multiple Fit System Types and Objectives.

An important expectation toward repulsive potentials is their
transferability to a broad range of different systems. Usually,
this requires compromises; transferability can be reached via a
tradeoff between individual systems. Our automatic parame-
trization scheme enables the optimization of this tradeoff by
enabling the fit on multiple test systems (multiple fit paths) at
the same time. Staying with the example of the C�C and C�H
repulsive fitting, by taking several different carbohydrogen
molecules and distorting them, one can generate several
molecular fit paths for the fit. Additionally, taking bulk
diamond (with various deformations) as an additional fit path,
one can tune the transferability toward the description of
crystalline systems as well.
The goal of the fit becomes the minimization of overall error

along all fit paths, modifying eq 16 to

R ¼ ∑
all paths

p
∑
s ∈ p

ðEðpsÞrep � ðEðpsÞref � EðpsÞel ÞÞ2 ð20Þ

with p enumerating the paths and Erep written as a function ofR’s
and X’s within each path in the same way as the one-path case. It
should be noted here that the number of RAB,ν parameters does
not depend on the number of fit paths (nor on the number of steps
in the individual fit paths). Its value is determined only by the
choice of the basis functions to describe the repulsive interactions
in question.
The Erep

(ps) column vector of the repulsive energies for the
multiple-path fitting is created by putting the E(p) vectors for
each path on top of each other:

E ¼
Eð1Þ

Eð2Þ

l

0
BB@

1
CCA ¼

Eð11Þref � Eð11Þel

Eð12Þref � Eð12Þel

l
Eð21Þref � Eð21Þel

Eð22Þref � Eð22Þel

l

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð21aÞ

while the geometry matrix is created by putting single-path
geometry matrices together in a similar way:

X ¼
Xð1Þ

Xð2Þ
l

0
BBB@

1
CCCA ð21bÞ

For a multisystem fit, this all gives back the matrix eq 18 on A.
The scheme proposed here is not restricted to obtaining

repulsive potentials by fitting on energy differences between ab
initioDFT and DFTB calculations. One can naturally extend it to
interatomic forces or even Hessians as targets. This way, one
gains the possibility of not just choosing the transferability range
by selecting various systems for the fitting procedure but also of
being able to select the properties which are required to be
transferable to the maximum possible amount over those sys-
tems. Furthermore, by using energy differences between succes-
sive steps as a target instead of the absolute energies, fitting on
molecular dynamics (MD) trajectories is also made efficient.
Details for these three target extensions (force, Hessian, and
energy difference) are given in the Appendix.
3.3. Weighting of Fit Targets. In the formalism described

until now, every fit step contributes to the R overall error with the
same weight. As this may not always be the desired behavior, we
allow each step in each path to have an individual weight for its
contribution to the total error. If the fit is done for multiple
physical properties (e.g., energies and forces), each property can
also be weighted differently.
The weighting issues come to play mainly in two areas. First,

one typically would overweight near-equilibrium geometries to
ensure a higher precision at near-equilibrium bond lengths at the
cost of less precise description for strongly distorted geometries.
Furthermore, weighting becomes a key issue when multiple
physical properties are invoked into the fit, since the numerical
values of the differences in the various properties (energy, force, etc.)
must be converted to the same scale. This requires some experi-
menting, but it offers the possibility of balancing the performance
of repulsives for various physical quantities. For example, heavy
weights for forces are usually necessary when the fitted repulsives
give poor results with geometry optimization otherwise.
3.4. Basis Function Shapes. We have experimented with

several different fν(r) basis functions for the repulsive fitting. The
splines used in most of the current DFTB implementations
turned out to be inappropriate for a fitting procedure, as they
tend to give very oscillatory behavior. As a straightforward
alternative, we decided for the eq 22 cut-off polynomials first.
They were used in the earliest DFTB-implementation11 and still
retain popularity with doing parametrization by hand, since it has
been possible to do most of the parametrizations up to now with
them. The zeroth and first-degree terms are omitted from such a
polynomial to ensure a smooth decay at its cutoff distance r0:

fνðrÞ ¼ ðr� r0Þν if r < r0 and v g 2
0 otherwise

(
ð22Þ

This representation was shown to be successful at the relatively
easy hydrocarbon parametrization.
To emulate spline-like behavior in our scheme, we also tested

bases containing the above cut-off polynomials, but having no
universal cutoff value (these bases can be regarded as sums of
multiple single-cutoff bases). Bases with two cutoff values are
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very efficient at improving polynomial repulsives, while more
cutoff values bring up the oscillatory nature of splines. Less
successful but still noteworthy examples of spline-like bases are
wavelet bases, which we also probed.
Another important basis was the family of exponential func-

tions. e�aνrν (ν = 1, 2, 3, ...) and their linear combinations, which
seem to be a very natural choice for a repulsive function basis.
These exponential functions proved to be a successful basis for
our fittings with Ti and Zn. In these cases, a fairly tiny set of
exponential basis functions (one to three of them) was quite
enough to fit remarkably good parameter sets.
3.5. Further Automation in the Parametrization Work-

flow. Besides the automatized fitting process itself, there are
three subprocesses of the parametrization workflow in which our
program substantially lowers the human contribution.
• The path-building methods mentioned so far and some
others are implemented to be executed automatically. They
include bond stretchings, displacing atoms, uniform volume
changes, linear interpolations between two configurations,
and using predefined paths (e.g., MD trajectories or reaction
paths).

• Instead of using fixed sets of metaparameters (input
parameters determining the parametrization itself) for
the fitting process, batch fits can use intervals of them.
Scanning over all of these values in all of these intervals in
every combination spares a lot of try-and-fail cycles for
the user. At the end of the batch run, the set with the
lowest total error on the targets (as defined in eq 20) is
picked as the fittest solution.

• A module for defining test systems is built into our program
too. It tests the energetical and geometrical performance of
the fitted repulsives on the specified test systems. This way it
can give a first-glance feedback about the performance of the
fitted repulsive set on systems that were not necessarily fit
systems.

4. RESULTS

4.1. Computational Tools. Since the molecular reference ab
initio calculations in the handmade sets were mostly done using
the Gaussian12 code, we also used it as a reference for molecular
systems. For the periodic systems, however, we have found the
Siesta13 code far more stable (less prone to convergence failures)
in our automatic fitting environment, where distorted systems far
from the equilibrium must be calculated very often. Apart from
stability issues, this choice is also a good cross-calculator and
cross-methodology (e.g., between different xc functionals in
DFT references) consistency check of our algorithm and in
general for the DFTB parametrization philosophy. As will be
seen from the results, this mixing of DFT references did not pose
any problem. The DFTB calculations were carried out using the
DFTB+ package.14

4.2. Carbohydrogen Systems. The carbohydrogen case is a
relatively easy case of parametrization in the sense that quite
useful parameter sets can be fitted to it even with a small effort.
Fitting to DFT references with the PBE exchange-correlation
functional, the resulting parameter sets produce, according to our
experiences, geometrical errors typically within a few 10�2 Å and
atomization energy errors in the range of a few 10�2 au. This
quality, which is almost comparable with the handmade mio set,9

is pretty easy to reach at an automatic fit with a nontrivial handful
of fit systems and a couple of hours working with them.

Table 1. Molecular and Crystalline Data Calculated with the
Three Parameter Sets (the mio Set9 and the Two Automati-
cally Fitted Ones) Compared to Reference Valuesa

property reference mio hom inhom

methane

ΔE 0 7.3 �2.5 �0.1 (52.9)

C�H 1.093 1.089 1.094 1.080

ethane

ΔE 0 17.7 �1.0 0.1 (94.8)

C�C 1.531 1.501 1.535 1.516

C�H 1.096 1.098 1.102 1.088

ethene

ΔE 0 14.6 �2.4 �3.6 (68.6)

CdC 1.331 1.327 1.327 1.326

C�H 1.087 1.094 1.099 1.084

ethyne

ΔE 0 21.7 10.2 �3.5 (53.1)

CtC 1.205 1.203 1.200 1.204

C�H 1.067 1.075 1.080 1.066

benzene

ΔE 0 52.9 �1.7 0.8 (170.8)

C�C 1.397 1.396 1.405 1.397

C�H 1.087 1.098 1.104 1.090

butane

ΔE 0 38.7 2.8 1.6 (179.8)

(1,2) C�C 1.547 1.519 1.555 1.537

(2,3) C�C 1.536 1.518 1.552 1.534

(1) C�H 1.097 1.097 1.102 1.088

isobutane

ΔE 0 38.0 1.9 1.5 (178.7)

C�C 1.535 1.518 1.552 1.534

C�H 1.097 1.098 1.102 1.088

diamond

C�C 1.555 1.540 1.575 1.558

cyclobutane

ΔE 0 40.0 7.3 13.4 (169.2)

C�C 1.557 1.539 1.569 1.534

C�H 1.095 1.102 1.107 1.094

isobutene

ΔE 0 36.2 0.5 �2.7 (153.0)

C�C 1.509 1.493 1.524 1.505

CdC 1.337 1.341 1.34 1.339

C�H (in CH3) 1.099 1.100 1.104 1.090

C�H (in CH2) 1.087 1.093 1.099 1.084

bicyclobutane

ΔE 0 26.9 �2.1 10.3 (143.4)

C�C (edge) 1.510 1.464 1.549 1.486

C�C (middle) 1.900 2.003 2.112 1.980

C�H (in CH2) 1.112 1.195 1.161 1.158

C�H (in CH) 1.095 1.066 1.021 1.065

cyclobutene

ΔE 0 29.5 �1.8 7.4 (140.6)

C�C 1.573 1.569 1.597 1.538
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Adding more configurations, the results can be further improved.
In order to demonstrate the automatism in our procedure, we
give the instructions used to generate those configurations:
• a methane molecule with its central carbon atom randomly
displaced on five shells within a sphere15 of diameter 0.75 Å

• an ethane molecule with one carbon atom displaced on 10
equidistant shells within a 0.75 Å sphere

• a butane molecule with its 1-2 carbon�carbon bond
stretched in 15 0.1 Å steps, from a shortening of 0.6 Å to
a lengthening of 0.9 Å

• a benzene ring with one of its carbon atoms displaced on five
equidistant shells within a 0.75 Å diameter sphere

• an ethene molecule with one carbon atom displaced on five
shells in a 0.75 Å diameter sphere

• a series of random displacements similar to the above with
an ethyne molecule

• a hydrogen molecule with its only bond shortened in eight
and lengthened in 12 0.025 Å steps

• an isobutane molecule with its central carbon atom dis-
placed in a 1 Å diameter sphere

As the mio set, the basis of comparison, was fitted to calcula-
tions with the B3LYP xc functional and the 6-31G* basis, we also
used this as a reference. The force objective had a weight of three
while energy had a weight of one, and each path had its near-
equilibrium steps (at most three steps away from equilibrium)
overweighted by five. For the diamond test system, we used the
CRYSTAL2003 code16 (because of the problems with Gaussian
mentioned above) with a 6-21G*17 basis set and a k-space mesh
of an 8 � 8 � 8 Monkhorst�Pack scheme.
During the fitting process, the automaton was allowed to

sweep over the following metaparameters to search for the
best fit:
• The cutoff of C�C: 2.0�2.3 Å
• The cutoff of C�H: 1.3�2.1 Å
• The cutoff of H�H: 1.3�2.1 Å
• The highest degree of polynomials: 10�12
The best fit was achieved with values of 2.3 Å, 2.1 Å, 1.3 Å, and

11 for the above metaparameters, respectively. For the sake of
smoothness, the polynomials contained a minimal power of 4.
Table 1 shows the performance of the resulting repulsive in
comparison with the mio set (columns “mio” and “hom”) on the
respective equilibrium structures. As our method aims at not only

Table 1. Continued
property reference mio hom inhom

CdC 1.519 1.524 1.548 1.493

C�H (in CH2) 1.097 1.104 1.109 1.097

C�H (in CH) 1.087 1.097 1.103 1.089

cyclopropane

ΔE 0 18.9 �9.6 �0.2 (113.8)

C�C 1.509 1.489 1.523 1.502

C�H 1.087 1.096 1.100 1.087

propane

ΔE 0 27.7 0.2 0.0 (136.6)

C�C 1.532 1.509 1.544 1.525

C�H (end) 1.097 1.098 1.102 1.088

C�H (middle) 1.099 1.107 1.110 1.097

cyclopropene

ΔE 0 12.2 �13.8 �7.7 (83.7)

C�C 1.508 1.495 1.528 1.508

CdC 1.295 1.319 1.319 1.318

C�H (opposite to CdC) 1.095 1.107 1.109 1.096

C�H (neighbor to CdC) 1.080 1.090 1.095 1.081

spiropentane

ΔE 0 29.4 �18.9 �2.0 (173)

C�C (“radial”) 1.485 1.479 1.508 1.488

C�C (outer) 1.530 1.508 1.547 1.524

C�H 1.088 1.097 1.102 1.088

methylene-cyclopropane

ΔE 0 25.9 �10.6 �4.5 (128.7)

CdC 1.322 1.328 1.327 1.327

C�C (“radial”) 1.470 1.465 1.491 1.472

C�C (outer) 1.540 1.512 1.551 1.529

C�H (in CH2) 1.088 1.095 1.101 1.086

C�H (on ring) 1.089 1.098 1.102 1.089

propadiene

ΔE 0 21.2 �2.6 �7.8 (83.6)

CdC 1.307 1.312 1.312 1.312

C�H 1.088 1.096 1.102 1.087

1,3-butadiene

ΔE 0 49.9 16.2 10.0 (143.2)

C�C 1.439 1.436 1.457 1.441

CdC 1.392 1.372 1.373 1.370

C�H (middle) 1.089 1.098 1.103 1.089

C�H (end) 1.086 1.104 1.085 1.095

2-butyne

ΔE 0 38.8 6.5 �1.2 (132.0)

C�C 1.462 1.455 1.477 1.461

CtC 1.209 1.209 1.205 1.209

C�H 1.097 1.100 1.105 1.091

propyne

ΔE 0 30.3 8.3 1.2 (92.6)

C�C 1.460 1.453 1.475 1.459

CtC 1.207 1.206 1.203 1.207

C�H (in CH3) 1.097 1.100 1.104 1.090

C�H (in CH) 1.066 1.074 1.079 1.066

Table 1. Continued
property reference mio hom inhom

propene

ΔE 0 24.9 �1.5 �3.7 (110.3)

C�C 1.502 1.485 1.517 1.497

CdC 1.333 1.334 1.334 1.333

C�H (in CH3) 1.098 1.100 1.105 1.091

C�H (in CH) 1.091 1.102 1.106 1.092

C�H (in CH2) 1.087 1.093 1.098 1.084
aΔE means atomization energy error relative to the reference in kcal/
mol, and A�B atom pairs denote distances of the appropriate neighbor-
ing atoms in Å. The column “hom” contains a fit without dissociation
energy correction, “inhom” contains a fit with it. Values in parentheses
indicate errors for the set with dissociation energy correction when used
in a DFTB implementation without this correction scheme. Italicized
names denote systems that were fit systems too; the other molecules are
the rest of the carbohydrogen part of the G218 test set.
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describing equilibrium properties as close to ab initio results as
possible, but also to provide a reasonable accuracy when dealing
with structures out of equilibrium, we calculated also the energy
errors over all nonequilibrium configurations in the fit paths.
They remained generally within the error of 10�2 Hartree
compared to the DFT reference except some of the extremely
distorted geometries.
4.2.1. Using One-Body Repulsive Terms. With this carbohy-

drogen fit, we also experimented with using one-body terms in
the repulsive energy

ErepðfRnucleigÞ ¼ ∑
i < j

UABðrijÞ þ ∑
i
UA ð23Þ

One-body terms are a special case of inhomogeneous or dis-
sociation energy terms: they represent a fixed, geometry-inde-
pendent energy part as a sum of atomwise parts that do not come
from the linear combinations of pairwise basis functions and that
maintain the asymptotic value of Erep at the dissociation limit.
One-body energies are the only mathematically correct means of
putting any correction to dissociation energy because only a sum
of one-atomic dissociation energy terms behaves like an extensive
quantity, i.e., is an additive function of stoichiometry. This fact
strongly encourages investigating their use.
As the results in Table 1 illustrate (column “inhom”), one-

body terms can slightly improve geometry results via eliminating
the need of trying to set absolute atomization energy levels using
the pair potential profiles. The resulting one-body terms were
UC = 0.030633H and UH = 0.017967H for C and H atoms,
respectively. The optimal cutoff distances were (determined by a
similar batch) equal to those of the homogeneous case.
To maintain compatibility with the current DFTB implementa-

tions lacking one-body repulsive parts, we also took another way of
improving results by one-body terms into account. Using them only
at the fitting process but dropping them after it retains improved
geometries and reaction energies calculated with the produced set
yet leaves the pair potential structure of the repulsive energy built

in DFTB intact (deteriorated bare atomization energy values are
shown in parentheses in the appropriate column of Table 1).

Table 2. Reference Data and Its Comparison with Previous
Handmade Parametrization19 (“znorg”) and the Automati-
cally Created One (“auto”) for Zn and ZnO Crystalsa

property reference znorg auto

Zn hcp

ΔE (per Zn2) 0 115.5 94.1

Zn�Zn (#1) 2.523 2.796 2.433

Zn�Zn (#2) 2.886 2.864 2.931

Zn�Zn (#3) 3.831 4.051 3.788

Zn�Zn (#4) 4.591 4.872 4.524

ZnO zincblende

ΔE (per ZnO) 0 22.3 �1.1

Zn�O 2.005 2.015 2.011

Zn�Zn 3.274 3.290 3.281

ZnO wurtzite

ΔE (per Zn2O2) 0 46.5 �0.7

Zn�O 2.017 2.015 2.018

Zn�O0 2.037 2.014 2.004
aThe values given here refer to the equilibrium structure of each system.
ΔE denotes the atomization energy difference with respect to the
reference in kcal/mol. Atom pairs denote distances in Å.

Table 3. Titanium�Oxygen Compound Reference Data and
Its Comparison with Previous Handmade Parametrization20

(“tiorg”) and the Automatically Created One (“auto”)a

property reference tiorg auto

TiO

ΔE 0 55.0 40.2

Ti�O 1.586 1.592 1.586

Ti2O2 planar

ΔE 0 87.7 69.4

Ti�Ti 2.198 2.355 2.092

Ti�O 1.857 1.891 1.866

Ti2O2 nonplanar

ΔE 0 68.0 57.6

Ti�Ti 2.127 2.249 2.133

Ti�O 1.838 1.888 1.826

Ti2O4 #1 (dibridged with end O atoms in cis position)

ΔE 0 49.4 81.3

Ti�Ti 2.716 2.800 2.635

bridging Ti�O 1.848 1.887 1.812

end Ti�O 1.622 1.606 1.589

O�Ti�Ti (ending O) 126.1 124.7 123.7

Ti2O4 #2 (dibridged with end O atoms in trans position)

ΔE 0 145.7 82.8

Ti�Ti 2.709 2.726 2.709

bridging Ti�O 1.840 1.831 1.806

end Ti�O 1.625 1.608 1.590

O�Ti�Ti (ending O) 123.7 122.3 122.2

Ti2O4 #3 (tribridged with an O atom at one end)

ΔE 0 123.3 66.4

Ti�Ti 2.394 2.540 2.399

bridging Ti�O (opposite to end O) 1.763 1.801 1.742

end Ti�O 1.628 1.606 1.586

Ti hcp

ΔE (per Ti) 0 �40.6 5.4

Ti�Ti 2.900 2.993 2.915

TiO2 anatase

ΔE (per TiO2) 0 22.5 �4.5

shortest Ti�Ti 3.028 2.996 3.082

shortest Ti�O 1.933 1.921 1.957

1.995 1.958

TiO2 rutile

ΔE (per TiO2) 0 19.4 1.1

shortest Ti�Ti 3.559 3.613 3.605

shortest Ti�O 1.974 1.914 1.976

1.992 1.995
aThe values given here refer to the equilibrium structure of the
various systems. ΔE means atomization energy difference with
respect to the reference in kcal/mol. Atom pairs denote neighbor
distances in Å; triples denote angles in degrees (double distance
values show artificially broken symmetries of DFTB-optimized
lattices). Italicized system names denote fit systems.
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4.3. Zinc�Oxygen Compounds. As a further demonstration
for our fitting procedure, we attempted to create a parametriza-
tion for the Zn�O interaction. A high-quality and well-tested
parameter set had been recently created manually for the
zinc�organic chemistry by Moreira et al.,19 which should serve
as an etalon for our Zn�O repulsive. For the DFT references, the
same settings had been used as for the handmade parametriza-
tion (PBE functional, double-ζ polarized basis, norm-conserving
Troullier�Martins pseudopotentials, 8 � 8 � 8 Mon-
khorst�Pack scheme for k sampling). The fit paths were made
with distortions applied to the test systems (see Table 2) in
addition to Zn�Zn and Zn�O dimers with very low weights.
The distortions applied to crystalline paths were uniform volume
scaling and moving a Zn atom around. We show a comparison
between the performance of the two Zn�O sets in Table 2. As fit
targets, we used the two energy targets (energy and energy
differences between steps weighted by 1:10); step weighting was
by 10 and 2 in the immediate and in a wider neighborhood of
equilibria. Here, the basis of repulsives consisted of exponential
functions of type e�a2r2 and e�a3r3, as these shapes offered good
results quickly in situations where absolute energy targets were
not heavily weighted. As can be seen in Table 2, the resulting set
is superior in the crystalline properties to the handmade one.
4.4. Titanium�Organic Repulsives. After the hydrocarbon

fits, our next test of the fitting automaton was producing a
titanium�oxygen set and extending it to a titanium�organic set.
For this parametrization, a good-quality handmade set (tiorg)
had been recently created by Dolgonos et al.20 We used the
same reference structures and ab initio reference data (various
molecular systems calculated with the B3LYP functional and
withmixed SDD+ basis set) augmented with crystalline reference
systems. For the reference calculations of the periodic systems, the
PBE functional, double-ζ plus polarized basis functions, and norm-
conserving Troullier�Martins pseudopotentials had been used.
K-point sampling was set to an 8 � 8 � 8 Monkhorst�Pack
scheme with both Siesta and DFTB in this fit session.
In order to fit repulsive functions for the Ti�Ti and Ti�O

interactions, we used a fit set including a titanium dimer (with a
very low weight), a TiO2 molecule, a planar Ti2O2 molecule, a
tribridged Ti2O4, the bulk hcp titanium, and the bulk anatase and
rutile forms of TiO2. The molecular fit paths were created by
stretching bonds and displacing titanium atoms while the crystal-
line paths were created by uniformly changing the volume of the
crystal lattices and by using crystals with displaced titanium
atoms. We used both energy and force targets (generally
weighted 1:2) in the fit.

In a fit session of a few days, we were able to produce a set of
Ti�Ti and Ti�O repulsive potentials which reproduce energy
and geometrical data in the same quality as the reference
handmade set. A detailed comparison is given in Table 3. These
results were obtained using e�a1r- and e�a2r2-type exponential
functions as basis functions for the fit because this analytical basis
gave very good results quickly with the Ti and Ti�O chemistry.
After creating the repulsives for the Ti�Ti and Ti�O inter-

actions, we extended the set to a complete Ti�organic set, still
using exponential basis functions for expressing the repulsive
potentials. The extension turned out to be more difficult than
expected, mainly due to the sudden cutoff in the handmade
Ti�Ti repulsive giving a very stable 3 Å Ti�Ti distance in hcp

Figure 1. Comparison of the tiorg (dashed) and the automatically
generated (solid line) Ti�Ti repulsives in the area of the sharp cutoff of
the former.

Table 4. Reference Data and Its Comparison with Previous
Hand Made Parametrization20 (“tiorg”) and the Automati-
cally Created One (“auto”) for Various Titanium
Compoundsa

property reference tiorg auto

Ti(CH3)4

ΔEb 0 64.6 180.2

Ti�C 2.072 2.096 2.025

Ti(CH3)2

ΔEb 0 �38.8 93.4

Ti�C 2.038 2.096 2.025

C�Ti�C 113.7 110.2 109.9

crystalline TiC

ΔE 0 111 91.7

Ti�C 2.141 2.159 2.170

Ti�i 3.024 3.047 3.067

Ti(NH2)4

ΔEb 0 30.6 287.4

Ti�N 1.899 1.902 1.853

H3Ti(NH2)

ΔEb 0 12.0 76.2

Ti�N 1.846 1.898 1.837

HNdTidNH

ΔEb 0 15.5 156.1

Ti�N 1.707 1.703 1.671

N�Ti�N 114.8 114.7 113.7

crystalline TiN

ΔE 0 196.6 192.2

Ti�N 2.094 2.159 2.115

Ti�Ti 2.958 3.043 2.982

Ti2H2 (dibridged planar)

ΔE 0 123.5 131

Ti�Ti 1.985 1.967 2.011

Ti�H 1.868 1.827 1.899

Ti�H�Ti 64.2 65.2 63.9
aThe values given here refer to the equilibrium structure of each system.
ΔE denotes the atomization energy difference with respect to the
reference in kcal/mol. ΔEb indicates the binding energy between the
central Ti atom and the ligands compared to the reference value in kcal/
mol. Atom pairs denote neighbor distances in Å; triples denote angles in
degrees. Italicized system names refer to fit systems.
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titanium, titanium nitride, and titanium carbide. This feature
(shown in Figure 1) can hardly be reconstructed with analytical
sets. Although this peculiar shape is the numerically most
convenient way to confine the range of the Ti�Ti repulsive well
below the second-neighbor distance and gives good results for
various systems, it may be an interesting question for future
investigations whether it is a precise representation of the
underlying physics.
Similar to the case of the titanium�oxygen fit, we used the

same molecules (TiH4, Ti(CH3)4, Ti(NH2)4) as during the
handmade parametrization20 extended by crystalline fit sys-
tems (TiN and TiC). The fit paths were similar constructions
to the titanium�oxygen case. Every molecule had two fit paths
with the relevant bonds stretched and the titanium atom
displaced, while the crystalline systems had a volume change
path and a path with a titanium atom displaced. We handled
the relative difficulty of Ti�C and Ti�N fitting compared to
Ti�Ti and Ti�O by lowering the relative weights of the
energy targets in the Ti�C and Ti�N case. As can be seen
from the results (Table 4), this resulted in fairly good
geometries at the expense of accuracy in energies (one-body
terms as a tool for resolving the conflict between energy and
geometry accuracy was not used here).

5. CONCLUSION

We are suggesting a new fitting mechanism to create repulsive
potentials for the DFTBmethod in an automatic way using least-
squares fitting on automatically generated reference data. Using
the proposed scheme, we fitted new repulsives for carbohydro-
gen systems, zinc and zinc oxide crystal structures, and titanium-
containing organic compounds. Due to its efficiency and high
degree of automatization, the fitting took in each case at most a
couple of days’ work of a researcher with the new fitting
scheme. Comparing the new fits against existing handmade fits
showed that we were able to create a general-purpose para-
metrization engine for the DFTB method. The engine enables
us to optimize new parameters from scratch for any group of
systems where the DFTB formalism with the pairwise repul-
sive potentials gives a reasonable description of the underlying
physics. While these new parameter sets are very close in
accuracy to handmade sets, they require considerably less time
and human effort to be created.

The fitting procedure was planned to be as easy to handle, as
comprehensive and as interactive as possible. As a demonstration
of its easy integrability into current quantum chemical tools, it
had been included into the Material Studio program package,
using a graphical user interface to control the parametrization
process.

’APPENDIX

In the following sections, we give a detailed derivation about
how the energy fitting procedure described above can be
extended to objectives other than the basic energy objective
(of them, the first two are fully implemented and tested in our
program). This enables the extension of the fitting procedure to
further physical properties (forces and frequencies) and the
effective use of energy data from existing MD trajectories in
the fitting process.

Fitting to Forces. The force objective from the repulsive
interaction is the repulsive force Fi acting on atom i projected

onto a unit vector (a direction) u

Fi, u ¼ Fi 3 u ¼ ∑
j 6¼i, ν

RtypeðijÞ, νf 0typeðijÞ, νðrijÞ
rij
rij 3

u ð24Þ

This can be, similar to the energy expression 14, decomposed
into a linear combination

Fi, u ¼ ∑
AB, ν

RAB, νX
ði, uÞ
AB, ν ð25Þ

with coefficients RAB,ν, built of geometry-dependent factors

Xði, uÞ
AB, ν ¼ ∑

typeðijÞ¼AB
j 6¼i

f 0AB, νðrijÞ
rij
rij 3

u ð26Þ

containing the first derivatives of the basis functions fAB,ν0(r).
Because the R coefficients in these force components are the
same as the ones used for the energy fitting, fitting to energies
and forces can be unified when both are required. If (Fref� Fel)i,u
takes the place of Eref � Eel and the above new X’s are used as
independent variables, fitting to force components can be simply
regarded as additional new fit paths. The matrices E and X can
then be extended in the same way as in eqs 21a and 21b.

Fitting to MD Trajectory Energies. A problem that often
compromises fitting to MD trajectories (or to large molecules
where only a tiny part is distorted) is the fact that equilibrium
bond lengths are heavily overweighted by their overwhelming
presence in the sample fit paths. This can make efficient
fitting to ranges of bond lengths other than the covalent
equilibrium impossible with the original energy target described
above.
A remedy of this problem can be found by fitting to energy

differences between subsequent fit steps instead of energies of each fit
step. As

ΔEðsÞrep ¼ Eðs þ 1Þ
rep � EðsÞrep

¼ ∑
AB, ν

RAB, νðXðs þ 1Þ
AB, ν � XðsÞ

AB, νÞ ð27Þ

is a linear combination of structural quantities of type X(s+1) �
X(s), it is a valid target in our least-squares fit scheme. This
modified energy target, however, contains virtually nothing
arising from those bonds which do not change over the fit path;
thus the overweighting of unchanged bonds is avoided. Of
course, if fitting to absolute energy values at molecular equilib-
rium bond lengths is required, it can be brought back by an
appropriate weighting between the original energy objective and
the current one, or by defining additional molecular fit paths.
As an alternative use, the fit target based on the energy

differences can also be used in cases where retrieving force data
from a DFT reference is for some reason problematic or mean-
ingless (e.g., with symmetric distortions of symmetric systems,
atomwise total forces are constant zero). Using small distortion
steps and the energy difference fit target, one automatically
obtains a fit mimicking the fit on certain force or stress tensor
components.

Fitting to Hessians. Similar to the forces, the repulsive
contribution to the Hessian matrix of a chemical system can also
be projected onto unit vectors u and v (these unit vectors can be
regarded as virtual displacements of atoms). When both u and v
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are on the same ith atom (i.e., we examine the ith “on-site” 3� 3
hyperdiagonal block of the 3N � 3N collective molecular
Hessian),

Hi, uv ¼ uHv ¼ ∑
j 6¼i,mn

um
∂
2UtypeðijÞðrijÞ
∂xi,m∂xi, n

vn

¼ ∑
j 6¼i,mn, ν

RtypeðijÞ, νum
∂
2ftypeðijÞ, νðrijÞ
∂xi,m∂xi, n

vn

¼ ∑
AB

∑
typeðijÞ¼AB

j 6¼i, ν

RtypeðijÞ, ν
1
r2

∂
2fν
∂r2

� 1
r3

∂fν
∂r

 !
ðu 3 rÞðv 3 rÞ

þ 1
r
∂fν
∂r
ðu 3 vÞ

ð28Þ
(with rij = (xj,1 � xi,1,xj,2 � xi,2,xj,3 � xi,3) at the beginning and
fν = ftype(ij),ν(rij), r = rij, and r = rij in the last step). So, with

Xði, uvÞ
AB, ν ¼ ∑

typeðijÞ¼AB
j 6¼i

1
r2

∂
2fν
∂r2

� 1
r3

∂fν
∂r

 !
ðu 3 rÞðv 3 rÞ

þ 1
r
∂fν
∂r
ðu 3 vÞ ð29Þ

the usual linear combinations can be written again

Hi, uv ¼ ∑
AB, ν

RAB, νX
ði, uvÞ
AB, ν ð30Þ

With theE vector composed of (Href�Hel)i,uv’s and theXmatrix
composed of the above X’s, the fitting of the Hessian can be
included as an additional path into the fitting scheme.
When u and v are on the ith and jth atoms, respectively,

Hij, uv ¼ uHv ¼ um
∂
2UtypeðijÞðrijÞ
∂xi,m∂xj, n

vn

¼ � um
∂
2UtypeðijÞðrijÞ
∂xi,m∂xi, n

vn ð31Þ

Therefore, a similar construction applies to “off-site” Hessian
parts, but with the opposite sign and without the summation
over j.
As a linear combination of the above u and v atomic virtual

displacements, every collective distortion of a molecule can be
constructed. This knowledge can be used to fit to Hessians of
DFT reference algorithms that give no detailed Hessian matrix
but only vibrational modes and frequencies in their output. If e is
a (3N-component) collective eigenmode of the molecular Hes-
sian with ω frequency,

ω2Me ¼ He ¼ ðHel þ HrepÞe ð32Þ
where M is the diagonal mass matrix. The vector of equations
contained in

ω2Me�Hele ¼ Hrepe ð33Þ

can then be used as a new fit path with the left hand side as a
vector of E values and the right hand side as the usual linear
combinations coming from the repulsives and using R’s as
coefficients.21 Note that the last equation contains explicit
Hessian data from DFTB only.

Fitting to the Stress Tensor. The repulsive part of the stress
tensor in periodical systems is calculated as

σmn ¼ � 1
~V

∂~Erep
∂εmn

¼ 1
~V ∑

i ∈ a cell
j

Fij,mrij, n

¼ � 1
~V ∑

i ∈ a cell
j

1
rij

∂UðrijÞ
∂rij

rij,mrij, n

¼ � 1
~V ∑

i ∈ a cell
j

RtypeðijÞ, νf 0ðrijÞ
rij,mrij, n

rij
ð34Þ

where εmn is the strain tensor, ~V is the unit cell volume, ~Erep is the
cellwise repulsive energy, rij,m is a component of the relative
position vector rij from the ith atom to the jth, and rij is the length
of it. A double projection of σmn onto unit vectors u and v can be
written

σuv ¼ ∑
mn

σmnumvn ¼ ∑
AB, ν

RAB, νX
ðuvÞ
AB, ν ð35Þ

if our structural quantities are

XðuvÞ
AB, ν ¼ � 1

~V ∑
i ∈ a cell

j

f 0ðrijÞ
ðrijuÞðrijvÞ

rij
ð36Þ

So with the above X’s, σuv can be another valid target of our
repulsive fitting algorithm.
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ERRATUM

pubs.acs.org/JCTC

Fully Numerical All-Electron Solutions of the Optimized
Effective Potential Equation for Diatomic Molecules [ Journal
of Chemical Theory and Computation 2009, 5, 1731–1740. DOI:
10.1021/ct800485v]. AdiMakmal, Stephan K€ummel, and Leeor Kronik*

With this Erratum, we provide corrections for minor technical
errors we found in our original publication.1 These corrections
do not alter any of the conclusions drawn in the paper:
(1) In Table 9, the xOEP 1σ eigenvalue of LiH should be

�2.06(6) Hartree.
(2) In appendix B, eq (B4) should be

ε1iσ ¼ ÆjiσjΔviσjjiσæ + ÆψiσjHKSjjiσæ
� � ÆjiσjHKSjψiσæ

where the Kohn�Sham eigenvalues are assumed to be
real. This differs from the form given in the original
article by complex conjugation of the second term on the
right-hand side of the equation and by the sign of the
third term on the right-hand side of the equation.

(3) In appendix B, eq (B5) should be

This differs from the form given in the original article by
sign of the third term on the left-hand side of the
equation.

(4) Our mention of previous optimized effective potential
work for single atoms unfortunately omitted the work of
Cinal and Holas.2
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